Show simple item record

Application of the Monte Carlo Method in Modeling Dusty Gas, Dust in Plasma, and Energetic Ions in Planetary, Magnetospheric, and Heliospheric Environments

dc.contributor.authorTenishev, Valeriy
dc.contributor.authorShou, Yinsi
dc.contributor.authorBorovikov, Dmitry
dc.contributor.authorLee, Yuni
dc.contributor.authorFougere, Nicolas
dc.contributor.authorMichael, Adam
dc.contributor.authorCombi, Michael R.
dc.date.accessioned2021-03-02T21:45:50Z
dc.date.available2022-02-02 16:45:43en
dc.date.available2021-03-02T21:45:50Z
dc.date.issued2021-01
dc.identifier.citationTenishev, Valeriy; Shou, Yinsi; Borovikov, Dmitry; Lee, Yuni; Fougere, Nicolas; Michael, Adam; Combi, Michael R. (2021). "Application of the Monte Carlo Method in Modeling Dusty Gas, Dust in Plasma, and Energetic Ions in Planetary, Magnetospheric, and Heliospheric Environments." Journal of Geophysical Research: Space Physics 126(2): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/166403
dc.description.abstractTypical planetary and planetary satellite exospheres are in nonequilibrium conditions, which means that a distribution function that describes these environments is far from Maxwellian. It is even more true when considering transportation of energetic ions in planetary magnetospheres, making it necessary to solve the Boltzmann equation in order to capture kinetic effects when modeling evolution of the distribution function describing such environments. Among various numerical methods, the Monte Carlo approach is one of the most used one for solving kinetic equations. That is because of the relative simplicity of implementing and a high degree of flexibility in including new physical processes specific to a particular simulated environment. Adaptive Mesh Particle Simulator (AMPS) was developed as a general‐purpose code for solving the Boltzmann equation in conditions typical for planetary and planetary satellite exospheres. Later, the code was generalized for modeling dusty gas, dust, and plasma, and for simulating transportation of solar energetic particles and galactic cosmic rays in planetary magnetospheres. Here, we present a brief overview of the design, list the implemented physics models, and outline the modeling capabilities of AMPS. The latter is supported by several examples of prior applications of the code.Key PointsKinetic modeling is necessary for understanding various phenomena of planetary and space physicsAMPS is a versatile and well‐tested code with a long track record of application to simulate various planetary and heliophysics phenomenaThe paper demonstrates the modeling capabilities of AMPS by presenting several examples of the code’s prior application
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.titleApplication of the Monte Carlo Method in Modeling Dusty Gas, Dust in Plasma, and Energetic Ions in Planetary, Magnetospheric, and Heliospheric Environments
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166403/1/jgra56190.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166403/2/jgra56190_am.pdf
dc.identifier.doi10.1029/2020JA028242
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceCombi, M. R., Tenishev, V. M., Rubin, M., Fougere, N., & Gombosi, T. I. ( 2012 ). Narrow dust jets in a diffuse gas coma: A natural product of small active regions on comets. The Astrophysical Journal, 749 ( 1 ), 29.
dc.identifier.citedreferenceSkorov, Y., Reshetnyk, V., Lacerda, P., Hartogh, P., & Blum, J. ( 2016 ). Acceleration of cometary dust near the nucleus: Application to 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 461, 3410 – 3420.
dc.identifier.citedreferenceSprague, A. L., Kozlowski, R. W. H., Hunten, D. M., Wells, W. K., & Grosse, F. A. ( 1992 ). The sodium and potassium atmosphere of the Moon and its interaction with the surface. Icarus, 96 ( 1 ), 27 – 42.
dc.identifier.citedreferenceStern, S. A. ( 1999 ). The lunar atmosphere: History, status, current problems, and context. Reviews of Geophysics, 37 ( 4 ), 453 – 491.
dc.identifier.citedreferenceTenishev, V., Combi, M., & Davidsson, B. ( 2008 ). A global kinetic model for cometary comae. The evolution of the coma of the Rosetta target comet Churyumov‐Gerasimenko throughout the mission. The Astrophysical Journal, 685, 659 – 677.
dc.identifier.citedreferenceTenishev, V., Combi, M. R., & Rubin, M. ( 2011 ). Numerical simulation of dust in a cometary coma: Application to comet 67P/Churyumov‐Gerasimenko. The Astrophysical Journal, 732 ( 2 ), 104.
dc.identifier.citedreferenceTenishev, V., Fougere, N., Borovikov, D., Combi, M. R., Bieler, A., Hansen, K. C., et al. ( 2016 ). Analysis of the dust jet imaged by Rosetta VIRTIS‐M in the coma of comet 67P/Churyumov‐Gerasimenko on April 12, 2015. Monthly Notices of the Royal Astronomical Society, 462 ( Suppl. 1 ), S370 – S375. https://doi.org/10.1093/mnras/stw2793
dc.identifier.citedreferenceTenishev, V., Rubin, M., Tucker, O. J., Combi, M. R., & Sarantos, M. ( 2013 ). Kinetic modeling of sodium in the lunar exosphere. Icarus, 226 ( 2 ), 1538 – 1549.
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I. V., de Zeeuw, D. L., Gombosi, T. I., Fang, F., et al. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903.
dc.identifier.citedreferenceTsyganenko, N. A. ( 1995 ). Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. Journal of Geophysical Research, 100 ( A4 ), 5599 – 5612.
dc.identifier.citedreferenceTucker, O. J., Johnson, R. E., Deighan, J. I., & Volkov, A. N. ( 2013 ). Diffusion and thermal escape of H 2 from Titan’s atmosphere Monte Carlo simulations. Icarus, 222 ( 1 ), 149 – 158.
dc.identifier.citedreferenceValeille, A., Combi, M. R., Bougher, S. W., Tenishev, V., & Nagy, A. F. ( 2009 ). Three‐dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history. Journal of Geophysical Research, 114, E11006. https://doi.org/10.1029/2009JE003389
dc.identifier.citedreferenceValeille, A., Tenishev, V., Bougher, S. W., Combi, M. R., & Nagy, A. F. ( 2009 ). Three‐dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions. Journal of Geophysical Research, 114, E11005. https://doi.org/10.1029/2009JE003388
dc.identifier.citedreferenceVerani, S., Barbieri, C., Benn, C. R., Cremonese, G., & Mendillo, M. ( 2001 ). The 1999 Quadrantids and the lunar Na atmosphere. Monthly Notices of the Royal Astronomical Society, 327 ( 1 ), 244 – 248.
dc.identifier.citedreferencePotter, A. E., & Morgan, T. H. ( 1998 ). Coronagraphic observations of the lunar sodium exosphere near the lunar surface. Journal of Geophysical Research, 103 ( E4 ), 8581 – 8586.
dc.identifier.citedreferencePrem, P., Goldstein, D., Varghese, P., & Trafton, L. ( 2019 ). Coupled DSMC‐Monte Carlo radiative transfer modeling of gas dynamics in a transient impact‐generated lunar atmosphere. Icarus, 326, 88 – 104.
dc.identifier.citedreferenceReames, D. ( 1999 ). Particle acceleration at the sun and in the heliosphere. Space Science Reviews, 90, 413 – 491.
dc.identifier.citedreferenceSarantos, M., Killen, R. M., Surjalal Sharma, A., & Slavin, J. A. ( 2010 ). Sources of sodium in the lunar exosphere: Modeling using ground‐based observations of sodium emission and spacecraft data of the plasma. Icarus, 205 ( 2 ), 364 – 374.
dc.identifier.citedreferenceShafiq, M., Wahlund, J.‐E., Morooka, M. W., Kurth, W. S., & Farrell, W. M. ( 2011 ). Characteristics of the dust‐plasma interaction near Enceladus’ south pole. Planetary and Space Science, 59 ( 1 ), 17 – 25.
dc.identifier.citedreferenceCoradini, A., Capaccioni, F., Drossart, P., Semery, A., Arnold, G., & Schade, U. ( 1999 ). Virtis: The imaging spectrometer of the Rosetta mission. Advances in Space Research, 24 ( 9 ), 1095 – 1104. https://doi.org/10.1016/S0273-1177(99)80203-8
dc.identifier.citedreferenceCrifo, J., Loukianov, G. A., Rodionov, A. V., & Zakharov, V. V. ( 2005 ). Direct Monte Carlo and multifluid modeling of the circumnuclear dust coma. Spherical grain dynamics revisited. Icarus, 176 ( 1 ), 192 – 219.
dc.identifier.citedreferenceAbe, T. ( 1993 ). Generalized scheme of the no‐time‐counter scheme for the DSMC in rarefied gas flow analysis. Computers and Fluids, 22 ( 2–3 ), 253 – 257. http://dx.doi.org/10.1016/0045-7930(93)90057-G
dc.identifier.citedreferenceBadavi, F. F., Nealy, J. E., & Wilson, J. W. ( 2011 ). The low earth orbit validation of a dynamic and anisotropic trapped radiation model through {ISS} measurements. Advances in Space Research, 48 ( 8 ), 1441 – 1458. http://dx.doi.org/10.1016/j.asr.2011.06.009
dc.identifier.citedreferenceBalsiger, H., Altwegg, K., Bochsler, P., Eberhardt, P., Fischer, J., Graf, S., et al. ( 2007 ). Rosina‐Rosetta orbiter spectrometer for ion and neutral analysis. Space Science Reviews, 128 ( 1 ), 745 – 801.
dc.identifier.citedreferenceBaranov, V. B., & Malama, Y. G. ( 1993 ). Model of the solar wind interaction with the local interstellar medium numerical solution of self‐consistent problem. Journal of Geophysical Research, 98 ( A9 ), 15157 – 15164.
dc.identifier.citedreferenceBenson, C., Zhong, J., Gimelshein, S., Levin, D., & Montaser, A. ( 2002 ). A comprehensive model for the simulation of aerosols at high gas temperatures. Paper presented at 32nd AIAA Fluid Dynamics Conference and Exhibit, 24 June 2002 ‐ 26 June 2002, St. Louis, Missouri. https://doi.org/10.2514/6.2002-3181.
dc.identifier.citedreferenceBieler, A., Altwegg, K., Balsiger, H., Berthelier, J.‐J., Calmonte, U., Combi, M., et al. ( 2015 ). Comparison of 3d kinetic and hydrodynamic models to ROSINA‐COPS measurements of the neutral coma of 67P/Churyumov‐Gerasimenko. Astronomy and Astrophysics, 583, A7.
dc.identifier.citedreferenceBird, G. ( 1994 ). Molecular gas dynamics and the direct simulation of gas flows. Oxford: Oxford University Press.
dc.identifier.citedreferenceBlandford, R., & Eichler, D. ( 1987 ). Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Physics Reports, 154, 1 – 75.
dc.identifier.citedreferenceBorgnakke, C., & Larsen, P. S. ( 1975 ). Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. Journal of Computational Physics, 18, 405 – 420.
dc.identifier.citedreferenceBoyd, I. D., & Stark, I. ( 1989 ). Statistical fluctuations in Monte Carlo calculations. In Rarefied gas dynamics: Theoretical and computational techniques (pp. 245 – 257 ). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/5.9781600865923.0245.0257
dc.identifier.citedreferenceBurt, J., & Boyd, I. ( 2003 ). A DSMC method for the modeling of two phase non‐equilibrium flows. Paper presented at 36th AIAA Thermophysics Conference 23 June 2003 ‐ 26 June 2003, Orlando, Florida. https://doi.org/10.2514/6.2003-3496
dc.identifier.citedreferenceCombi, M. ( 1996 ). Time‐dependent gas kinetics in tenuous planetary atmospheres: The cometary coma. Icarus, 123 ( 1 ), 207 – 226.
dc.identifier.citedreferenceCombi, M., Shou, Y., Fougere, N., Tenishev, V., Altwegg, K., Rubin, M., et al. ( 2020 ). The surface distributions of the production of the major volatile species, h2o, co2, co and o2, from the nucleus of comet 67P/Churyumov‐Gerasimenko throughout the Rosetta mission as measured by the rosina double focusing mass spectrometer. Icarus, 335, 113421.
dc.identifier.citedreferenceCombi, M. R. ( 1994 ). The fragmentation of dust in the innermost comae of comets: Possible evidence from ground‐based images. The Astronomical Journal, 108 ( 1 ), 304 – 312.
dc.identifier.citedreferenceSimpson, J. A. ( 1983 ). Elemental and isotopic composition of the galactic cosmic rays. Annual Review of Nuclear and Particle Science, 33, 323 – 382. https://doi.org/10.1146/annurev.ns.33.120183.001543
dc.identifier.citedreferenceDaldorff, L. K., Tóth, G., Gombosi, T. I., Lapenta, G., Amaya, J., Markidis, S., & Brackbill, J. U. ( 2014 ). Two‐way coupling of a global hall magnetohydrodynamics model with a local implicit particle‐in‐cell model. Journal of Computational Physics, 268, 236 – 254.
dc.identifier.citedreferenceFougere, N. ( 2014 ). The complex outgassing of comets and the resulting coma, a direct simulation Monte‐Carlo approach (Unpublished doctoral dissertation).. Ann Arbor, MI: University of Michigan.
dc.identifier.citedreferenceFougere, N., Altwegg, K., Berthelier, J.‐J., Bieler, A., Bockelée‐Morvan, D., Calmonte, U., et al. ( 2016a ). Direct simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov‐Gerasimenko. Monthly Notices of the Royal Astronomical Society, 462 ( Suppl. 1 ), S156 – S169.
dc.identifier.citedreferenceFougere, N., Altwegg, K., Berthelier, J.‐J., Bieler, A., Bockelée‐Morvan, D., Calmonte, U., et al. ( 2016b ). Three‐dimensional direct simulation Monte‐Carlo modeling of the coma of comet 67P/Churyumov‐Gerasimenko observed by the VIRTIS and ROSINA instruments on board Rosetta. Astronomy and Astrophysics, 588, A134.
dc.identifier.citedreferenceFougere, N., Combi, M. R., Tenishev, V., Rubin, M., Bonev, B. P., & Mumma, M. J. ( 2012 ). Understanding measured water rotational temperatures and column densities in the very innermost coma of comet 73P/Schwassmann‐Wachmann 3 B. Icarus, 221 ( 1 ), 174 – 185.
dc.identifier.citedreferenceGimelshein, S. F., Ivanov, M. S., & Boyd, I. D. ( 1999 ). Modeling of internal energy transfer of polyatomic molecules in rarefied plume flows. Paper presented at 37th Aerospace Sciences Meeting and Exhibit, 11 January 1999 ‐ 14 January 1999, Reno, NV, USA. https://doi.org/10.2514/6.1999-738
dc.identifier.citedreferenceGimelshein, S. F., Ivanov, M. S., Markelov, G. N., & Gorbachev, Y. E. ( 1998 ). Statistical simulation of nonequilibrium rarefied flows with quasiclassical vibrational energy transfer models. Journal of Thermophysics and Heat Transfer, 12 ( 4 ), 489 – 495.
dc.identifier.citedreferenceHorányi, M. ( 1996 ). Charged dust dynamics in the solar system. Annual Review of Astronomy and Astrophysics, 34, 383 – 418.
dc.identifier.citedreferenceHorányi, M., Hartquist, T. W., Havnes, O., Mendis, D. A., & Morfill, G. E. ( 2004 ). Dusty plasma effects in Saturn’s magnetosphere. Reviews of Geophysics, 42, RG4002. https://doi.org/10.1029/2004RG000151
dc.identifier.citedreferenceIvanov, M. S., Gimelshein, S. F., & Markelov, G. N. ( 1998 ). Statistical simulation of the transition between regular and mach reflection in steady flows. Computers and Mathematics with Applications, 35 ( 1–2 ), 113 – 125.
dc.identifier.citedreferenceKaplan, C. R., & Oran, E. S. ( 2002 ). Nonlinear filtering of statistical noise in DSMC solutions. Paper presented at 40th AIAA Aerospace Sciences Meeting & Exhibit, 14 January 2002 ‐ 17 January 2002, Reno, NV, USA. https://doi.org/10.2514/6.2002-211
dc.identifier.citedreferenceKornbleuth, M., Opher, M., Michael, A. T., Sokol, J. M., Toth, G., Tenishev, V., & Drake, J. F. ( 2020 ). The confinement of the heliosheath plasma by the solar magnetic field as revealed by energetic neutral atom simulations. The Astrophysical Journal, 895 ( 1 ), L26.
dc.identifier.citedreferenceLambert, J. D. ( 1977 ). Vibrational and rotational relaxation in gases. Oxford, UK: Clarendon Press.
dc.identifier.citedreferenceLapenta, G. ( 2017 ). Exactly energy conserving semi‐implicit particle in cell formulation. Journal of Computational Physics, 334, 349 – 366.
dc.identifier.citedreferenceLee, Y., Combi, M. R., Tenishev, V., & Bougher, S. W. ( 2014a ). Hot carbon corona in mars’ upper thermosphere and exosphere: 1. Mechanisms and structure of the hot corona for low solar activity at equinox. Journal of Geophysical Research: Planets, 119, 905 – 924. https://doi.org/10.1002/2013JE004552
dc.identifier.citedreferenceLee, Y., Combi, M. R., Tenishev, V., & Bougher, S. W. ( 2014b ). Hot carbon corona in mars’ upper thermosphere and exosphere: 2. Solar cycle and seasonal variability. Journal of Geophysical Research: Planets, 119, 2487 – 2509. https://doi.org/10.1002/2014JE004669
dc.identifier.citedreferenceLee, Y., Combi, M. R., Tenishev, V., Bougher, S. W., Deighan, J., Schneider, N. M., et al. ( 2015 ). A comparison of 3‐d model predictions of mars’ oxygen corona with early MAVEN IUVS observations. Geophysical Research Letters, 42, 9015 – 9022. https://doi.org/10.1002/2015GL065291
dc.identifier.citedreferenceLee, Y., Combi, M. R., Tenishev, V., Bougher, S. W., & Lillis, R. J. ( 2015 ). Hot oxygen corona at mars and the photochemical escape of oxygen‐improved description of the thermosphere, ionosphere and exosphere. Journal of Geophysical Research: Planets, 120, 1880 – 1892. https://doi.org/10.1002/2015JE004890
dc.identifier.citedreferenceMarkelov, G. N., & Ivanov, M. S. ( 2000 ). Kinetic analysis of hypersonic laminar separated flows for hollow cylinder flare configurations. Fluids 2000 Conference and Exhibit, 19 June 2000 ‐ 22 June 2000, Denver, CO, USA. https://doi.org/10.2514/6.2000-2223
dc.identifier.citedreferenceMendillo, M. ( 2001 ). The atmosphere of the Moon. Earth, Moon, and Planets, 85–86, 271 – 277.
dc.identifier.citedreferenceMendillo, M., Baumgardner, J., & Wilson, J. ( 1999 ). Observational test for the solar wind sputtering origin of the Moon’s extended sodium atmosphere. Icarus, 137 ( 1 ), 13 – 23.
dc.identifier.citedreferenceMewaldt, R. A. ( 1994 ). Galactic cosmic ray composition and energy spectra. Advances in Space Research, 14, 737 – 747. https://doi.org/10.1016/0273-1177(94)90536-3
dc.identifier.citedreferenceMigliorini, A., Piccioni, G., Capaccioni, F., Filacchione, G., Bockelée‐Morvan, D., Erard, S., et al. ( 2016 ). Water and carbon dioxide distribution in the 67P/Churyumov‐Gerasimenko coma from VIRTIS‐M infrared observations. Astronomy and Astrophysics, 589, A45.
dc.identifier.citedreferenceMorris, A. B., Goldstein, D. B., Varghese, P. L., & Trafton, L. M. ( 2015 ). Approach for modeling rocket plume impingement and dust dispersal on the moon. Journal of Spacecraft and Rockets, 52 ( 2 ), 362 – 374. https://doi.org/10.2514/1.A33058
dc.identifier.citedreferenceOpher, M., Drake, J. F., Zieger, B., & Gombosi, T. I. ( 2015 ). Magnetized jets driven by the sun: The structure of the heliosphere revisited. The Astrophysical Journal Letters, 800 ( 2 ), L28.
dc.identifier.citedreferencePotter, A., & Morgan, T. ( 1991 ). Observations of the lunar sodium exosphere. Geophysical Research Letters, 18 ( 11 ), 2089 – 2092.
dc.identifier.citedreferencePotter, A. E., Killen, R. M., & Morgan, T. H. ( 2000 ). Variation of lunar sodium during passage of the Moon through the Earth’s magnetotail. Journal of Geophysical Research, 105 ( E6 ), 15073 – 15084.
dc.identifier.citedreferencePotter, A. E., & Morgan, T. H. ( 1988 ). Discovery of sodium and potassium vapor in the atmosphere of the Moon. Science, 241, 675 – 680.
dc.identifier.citedreferencePotter, A. E., & Morgan, T. H. ( 1994 ). Variation of lunar sodium emission intensity with phase angle. Geophysical Research Letters, 21 ( 21 ), 2263 – 2266.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.