Show simple item record

Flux Transfer Events at a Reconnection- Suppressed Magnetopause: Cassini Observations at Saturn

dc.contributor.authorJasinski, Jamie M.
dc.contributor.authorAkhavan‐tafti, Mojtaba
dc.contributor.authorSun, Weijie
dc.contributor.authorSlavin, James A.
dc.contributor.authorCoates, Andrew J.
dc.contributor.authorFuselier, Stephen A.
dc.contributor.authorSergis, Nick
dc.contributor.authorMurphy, Neil
dc.date.accessioned2021-03-02T21:46:12Z
dc.date.available2022-03-02 16:46:10en
dc.date.available2021-03-02T21:46:12Z
dc.date.issued2021-02
dc.identifier.citationJasinski, Jamie M.; Akhavan‐tafti, Mojtaba ; Sun, Weijie; Slavin, James A.; Coates, Andrew J.; Fuselier, Stephen A.; Sergis, Nick; Murphy, Neil (2021). "Flux Transfer Events at a Reconnection- Suppressed Magnetopause: Cassini Observations at Saturn." Journal of Geophysical Research: Space Physics 126(2): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/166408
dc.description.abstractWe present the discovery of seven new flux transfer events (FTEs) at Saturn’s dayside magnetopause by the Cassini spacecraft and analyze the observations of all eight known FTEs. We investigate how FTEs may differ at Saturn where the magnetopause conditions are likely to diamagnetically suppress magnetic reconnection from occurring. The measured ion- scale FTEs have diameters close to or above the ion inertial length di- ¼1- 27 (median and mean values of 5 and 8), considerably lower than typical FTEs found at Earth. The FTEs magnetic flux contents are 4- 461 kWb (median and mean values of 16 and 77 kWb), considerably smaller (<0.1%) than average flux opened during magnetopause compression events at Saturn. This is in contrast to Earth and Mercury where FTEs contribute significantly to magnetospheric flux transfer. FTEs therefore represent a negligible proportion of the amount of open magnetic flux transferred at Saturn. Due to the likely suppression of the two main growth- mechanisms for FTEs (continuous multiple x- line reconnection and FTE coalescence), we conclude that adiabatic expansion is the likely (if any) candidate to grow the size of FTEs at Saturn. Electron energization is observed inside the FTEs, due to either Fermi acceleration or parallel electric fields. Due to diamagnetic suppression of reconnection at Saturn’s magnetopause, we suggest that the typical size of FTEs at Saturn is most likely very small, and that there may be more di- ¼1 FTEs present in the Cassini magnetometer data that have not been identified due to their brief and unremarkable magnetic signatures.Key PointsEight Saturn ion- scale flux transfer events (FTEs) are analyzed with diameters of di- ¼1- 27FTEs at Saturn are found to transfer negligible amounts of flux at Saturn’s magnetosphereEvidence for electron energization is observed inside some of the FTEs, due to either Fermi acceleration or parallel electric fields
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherFTE
dc.subject.otherreconnection
dc.subject.otherSaturn
dc.subject.othermagnetopause
dc.subject.otherCassini
dc.titleFlux Transfer Events at a Reconnection- Suppressed Magnetopause: Cassini Observations at Saturn
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166408/1/jgra56227_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166408/2/jgra56227.pdf
dc.identifier.doi10.1029/2020JA028786
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceLee, L. C., & Fu, Z. F. ( 1986 ). Multiple X line reconnection: 1. A criterion for the transition from a single X line to a multiple X line reconnection. Journal of Geophysical Research, 91 ( A6 ), 6807 - 6815. https://doi.org/10.1029/JA091iA06p06807
dc.identifier.citedreferenceEastwood, J. P., Phan, T. D., Fear, R. C., Sibeck, D. G., Angelopoulos, V., Ã ieroset, M., & Shay, M. A. ( 2012 ). Survival of flux transfer event (FTE) flux ropes far along the tail magnetopause. Journal of Geophysical Research, 117, A08222. https://doi.org/10.1029/2012JA017722
dc.identifier.citedreferenceEgedal, J., Daughton, W., & Le, A. ( 2012 ). Large- scale electron acceleration by parallel electric fields during magnetic reconnection. Nature Physics, 8, 321 - 324. https://doi.org/10.1038/nphys2249
dc.identifier.citedreferenceFear, R. C., Coxon, J. C., & Jackman, C. M. ( 2019 ). The contribution of flux transfer events to Mercury’s Dungey cycle. Geophysical Research Letters, 46, 14239 - 14246. https://doi.org/10.1029/2019GL085399
dc.identifier.citedreferenceFear, R. C., Milan, S. E., Fazakerley, A. N., Lucek, E. A., Cowley, S. W. H., & Dandouras, I. ( 2008 ). The azimuthal extent of three flux transfer events. Annales Geophysicae, 26, 2353 - 2369. https://doi.org/10.5194/angeo-26-2353-2008
dc.identifier.citedreferenceFear, R. C., Trenchi, L., Coxon, J. C., & Milan, S. E. ( 2017 ). How much flux does a flux transfer event transfer?. Journal of Geophysical Research: Space Physics, 122, 12310 - 12327. https://doi.org/10.1002/2017JA024730
dc.identifier.citedreferenceFelici, M., Arridge, C. S., Wilson, R. J., Coates, A. J., Thomsen, M., & Reisenfeld, D. ( 2018 ). Survey of thermal plasma composition in Saturn’s magnetosphere using time- of- flight data from Cassini/CAPS. Journal of Geophysical Research: Space Physics, 123, 6494 - 6513. https://doi.org/10.1029/2017JA025085
dc.identifier.citedreferenceFermo, R. L., Drake, J. F., Swisdak, M., & Hwang, K. J. ( 2011 ). Comparison of a statistical model for magnetic islands in large current layers with Hall MHD simulations and Cluster FTE observations. Journal of Geophysical Research, 116, A09226. https://doi.org/10.1029/2010JA016271
dc.identifier.citedreferenceFuselier, S. A., Anderson, B. J., & Onsager, T. G. ( 1997 ). Electron and ion signatures of field line topology at the low- shear magnetopause. Journal of Geophysical Research, 102 ( A3 ), 4847 - 4863. https://doi.org/10.1029/96JA03635
dc.identifier.citedreferenceFuselier, S. A., Frahm, R., Lewis, W. S., Masters, A., Mukherjee, J., Petrinec, S. M., & Sillanpaa, I. J. ( 2014 ). The location of magnetic reconnection at Saturn’s magnetopause: A comparison with Earth. Journal of Geophysical Research: Space Physics, 119, 2563 - 2578. https://doi.org/10.1002/2013JA019684
dc.identifier.citedreferenceFuselier, S. A., Petrinec, S. M., Sawyer, R. P., Mukherjee, J., & Masters, A. ( 2020 ). Suppression of magnetic reconnection at Saturn’s low- latitude magnetopause. Journal of Geophysical Research: Space Physics, 125 ( 5 ), e2020JA027895. https://doi.org/10.1029/2020JA027895
dc.identifier.citedreferenceFuselier, S. A., Trattner, K. J., Petrinec, S. M., & Lavraud, B. ( 2012 ). Dayside magnetic topology at the Earth’s magnetopause for northward IMF. Journal of Geophysical Research, 117, A08235. https://doi.org/10.1029/2012JA017852
dc.identifier.citedreferenceGonzalez, W., & Parker, E. (Eds.), ( 2016 ). Magnetic reconnection: Concepts and applications. In Astrophysics and space science library (Vol. 427, pp. 549 ). Cham: Springer. Retrieved from http://cds.cern.ch/record/2136422
dc.identifier.citedreferenceGosling, J. T. ( 2012 ). Magnetic reconnection in the solar wind. Space Science Reviews, 172, 187 - 200. https://doi.org/10.1007/s11214-011-9747-2
dc.identifier.citedreferenceGosling, J. T., Thomsen, M. F., Bame, S. J., Onsager, T. G., & Russell, C. T. ( 1990 ). The electron edge of the low- latitude boundary layer during accelerated flow events. Geophysical Research Letters, 17, 1833 - 1836.
dc.identifier.citedreferenceHasegawa, H., Retinò, A., Vaivads, A., Khotyaintsev, Y., Nakamura, R., Takada, T., et al. ( 2008 ). Retreat and reformation of X- line during quasi- continuous tailward- of- the- cusp reconnection under northward IMF. Geophysical Research Letters, 35, L15104. https://doi.org/10.1029/2008GL034767
dc.identifier.citedreferenceHoilijoki, S., Ganse, U., Pfau- Kempf, Y., Cassak, P. A., Walsh, B. M., Hietala, H., et al. ( 2017 ). Reconnection rates and X line motion at the magnetopause: Global 2D- 3V hybrid- Vlasov simulation results. Journal of Geophysical Research: Space Physics, 122, 2877 - 2888. https://doi.org/10.1002/2016JA023709
dc.identifier.citedreferenceHwang, K.- J., Sibeck, D. G., Burch, J. L., Choi, E., Fear, R. C., Lavraud, B., et al. ( 2018 ). Small- scale flux transfer events formed in the reconnection exhaust region between two X lines. Journal of Geophysical Research: Space Physics, 123, 8473 - 8488. https://doi.org/10.1029/2018JA025611
dc.identifier.citedreferenceJasinski, J. M. ( 2015 ). Cassini observations of Saturn’s magnetospheric Cusp (Doctoral thesis). UCL (University College London). Retreived from https://discovery.ucl.ac.uk/id/eprint/1470751
dc.identifier.citedreferenceJasinski, J. M., Arridge, C. S., Bader, A., Smith, A. W., Felici, M., Kinrade, J., et al. ( 2019 ). Saturn’s open- closed field line boundary: A Cassini electron survey at Saturn’s magnetosphere. Journal of Geophysical Research: Space Physics, 124, 10018 - 10035. https://doi.org/10.1029/2019JA027090
dc.identifier.citedreferenceJasinski, J. M., Arridge, C. S., Coates, A. J., Jones, G. H., Sergis, N., Thomsen, M. F., & Krupp, N. ( 2017 ). Diamagnetic depression observations at Saturn’s magnetospheric cusp by the Cassini spacecraft. Journal of Geophysical Research: Space Physics, 122, 6283 - 6303. https://doi.org/10.1002/2016JA023738
dc.identifier.citedreferenceJasinski, J. M., Arridge, C. S., Coates, A. J., Jones, G. H., Sergis, N., Thomsen, M. F., et al. ( 2016 ). Cassini plasma observations of Saturn’s magnetospheric cusp. Journal of Geophysical Research: Space Physics, 121, 12047 - 12067. https://doi.org/10.1002/2016JA023310
dc.identifier.citedreferenceJasinski, J. M., Arridge, C. S., Lamy, L., Leisner, J. S., Thomsen, M. F., Mitchell, D. G., et al. ( 2014 ). Cusp observation at Saturn’s high- latitude magnetosphere by the Cassini spacecraft. Geophysical Research Letters, 41, 1382 - 1388. https://doi.org/10.1002/2014GL059319
dc.identifier.citedreferenceJasinski, J. M., Slavin, J. A., Arridge, C. S., Poh, G., Jia, X., Sergis, N., et al. ( 2016 ). Flux transfer event observation at Saturn’s dayside magnetopause by the Cassini spacecraft. Geophysical Research Letters, 43, 6713 - 6723. https://doi.org/10.1002/2016GL069260
dc.identifier.citedreferenceKinrade, J., Badman, S. V., Bunce, E. J., Tao, C., Provan, G., Cowley, S. W. H., et al. ( 2017 ). An isolated, bright cusp aurora at Saturn. Journal of Geophysical Research: Space Physics, 122 ( 6 ), 6121 - 6138. https://doi.org/10.1002/2016JA023792
dc.identifier.citedreferenceKnetter, T., Neubauer, F. M., Horbury, T., & Balogh, A. ( 2004 ). Four- point discontinuity observations using cluster magnetic field data: A statistical survey. Journal of Geophysical Research, 109 ( A6 ), a06102. https://doi.org/10.1029/2003JA010099
dc.identifier.citedreferenceKrimigis, S. M., Mitchell, D. G., Hamilton, D. C., Livi, S., Dandouras, J., Jaskulek, S., et al. ( 2004 ). Magnetosphere imaging instrument (MIMI) on the Cassini mission to Saturn/Titan. Space Science Reviews, 114, 233 - 329. https://doi.org/10.1007/s11214-004-1410-8
dc.identifier.citedreferenceLee, L. C., & Fu, Z. F. ( 1985 ). A theory of magnetic flux transfer at the earth’s magnetopause. Geophysical Research Letters, 12 ( 2 ), 105 - 108. https://doi.org/10.1029/GL012i002p00105
dc.identifier.citedreferenceEastwood, J. P., Phan, T. D., Cassak, P. A., Gershman, D. J., Haggerty, C., Malakit, K., et al. ( 2016 ). Ion- scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS. Geophysical Research Letters, 43, 4716 - 4724. https://doi.org/10.1002/2016GL068747
dc.identifier.citedreferenceLepping, R. P., Fairfield, D. H., Jones, J., Frank, L. A., Paterson, W. R., Kokubun, S., & Yamamoto, T. ( 1995 ). Cross- tail magnetic flux ropes as observed by the GEOTAIL spacecraft. Geophysical Research Letters, 22, 1193 - 1196. https://doi.org/10.1029/95GL01114
dc.identifier.citedreferenceLepping, R. P., Jones, J. A., & Burlaga, L. F. ( 1990 ). Magnetic field structure of interplanetary magnetic clouds at 1 AU. Journal of Geophysical Research: Space Physics, 95 ( A8 ), 11,957 - 11,965. https://doi.org/10.1029/JA095iA08p11957
dc.identifier.citedreferenceLiewer, P. C., Panasenco, O., & Hall, J. R. ( 2013 ). Stereoscopic analysis of the 31 August 2007 prominence eruption and coronal mass ejection. Solar Physics, 282, 201 - 220. https://doi.org/10.1007/s11207-012-0145-z
dc.identifier.citedreferenceLockwood, M., Cowley, S. W. H., Smith, M. F., Rijnbeek, R. P., & Elphic, R. C. ( 1995 ). The contribution of flux transfer events to convection. Geophysical Research Letters, 22, 1185 - 1188. https://doi.org/10.1029/95GL01008
dc.identifier.citedreferenceLockwood, M., & Hapgood, M. A. ( 1998 ). On the cause of a magnetospheric flux transfer event. Journal of Geophysical Research, 103 ( A11 ), 26453 - 26478. https://doi.org/10.1029/98JA02244
dc.identifier.citedreferenceLui, A. T. Y., Sibeck, D. G., Phan, T., McFadden, J. P., Angelopoulos, V., & Glassmeier, K.- H. ( 2008 ). Reconstruction of a flux transfer event based on observations from five THEMIS satellites. Journal of Geophysical Research, 113, A00C01. https://doi.org/10.1029/2008JA013189
dc.identifier.citedreferenceLundquist, S. ( 1950 ). Magneto- hydrostatic fields. Arkiv for Fysik, 2 ( 4 ), 361 - 365.
dc.identifier.citedreferenceMasters, A. ( 2015 ). The dayside reconnection voltage applied to Saturn’s magnetosphere. Geophysical Research Letters, 42, 2577 - 2585. https://doi.org/10.1002/2015GL063361
dc.identifier.citedreferenceMasters, A. ( 2018 ). A more viscous- like solar wind interaction with all the giant planets. Geophysical Research Letters, 45, 7320 - 7329. https://doi.org/10.1029/2018GL078416
dc.identifier.citedreferenceMasters, A., Eastwood, J. P., Swisdak, M., Thomsen, M. F., Russell, C. T., Sergis, N., et al. ( 2012 ). The importance of plasma β conditions for magnetic reconnection at Saturn’s magnetopause. Geophysical Research Letters, 39, L08103. https://doi.org/10.1029/2012GL051372
dc.identifier.citedreferenceMcAndrews, H. J., Owen, C. J., Thomsen, M., Lavraud, B., Coates, A., Dougherty, M., & Young, D. T. ( 2008 ). Evidence for reconnection at Saturn’s magnetopause. Journal of Geophysical Research, 113, A04210. https://doi.org/10.1029/2007JA012581
dc.identifier.citedreferenceMilan, S. E., Lester, M., Cowley, S. W. H., & Brittnacher, M. ( 2000 ). Convection and auroral response to a southward turning of the IMF: Polar UVI, CUTLASS, and IMAGE signatures of transient magnetic flux transfer at the magnetopause. Journal of Geophysical Research, 105, 15741 - 15755. https://doi.org/10.1029/2000JA900022
dc.identifier.citedreferencePalmaerts, B., Radioti, A., Roussos, E., Grodent, D., Gérard, J.- C., Krupp, N., & Mitchell, D. G. ( 2016 ). Pulsations of the polar cusp aurora at Saturn. Journal of Geophysical Research: Space Physics, 121, 11952 - 11963. https://doi.org/10.1002/2016JA023497
dc.identifier.citedreferencePaschmann, G., Papamastorakis, I., Baumjohann, W., Sckopke, N., Carlson, C. W., Sonnerup, B. U. à ., & Lühr, H. ( 1986 ). The magnetopause for large magnetic shear: AMPTE/IRM observations. Journal of Geophysical Research, 91, 11099 - 11115. https://doi.org/10.1029/JA091iA10p11099
dc.identifier.citedreferencePhan, T.- D., Gosling, J. T., Paschmann, G., Pasma, C., Drake, J. F., à ieroset, M., et al. ( 2010 ). The dependence of magnetic reconnection on plasma β and magnetic shear: Evidence from solar wind observations. The Astrophysical Journal Letters, 719, L199 - L203. https://doi.org/10.1088/2041-8205/719/2/L199
dc.identifier.citedreferenceQuest, K. B., & Coroniti, F. V. ( 1981 ). Linear theory of tearing in a high- beta plasma. Journal of Geophysical Research, 86, 3299 - 3305. https://doi.org/10.1029/JA086iA05p03299
dc.identifier.citedreferenceRadioti, A., Grodent, D., Gérard, J.- C., Bonfond, B., Gustin, J., Pryor, W., et al. ( 2013 ). Auroral signatures of multiple magnetopause reconnection at Saturn. Geophysical Research Letters, 40, 4498 - 4502. https://doi.org/10.1002/grl.50889
dc.identifier.citedreferenceRaeder, J. ( 2006 ). Flux transfer events: 1. Generation mechanism for strong southward IMF. Annales Geophysicae, 24, 381 - 392. https://doi.org/10.5194/angeo-24-381-2006
dc.identifier.citedreferenceRijnbeek, R. P., Cowley, S. W. H., Southwood, D. J., & Russell, C. T. ( 1984 ). A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers. Journal of Geophysical Research, 89 ( A2 ), 786 - 800. https://doi.org/10.1029/JA089iA02p00786
dc.identifier.citedreferenceRussell, C. T., & Elphic, R. C. ( 1978 ). Initial ISEE magnetometer results- Magnetopause observations. Space Science Reviews, 22, 681 - 715. https://doi.org/10.1007/BF00212619
dc.identifier.citedreferenceRussell, C. T., & Elphic, R. C. ( 1979 ). ISEE observations of flux transfer events at the dayside magnetopause. Geophysical Research Letters, 6 ( 1 ), 33 - 36. https://doi.org/10.1029/GL006i001p00033
dc.identifier.citedreferenceSawyer, R. P., Fuselier, S. A., Mukherjee, J., & Petrinec, S. M. ( 2019 ). An investigation of flow shear and diamagnetic drift effects on magnetic reconnection at Saturn’s dawnside magnetopause. Journal of Geophysical Research: Space Physics, 124, 8457 - 8473. https://doi.org/10.1029/2019JA026696
dc.identifier.citedreferenceScurry, L., Russell, C. T., & Gosling, J. T. ( 1994 ). Geomagnetic activity and the beta dependence of the dayside reconnection rate. Journal of Geophysical Research, 99 ( A8 ), 14811 - 14814. https://doi.org/10.1029/94JA00794
dc.identifier.citedreferenceSlavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., et al. ( 2014 ). MESSENGER observations of Mercury’s dayside magneto- sphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119, 8087 - 8116. https://doi.org/10.1002/2014JA020319
dc.identifier.citedreferenceSlavin, J. A., Imber, S. M., Boardsen, S. A., DiBraccio, G. A., Sundberg, T., Sarantos, M., et al. ( 2012 ). MESSENGER observations of a flux- transfer- event shower at Mercury. Journal of Geophysical Research, 117, A00M06. https://doi.org/10.1029/2012JA017926
dc.identifier.citedreferenceSlavin, J. A., Lepping, R. P., Gjerloev, J., Fairfield, D. H., Hesse, M., Owen, C. J., et al. ( 2003 ). Geotail observations of magnetic flux ropes in the plasma sheet. Journal of Geophysical Research, 108 ( A1 ), 1015. https://doi.org/10.1029/2002JA009557
dc.identifier.citedreferenceArridge, C. S., Jasinski, J. M., Achilleos, N., Bogdanova, Y. V., Bunce, E. J., Cowley, S. W. H., et al. ( 2016 ). Cassini observations of Saturn’s southern polar cusp. Journal of Geophysical Research: Space Physics, 121, 3006 - 3030. https://doi.org/10.1002/2015JA021957
dc.identifier.citedreferenceArridge, C. S., McAndrews, H. J., Jackman, C. M., Forsyth, C., Walsh, A. P., Sittler, E. C., et al. ( 2009 ). Plasma electrons in Saturn’s magnetotail: Structure, distribution and energisation. Planetary and Space Science, 57 ( 14- 15 ), 2032 - 2047. https://doi.org/10.1016/j.pss.2009.09.007
dc.identifier.citedreferenceAshour- Abdalla, M., El- Alaoui, M., Goldstein, M., Zhou, M., Schriver, D., Richard, R., et al. ( 2011 ). Observations and simulations of non- local acceleration of electrons in magnetotail magnetic reconnection events. Nature Physics, 7, 360 - 365. https://doi.org/10.1038/nphys1903
dc.identifier.citedreferenceBadman, S. V., Jackman, C. M., Nichols, J. D., Clarke, J. T., & Gérard, J.- C. ( 2014 ). Open flux in Saturn’s magnetosphere. Icarus, 231, 137 - 145. https://doi.org/10.1016/j.icarus.2013.12.004
dc.identifier.citedreferenceBadman, S. V., Masters, A., Hasegawa, H., Fujimoto, M., Radioti, A., Grodent, D., et al. ( 2013 ). Bursty magnetic reconnection at Saturn’s magnetopause. Geophysical Research Letters, 40, 1027 - 1031. https://doi.org/10.1002/grl.50199
dc.identifier.citedreferenceBiskamp, D. ( 1982 ). Effect of secondary tearing instability on the coalescence of magnetic islands. Physics Letters A, 87 ( 7 ), 357 - 360. https://doi.org/10.1016/0375-9601(82)90844-1
dc.identifier.citedreferenceBurlaga, L. F. ( 1988 ). Magnetic clouds and force- free fields with constant alpha. Journal of Geophysical Research, 93 ( A7 ), 7217 - 7224. https://doi.org/10.1029/JA093iA07p07217
dc.identifier.citedreferenceChen, C., Sun, T. R., Wang, C., Huang, Z. H., Tang, B. B., & Guo, X. C. ( 2019 ). The effect of solar wind Mach numbers on the occurrence rate of flux transfer events at the dayside magnetopause. Geophysical Research Letters, 46, 4106 - 4113. https://doi.org/10.1029/2018GL081676
dc.identifier.citedreferenceDahlin, J. T., Drake, J. F., & Swisdak, M. ( 2014 ). The mechanisms of electron heating and acceleration during magnetic reconnection. Physics of Plasmas, 21 ( 9 ), 92304. https://doi.org/10.1063/1.4894484
dc.identifier.citedreferenceDaughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Bergen, B., & Bowers, K. J. ( 2011 ). Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nature Physics, 7 ( 7 ), 539 - 542. https://doi.org/10.1038/nphys1965
dc.identifier.citedreferenceDorelli, J. C., & Bhattacharjee, A. ( 2009 ). On the generation and topology of flux transfer events. Journal of Geophysical Research, 114, A06213. https://doi.org/10.1029/2008JA013410
dc.identifier.citedreferenceDougherty, M. K., Kellock, S., Southwood, D. J., Balogh, A., Smith, E. J., Tsurutani, B. T., et al. ( 2004 ). The Cassini magnetic field investigation. Space Science Reviews, 114, 331 - 383. https://doi.org/10.1007/s11214-004-1432-2
dc.identifier.citedreferenceDrake, J. F., Arnold, H., Swisdak, M., & Dahlin, J. T. ( 2019 ). A computational model for exploring particle acceleration during reconnection in macroscale systems. Physics of Plasmas, 26 ( 1 ), 12901. https://doi.org/10.1063/1.5058140
dc.identifier.citedreferenceDungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6, 47 - 48. https://doi.org/10.1103/PhysRevLett.6.47
dc.identifier.citedreferenceEastwood, J. P., Balogh, A., Dunlop, M. W., & Smith, C. W. ( 2002 ), Cluster observations of the heliospheric current sheet and an associated magnetic flux rope and comparisons with ace, Journal of Geophysical Research, 107 ( A11 ), 1365. https://doi.org/10.1029/2001JA009158
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Dewey, R. M., Chen, Y., DiBraccio, G. A., Raines, J. M., et al. ( 2020b ). MESSENGER observations of Mercury’s nightside magnetosphere under extreme solar wind conditions: Reconnection- generated structures and steady convection. Journal of Geophysical Research: Space Physics, 125, e2019JA027490. https://doi.org/10.1029/2019JA027490
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Smith, A. W., Dewey, R. M., Poh, G. K., Jia, X., et al. ( 2020a ). Flux transfer event showers at Mercury: Dependence on plasma β and magnetic shear and their contribution to the Dungey cycle. Geophysical Research Letters, 47, e2020GL089784. https://doi.org/10.1029/2020GL089784
dc.identifier.citedreferenceSwisdak, M., Opher, M., Drake, J. F., & Alouani Bibi, F. ( 2010 ). The vector direction of the interstellar magnetic field outside the heliosphere. The Astrophysical Journal, 710, 1769 - 1775. https://doi.org/10.1088/0004-637X/710/2/1769
dc.identifier.citedreferenceSwisdak, M., Rogers, B. N., Drake, J. F., & Shay, M. A. ( 2003 ). Diamagnetic suppression of component magnetic reconnection at the magnetopause. Journal of Geophysical Research, 108, 1218. https://doi.org/10.1029/2002JA009726
dc.identifier.citedreferenceThomsen, M. F., Coates, A. J., Jackman, C. M., Sergis, N., Jia, X., & Hansen, K. C. ( 2018 ). Survey of magnetosheath plasma properties at Saturn and inference of upstream flow conditions. Journal of Geophysical Research: Space Physics, 123, 2034 - 2053. https://doi.org/10.1002/2018JA025214
dc.identifier.citedreferenceThomsen, M. F., Reisenfeld, D. B., Delapp, D. M., Tokar, R. L., Young, D. T., Crary, F. J., et al. ( 2010 ). Survey of ion plasma parameters in Saturn’s magnetosphere. Journal of Geophysical Research, 115 ( A10 ), A10220. https://doi.org/10.1029/2010JA015267
dc.identifier.citedreferenceTrattner, K. J., Thresher, S., Trenchi, L., Fuselier, S. A., Petrinec, S. M., Peterson, W. K., & Marcucci, M. F. ( 2017 ). On the occurrence of magnetic reconnection equatorward of the cusps at the Earth’s magnetopause during northward IMF conditions. Journal of Geophysical Research: Space Physics, 122, 605 - 617. https://doi.org/10.1002/2016JA023398
dc.identifier.citedreferenceVarsani, A., Owen, C. J., Fazakerley, A. N., Forsyth, C., Walsh, A. P., André, M., et al. ( 2014 ). Cluster observations of the substructure of a flux transfer event: Analysis of high- time- resolution particle data. Annales Geophysicae, 32 ( 9 ), 1093 - 1117. https://doi.org/10.5194/angeo-32-1093-2014
dc.identifier.citedreferenceWang, Y. L., Elphic, R. C., Lavraud, B., Taylor, M. G. G. T., Birn, J., Raeder, J., et al. ( 2005 ). Initial results of high- latitude magnetopause and low- latitude flank flux transfer events from 3 years of cluster observations. Journal of Geophysical Research, 110, A11221. https://doi.org/10.1029/2005JA011150
dc.identifier.citedreferenceXiao, C. J., Pu, Z. Y., Ma, Z. W., Fu, S. Y., Huang, Z. Y., & Zong, Q. G. ( 2004 ). Inferring of flux rope orientation with the minimum variance analysis technique. Journal of Geophysical Research: Space Physics, 109, A11218. https://doi.org/10.1029/2004JA010594
dc.identifier.citedreferenceYoung, D. T., Berthelier, J. J., Blanc, M., Burch, J. L., Coates, A. J., Goldstein, R., et al. ( 2004 ). Cassini Plasma Spectrometer investigation. Space Science Reviews, 114, 1 - 112. https://doi.org/10.1007/s11214-004-1406-4
dc.identifier.citedreferenceZhang, H., Khurana, K. K., Kivelson, M. G., Angelopoulos, V., Pu, Z. Y., Zong, Q.- G., et al. ( 2008 ). Modeling a force- free flux transfer event probed by multiple Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. Journal of Geophysical Research, 113, A00C05. https://doi.org/10.1029/2008JA013451
dc.identifier.citedreferenceZhou, M., Berchem, J., Walker, R. J., el- Alaoui, M., Deng, X., Cazzola, E., et al. ( 2017 ). Coalescence of macroscopic flux ropes at the subsolar magnetopause: Magnetospheric Multiscale observations. Physical Review Letters, 119 ( 5 ). https://doi.org/10.1103/PhysRevLett.119.05510
dc.identifier.citedreferenceAkhavan- Tafti, M., Palmroth, M., Slavin, J. A., Battarbee, M., Ganse, U., Grandin, M., et al. ( 2020 ). Comparative analysis of the Vlasiator simulations and MMS observations of multiple X- line reconnection and flux transfer events. Journal of Geophysical Research: Space Physics, 125, e2019JA027410. https://doi.org/10.1029/2019JA027410
dc.identifier.citedreferenceAkhavan- Tafti, M., Slavin, J. A., Eastwood, J. P., Cassak, P. A., & Gershman, D. J. ( 2019 ). MMS multi- point analysis of FTE evolution: Physical characteristics and dynamics. Journal of Geophysical Research: Space Physics, 124, 5376 - 5395. https://doi.org/10.1029/2018JA026311
dc.identifier.citedreferenceAkhavan- Tafti, M., Slavin, J. A., Le, G., Eastwood, J. P., Strangeway, R. J., Russell, C. T., et al. ( 2018 ). MMS examination of FTEs at the Earth’s subsolar magnetopause. Journal of Geophysical Research: Space Physics, 123, 1224 - 1241. https://doi.org/10.1002/2017JA024681
dc.identifier.citedreferenceAkhavan- Tafti, M., Slavin, J. A., Sun, W. J., Le, G., & Gershman, D. J. ( 2019b ). MMS observations of plasma heating associated with FTE growth. Geophysical Research Letters, 46, 12654 - 12664. https://doi.org/10.1029/2019GL084843
dc.identifier.citedreferenceSmith, A. W., Slavin, J. A., Jackman, C. M., Fear, R. C., Poh, G.- K., DiBraccio, G. A., et al. ( 2017 ). Automated force- free flux rope identification. Journal of Geophysical Research: Space Physics, 122, 780 - 791. https://doi.org/10.1002/2016JA022994
dc.identifier.citedreferenceSonnerup, B. U., & Cahill, L. J. ( 1967 ). Magnetopause structure and attitude from explorer 12 observations. Journal of Geophysical Research, 72 ( 1 ), 171 - 183. https://doi.org/10.1029/JZ072i001p00171
dc.identifier.citedreferenceSonnerup, B. U. Ã ., & Scheible, M. ( 1998 ). Minimum and maximum variance analysis. In G. Paschmann, & P. W. Daly (Eds.), Analysis methods for multi- spacecraft data (pp. 185 - 220 ). Noordwijk: ESA Publication.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.