Show simple item record

Metabolic syndrome and peripheral neuropathy

dc.contributor.authorKazamel, Mohamed
dc.contributor.authorStino, Amro Maher
dc.contributor.authorSmith, Albert Gordon
dc.date.accessioned2021-03-02T21:46:40Z
dc.date.available2022-04-02 16:46:38en
dc.date.available2021-03-02T21:46:40Z
dc.date.issued2021-03
dc.identifier.citationKazamel, Mohamed; Stino, Amro Maher; Smith, Albert Gordon (2021). "Metabolic syndrome and peripheral neuropathy." Muscle & Nerve 63(3): 285-293.
dc.identifier.issn0148-639X
dc.identifier.issn1097-4598
dc.identifier.urihttps://hdl.handle.net/2027.42/166416
dc.description.abstractDiabetic peripheral neuropathy and metabolic syndrome (MetS) are both global health challenges with well‐established diagnostic criteria and significant impacts on quality of life. Clinical observations, epidemiologic evidence, and animal models of disease have strongly suggested MetS is associated with an elevated risk for cryptogenic sensory peripheral neuropathy (CSPN). MetS neuropathy preferentially affects small unmyelinated axons early in its course, and it may also affect autonomic and large fibers. CSPN risk is linked to MetS and several of its components including obesity, dyslipidemia, and prediabetes. MetS also increases neuropathy risk in patients with established type 1 and type 2 diabetes. In this review we present animal data regarding the role of inflammation and dyslipidemia in MetS neuropathy pathogenesis. Several studies suggest exercise‐based lifestyle modification is a promising treatment approach for MetS neuropathy.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othercryptogenic sensory polyneuropathy, diabetic peripheral neuropathy, dyslipidemia, hypertriglyceridemia, metabolic syndrome, prediabetes, small‐fiber neuropathy
dc.titleMetabolic syndrome and peripheral neuropathy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166416/1/mus27086.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166416/2/mus27086_am.pdf
dc.identifier.doi10.1002/mus.27086
dc.identifier.sourceMuscle & Nerve
dc.identifier.citedreferenceSumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology. 2003; 60: 108 ‐ 111.
dc.identifier.citedreferenceSingleton JR, Bixby B, Russell JW, et al. The Utah early neuropathy scale: a sensitive clinical scale for early sensory predominant neuropathy. J Peripher Nerv Syst. 2008; 13: 218 ‐ 227.
dc.identifier.citedreferenceSmith AG, Singleton JR. Diabetic neuropathy. Continuum. 2012; 18: 60 ‐ 84.
dc.identifier.citedreferenceChan AC, Wilder‐Smith EP. Small fiber neuropathy: getting bigger. Muscle Nerve. 2016; 53: 671 ‐ 682.
dc.identifier.citedreferenceLauria G, Bakkers M, Schmitz C, et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst. 2010; 15: 202 ‐ 207.
dc.identifier.citedreferenceSmith AG, Howard JR, Kroll R, et al. The reliability of skin biopsy with measurement of intraepidermal nerve fiber density. J Neurol Sci. 2005; 228: 65 ‐ 69.
dc.identifier.citedreferenceDevigili G, Tugnoli V, Penza P, et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain. 2008; 131: 1912 ‐ 1925.
dc.identifier.citedreferenceDyck PJ, O’Brien PC, Kosanke JL, Gillen DA, Karnes JL. A 4, 2, and 1 stepping algorithm for quick and accurate estimation of cutaneous sensation threshold. Neurology. 1993; 43: 1508 ‐ 1512.
dc.identifier.citedreferenceKassardjian CD, Dyck PJ, Davies JL, Carter RE, Dyck PJ. Does prediabetes cause small fiber sensory polyneuropathy? Does it matter? J Neurol Sci. 2015; 355: 196 ‐ 198.
dc.identifier.citedreferenceCallaghan BC, Xia R, Reynolds E, et al. Association between metabolic syndrome components and polyneuropathy in an obese population. JAMA Neurol. 2016; 73: 1468 ‐ 1476.
dc.identifier.citedreferenceLow VA, Sandroni P, Fealey RD, Low PA. Detection of small‐fiber neuropathy by sudomotor testing. Muscle Nerve. 2006; 34: 57 ‐ 61.
dc.identifier.citedreferencePeltier A, Smith AG, Russell JW, et al. Reliability of quantitative sudomotor axon reflex testing and quantitative sensory testing in neuropathy of impaired glucose regulation. Muscle Nerve. 2009; 39: 529 ‐ 535.
dc.identifier.citedreferenceBerger MJ, Kimpinski K. Test‐retest reliability of quantitative sudomotor axon reflex testing. J Clin Neurophysiol. 2013; 30: 308 ‐ 312.
dc.identifier.citedreferenceEngland JD, Asbury AK. Peripheral neuropathy. Lancet. 2004; 363: 2151 ‐ 2161.
dc.identifier.citedreferenceRumora AE, LoGrasso G, Hayes JM, et al. The divergent roles of dietary saturated and monounsaturated fatty acids on nerve function in murine models of obesity. J Neurosci. 2019; 39: 3770 ‐ 3781.
dc.identifier.citedreferenceHan E, Yun Y, Kim G, et al. Effects of omega‐3 fatty acid supplementation on diabetic nephropathy progression in patients with diabetes and hypertriglyceridemia. PLoS One. 2016; 11: e0154683.
dc.identifier.citedreferenceDyck PJ, Clark VM, Overland CJ, et al. Impaired glycemia and diabetic polyneuropathy: the OC IG survey. Diabetes Care. 2012; 35: 584 ‐ 591.
dc.identifier.citedreferenceCallaghan BC, Gao L, Li Y, et al. Diabetes and obesity are the main metabolic drivers of peripheral neuropathy. Ann Clin Transl Neurol. 2018; 5: 397 ‐ 405.
dc.identifier.citedreferenceVincent AM, Hayes JM, McLean LL, Vivekanandan‐Giri A, Pennathur S, Feldman EL. Dyslipidemia‐induced neuropathy in mice: the role of oxLDL/LOX‐1. Diabetes. 2009; 58: 2376 ‐ 2385.
dc.identifier.citedreferenceHinder LM, O’Brien PD, Hayes JM, et al. Dietary reversal of neuropathy in a murine model of prediabetes and metabolic syndrome. Dis Model Mech. 2017; 10: 717 ‐ 725.
dc.identifier.citedreferenceHur J, Dauch JR, Hinder LM, et al. The metabolic syndrome and microvascular complications in a murine model of type 2 diabetes. Diabetes. 2015; 64: 3294 ‐ 3304.
dc.identifier.citedreferenceO’Brien PD, Hinder LM, Rumora AE, et al. Juvenile murine models of prediabetes and type 2 diabetes develop neuropathy. Dis Model Mech. 2018; 11: dmm037374.
dc.identifier.citedreferenceMcGregor BA, Eid S, Rumora AE, et al. Conserved transcriptional signatures in human and murine diabetic peripheral neuropathy. Sci Rep. 2018; 8: 17678.
dc.identifier.citedreferenceStavniichuk R, Shevalye H, Lupachyk S, et al. Peroxynitrite and protein nitration in the pathogenesis of diabetic peripheral neuropathy. Diabetes Metab Res Rev. 2014; 30: 669 ‐ 678.
dc.identifier.citedreferenceShoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006; 116: 1793 ‐ 1801.
dc.identifier.citedreferenceKellogg AP, Wiggin TD, Larkin DD, Hayes JM, Stevens MJ, Pop‐Busui R. Protective effects of cyclooxygenase‐2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes. Diabetes. 2007; 56: 2997 ‐ 3005.
dc.identifier.citedreferenceRumora AE, LoGrasso G, Haidar JA, Dolkowski JJ, Lentz SI, Feldman EL. Chain length of saturated fatty acids regulates mitochondrial trafficking and function in sensory neurons. J Lipid Res. 2019; 60: 58 ‐ 70.
dc.identifier.citedreferenceSala‐Vila A, Díaz‐López A, Valls‐Pedret C, et al. Dietary marine ω‐3 fatty acids and incident sight‐threatening retinopathy in middle‐aged and older individuals with type 2 diabetes: prospective investigation from the PREDIMED trial. JAMA Ophthalmol. 2016; 134: 1142 ‐ 1149.
dc.identifier.citedreferenceSingleton JR, Marcus RL, Lessard MK, Jackson JE, Smith AG. Supervised exercise improves cutaneous reinnervation capacity in metabolic syndrome patients. Ann Neurol. 2015; 77: 146 ‐ 153.
dc.identifier.citedreferenceKluding PM, Pasnoor M, Singh R, et al. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J Diabetes Complications. 2012; 26: 424 ‐ 429.
dc.identifier.citedreferenceKluding PM, Singleton JR, Pasnoor M, et al. Activity for Diabetic Polyneuropathy (ADAPT): study design and protocol for a 2‐site randomized controlled trial. Phys Ther. 2017; 97: 20 ‐ 31.
dc.identifier.citedreferenceWorld Health Organization. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications: Report of a WHO Consultation. Part 1, Diagnosis and Classification of Diabetes Mellitus. Geneva: World Health Organization; 1999.
dc.identifier.citedreferenceBalkau B, Charles MA. Comment on the provisional report from the WHO consultation. European Group for the Study of insulin resistance (EGIR). Diabetic Med. 1999; 16: 442 ‐ 443.
dc.identifier.citedreferenceExecutive Summary of the Third Report of the National Cholesterol Education Program. (NCEP) expert panel on detection, evaluation, and treatment of high Blood cholesterol in adults (adult treatment panel III). JAMA. 2001; 285: 2486 ‐ 2497.
dc.identifier.citedreferenceWilliams SM, Eleftheriadou A, Alam U, Cuthbertson DJ, Wilding JPH. Cardiac autonomic neuropathy in obesity, the metabolic syndrome and prediabetes: a narrative review. Diabetes Ther. 2019; 10: 1995 ‐ 2021.
dc.identifier.citedreferenceTesfaye S, Vileikyte L, Rayman G, et al. painful diabetic peripheral neuropathy: consensus recommendations on diagnosis assessment and management. Diabetes Metab Res Rev. 2011; 27: 629 ‐ 638.
dc.identifier.citedreferenceChowdhury SK, Smith DR, Fernyhough P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis. 2013; 51: 56 ‐ 65.
dc.identifier.citedreferenceFernyhough P. Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr Diabetes Rep. 2015; 15: 89.
dc.identifier.citedreferenceAction to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008; 358: 2545 ‐ 2559.
dc.identifier.citedreferenceFranklin GM, Kahn LB, Baxter J, Marshall JA, Hamman RF. Sensory neuropathy in non‐insulin‐dependent diabetes mellitus. The San Luis Valley Diabetes Study. Am J Epidemiol. 1990; 131: 633 ‐ 643.
dc.identifier.citedreferenceDyck PJ, Kratz KM, Karnes JL, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population‐based cohort: the Rochester Diabetic Neuropathy Study. Neurology. 1993; 43: 817 ‐ 824.
dc.identifier.citedreferencePartanen J, Niskanen L, Lehtinen J, Mervaala E, Siitonen O, Uusitupa M. Natural history of peripheral neuropathy in patients with non‐insulin‐dependent diabetes mellitus. N Engl J Med. 1995; 333: 89 ‐ 94.
dc.identifier.citedreferenceHanewinckel R, van Oijen M, Ikram MA, van Doorn PA. The epidemiology and risk factors of chronic polyneuropathy. Eur J Epidemiol. 2016; 31: 5 ‐ 20.
dc.identifier.citedreferencePop‐Busui R, Boulton AJ, Feldman EL, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017; 40: 136 ‐ 154.
dc.identifier.citedreferenceKiyani M, Yang Z, Charalambous LT, et al. Painful diabetic peripheral neuropathy: health care costs and complications from 2010 to 2015. Neurol Clin Pract. 2020; 10: 47 ‐ 57.
dc.identifier.citedreferenceCallaghan BC, Hur J, Feldman EL. Diabetic neuropathy: one disease or two? Curr Opin Neurol. 2012; 25: 536 ‐ 541.
dc.identifier.citedreferenceCallaghan BC, Little AA, Feldman EL, Hughes RA. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev. 2012; 6: CD007543.
dc.identifier.citedreferenceMoore JX, Chaudhary N, Akinyemiju T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, National Health and nutrition examination survey, 1988‐2012. Prev Chronic Dis. 2017; 14: E24.
dc.identifier.citedreferenceGrundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation. 2005; 112: 2735 ‐ 2752.
dc.identifier.citedreferenceAlberti KG, Zimmet P, Shaw J. Metabolic syndrome—a new world‐wide definition. A consensus statement from the International Diabetes Federation. Diabetes Med. 2006; 23: 469 ‐ 480.
dc.identifier.citedreferenceAmerican Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014; 37 ( suppl 1 ): S81 ‐ S90.
dc.identifier.citedreferenceBalion CM, Raina PS, Gerstein HC, et al. Reproducibility of impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) classification: a systematic review. Clin Chem Lab Med. 2007; 45: 1180 ‐ 1185.
dc.identifier.citedreferenceSmith AG, Russell J, Feldman EL, et al. Lifestyle intervention for pre‐diabetic neuropathy. Diabetes Care. 2006; 29: 1294 ‐ 1299.
dc.identifier.citedreferencePolydefkis M, Hauer P, Sheth S, Sirdofsky M, Griffin JW, McArthur JC. The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain. 2004; 127: 1606 ‐ 1615.
dc.identifier.citedreferenceGriffin JW, Thompson WJ. Biology and pathology of nonmyelinating Schwann cells. Glia. 2008; 56: 1518 ‐ 1531.
dc.identifier.citedreferenceSmith AG, Singleton JR. Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J Diabetes Complications. 2013; 27: 436 ‐ 442.
dc.identifier.citedreferenceLaitinen T, Lindstrom J, Eriksson J, et al. Cardiovascular autonomic dysfunction is associated with central obesity in persons with impaired glucose tolerance. Diabetes Med. 2011; 28: 699 ‐ 704.
dc.identifier.citedreferenceStein PK, Barzilay JI, Domitrovich PP, et al. The relationship of heart rate and heart rate variability to non‐diabetic fasting glucose levels and the metabolic syndrome: the Cardiovascular Health Study. Diabetes Med. 2007; 24: 855 ‐ 863.
dc.identifier.citedreferenceGottsater A, Ahmed M, Fernlund P, Sundkvist G. Autonomic neuropathy in type 2 diabetic patients is associated with hyperinsulinaemia and hypertriglyceridaemia. Diabetes Med. 1999; 16: 49 ‐ 54.
dc.identifier.citedreferenceMaser RE, Mitchell BD, Vinik AI, Freeman R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta‐analysis. Diabetes Care. 2003; 26: 1895 ‐ 1901.
dc.identifier.citedreferenceMetascreen Writing Committee. The metabolic syndrome is a risk indicator of microvascular and macrovascular complications in diabetes: results from Metascreen, a multicenter diabetes clinic‐based survey. Diabetes Care. 2006; 29: 2701 ‐ 2707.
dc.identifier.citedreferenceSingleton JR, Smith AG, Bromberg MB. Increased prevalence of impaired glucose tolerance in patients with painful sensory neuropathy. Diabetes Care. 2001; 24: 1448 ‐ 1453.
dc.identifier.citedreferenceSmith AG, Rose K, Singleton JR. Idiopathic neuropathy patients are at high risk for metabolic syndrome. J Neurol Sci. 2008; 273: 25 ‐ 28.
dc.identifier.citedreferenceVisser NA, Vrancken AF, van der Schouw YT, van den Berg LH, Notermans NC. Chronic idiopathic axonal polyneuropathy is associated with the metabolic syndrome. Diabetes Care. 2013; 36: 817 ‐ 822.
dc.identifier.citedreferenceCallaghan BC, Xia R, Banerjee M, et al. Metabolic syndrome components are associated with symptomatic polyneuropathy independent of glycemic status. Diabetes Care. 2016; 39: 801 ‐ 807.
dc.identifier.citedreferenceHanewinckel R, Drenthen J, Ligthart S, et al. Metabolic syndrome is related to polyneuropathy and impaired peripheral nerve function: a prospective population‐based cohort study. J Neurol Neurosurg Psychiatry. 2016; 87: 1336 ‐ 1342.
dc.identifier.citedreferenceSchlesinger S, Herder C, Kannenberg JM, et al. General and abdominal obesity and incident distal sensorimotor polyneuropathy: insights into inflammatory biomarkers as potential mediators in the KORA F4/FF4 cohort. Diabetes Care. 2019; 42: 240 ‐ 247.
dc.identifier.citedreferenceHughes RA, Umapathi T, Gray IA, et al. A controlled investigation of the cause of chronic idiopathic axonal polyneuropathy. Brain. 2004; 127: 1723 ‐ 1730.
dc.identifier.citedreferenceWiggin TD, Sullivan KA, Pop‐Busui R, Amato A, Sima AA, Feldman EL. Elevated triglycerides correlate with progression of diabetic neuropathy. Diabetes. 2009; 58: 1634 ‐ 1640.
dc.identifier.citedreferencePittenger GL, Mehrabyan A, Simmons K, et al. Small fiber neuropathy is associated with the metabolic syndrome. Metab Syndr Relat Disord. 2005; 3: 113 ‐ 121.
dc.identifier.citedreferenceCallaghan BC, Feldman E, Liu J, et al. Triglycerides and amputation risk in patients with diabetes: ten‐year follow‐up in the DISTANCE study. Diabetes Care. 2011; 34: 635 ‐ 640.
dc.identifier.citedreferenceDavis TM, Yeap BB, Davis WA, Bruce DG. Lipid‐lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Fremantle Diabetes Study. Diabetologia. 2008; 51: 562 ‐ 566.
dc.identifier.citedreferenceZiegler D, Rathmann W, Dickhaus T, et al. Neuropathic pain in diabetes, prediabetes and normal glucose tolerance: the MONICA/KORA Augsburg surveys S2 and S3. Pain Med. 2009; 10: 393 ‐ 400.
dc.identifier.citedreferenceLee CC, Perkins BA, Kayaniyil S, et al. Peripheral neuropathy and nerve dysfunction in individuals at high risk for type 2 diabetes: the PROMISE cohort. Diabetes Care. 2015; 38: 793 ‐ 800.
dc.identifier.citedreferenceFeldman EL, Stevens MJ, Thomas PK, Brown MB, Canal N, Greene DA. A practical two‐step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care. 1994; 17: 1281 ‐ 1289.
dc.identifier.citedreferenceThaisetthawatkul P, Lyden E, Americo Fernandes J Jr, Herrmann DN. Prediabetes, diabetes, metabolic syndrome and small fiber neuropathy. Muscle Nerve. 2020; 61: 475 ‐ 479.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.