Show simple item record

An ultrahigh- throughput screening platform based on flow cytometric droplet sorting for mining novel enzymes from metagenomic libraries

dc.contributor.authorMa, Fuqiang
dc.contributor.authorGuo, Tianjie
dc.contributor.authorZhang, Yifan
dc.contributor.authorBai, Xue
dc.contributor.authorLi, Changlong
dc.contributor.authorLu, Zelin
dc.contributor.authorDeng, Xi
dc.contributor.authorLi, Daixi
dc.contributor.authorKurabayashi, Katsuo
dc.contributor.authorYang, Guang‐yu
dc.date.accessioned2021-03-02T21:46:48Z
dc.date.available2022-03-02 16:46:46en
dc.date.available2021-03-02T21:46:48Z
dc.date.issued2021-02
dc.identifier.citationMa, Fuqiang; Guo, Tianjie; Zhang, Yifan; Bai, Xue; Li, Changlong; Lu, Zelin; Deng, Xi; Li, Daixi; Kurabayashi, Katsuo; Yang, Guang‐yu (2021). "An ultrahigh- throughput screening platform based on flow cytometric droplet sorting for mining novel enzymes from metagenomic libraries." Environmental Microbiology 23(2): 996-1008.
dc.identifier.issn1462-2912
dc.identifier.issn1462-2920
dc.identifier.urihttps://hdl.handle.net/2027.42/166418
dc.publisherJohn Wiley & Sons, Inc.
dc.titleAn ultrahigh- throughput screening platform based on flow cytometric droplet sorting for mining novel enzymes from metagenomic libraries
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166418/1/emi15257_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166418/2/emi15257.pdf
dc.identifier.doi10.1111/1462-2920.15257
dc.identifier.sourceEnvironmental Microbiology
dc.identifier.citedreferenceMa, F., Chung, M., Yao, Y., Nidetz, R., Lee, L., Liu, A., et al. ( 2018 ) Efficient molecular evolution to generate enantioselective enzymes using a dual- channel microfluidic droplet screening platform. Nat Commun 9: 1030.
dc.identifier.citedreferenceJing, Y., Wolfgang, A., Martin, F., Florian, H., Clemens, F., and Wilhelm, T. ( 2013 ) Monodisperse water- in- oil- in- water (W/O/W) double emulsion droplets as uniform compartments for high- throughput analysis via flow cytometry. Micromachines 4: 402 - 413.
dc.identifier.citedreferenceKöster, S., Angilè, F., Duan, H., Agresti, J., Wintner, A., Schmitz, C., et al. ( 2008 ) Drop- based microfluidic devices for encapsulation of single cells. Lab Chip 8: 1110 - 1115.
dc.identifier.citedreferenceLahann, J., Balcells, M., Lu, H., Rodon, T., Jensen, K., and Langer, R. ( 2003 ) Reactive polymer coatings: a first step toward surface engineering of microfluidic devices. Anal Chem 75: 2117 - 2122.
dc.identifier.citedreferenceLarsen, A., Dunn, M., Hatch, A., Sau, S., Youngbull, C., and Chaput, J. ( 2016 ) A general strategy for expanding polymerase function by droplet microfluidics. Nat Commun 7: 11235.
dc.identifier.citedreferenceLee, M., and Lee, S. ( 2013 ) Bioprospecting potential of the soil metagenome: novel enzymes and bioactivities. Genomics Inform 11: 114 - 120.
dc.identifier.citedreferenceLi, S.B., Gong, X.Q., Nally, C.S., Zeng, M., Gaule, T., Anduix- Canto, C., et al. ( 2016 ) Rapid preparation of highly reliable PDMS double emulsion microfluidic devices. RSC Adv 6: 25927 - 25933.
dc.identifier.citedreferenceLim, S., and Abate, A. ( 2013 ) Ultrahigh- throughput sorting of microfluidic drops with flow cytometry. Lab Chip 13: 4563 - 4572.
dc.identifier.citedreferenceLiu, N., Li, H., Chevrette, M., Zhang, L., Cao, L., Zhou, H., et al. ( 2018 ) Functional metagenomics reveals abundant polysaccharide- degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood- feeding higher termite. ISME J 13: 104 - 117.
dc.identifier.citedreferenceLorenz, P., and Eck, J. ( 2005 ) Metagenomics and industrial applications. Nat Rev Microbiol 3: 510 - 516.
dc.identifier.citedreferenceMa, F., Xie, Y., Huang, C., Feng, Y., and Yang, G. ( 2014 ) An improved single cell ultrahigh throughput screening method based on in vitro compartmentalization. PLoS One 9: e89785.
dc.identifier.citedreferenceManco, G., Giosuè, E., D’Auria, S., Herman, P., Carrea, G., and Rossi, M. ( 2000 ) Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone- sensitive lipase subfamily from the Archaeon Archaeoglobus fulgidus. Arch Biochem Biophys 373: 182 - 192.
dc.identifier.citedreferenceMcdonald, J., and Whitesides, G. ( 2002 ) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35: 491 - 499.
dc.identifier.citedreferencePierre, Y., Balint, K., Fabrice, G., Charlotte, M., Gerhard, F., Mark, F., et al. ( 2015 ) Ultrahigh- throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat Commun 6: 10008.
dc.identifier.citedreferenceRenko, M., Taler- VerÄ iÄ , A., MiheliÄ , M., Zerovnik, E., and Turk, D. ( 2014 ) Partial rotational lattice order- disorder in stefin B crystals. Acta Crystallogr D Biol Crystallogr 70: 1015 - 1025.
dc.identifier.citedreferenceSimon, C., and Daniel, R. ( 2011 ) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77: 1153 - 1161.
dc.identifier.citedreferenceTrantidou, T., Elani, Y., Parsons, E., and Ces, O. ( 2017 ) Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsyst Nanoeng 3: 16091.
dc.identifier.citedreferenceUchiyama, T., and Miyazaki, K. ( 2009 ) Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 20: 616 - 622.
dc.identifier.citedreferenceWang, A., Xu, J., Zhang, Q., and Chen, H. ( 2006 ) The use of poly(dimethylsiloxane) surface modification with gold nanoparticles for the microchip electrophoresis. Talanta 69: 210 - 215.
dc.identifier.citedreferenceWaterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., et al. ( 2018 ) SWISS- MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46: W296 - W303.
dc.identifier.citedreferenceXia, Y., and Whitesides, G. ( 1998 ) Soft lithography. Annu Annu Rev Mater Sci 28: 153 - 184.
dc.identifier.citedreferenceXu, Z., Xiang, S., Shu, W., Ju, C., Wei, H., Bang, C., et al. ( 2019 ) High- throughput screening of high lactic acid- producing Bacillus coagulans by droplet microfluidic based flow cytometry with fluorescence activated cell sorting. RSC Adv 9: 4507 - 4513.
dc.identifier.citedreferenceZinchenko, A., Devenish, S., Kintses, B., Colin, P., Fischlechner, M., and Hollfelder, F. ( 2014 ) One in a million: flow cytometric sorting of single cell- lysate assays in monodisperse picolitre double emulsion droplets for directed evolution. Anal Chem 86: 2526 - 2533.
dc.identifier.citedreferenceAbate, A., and Weitz, D. ( 2009 ) High- order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. Small 5: 2030 - 2032.
dc.identifier.citedreferenceAgresti, J., Antipov, E., Abate, A., Ahn, K., Rowat, A., Baret, J., et al. ( 2010 ) Ultrahigh- throughput screening in drop- based microfluidics for directed evolution. Proc Natl Acad Sci U S A 107: 4004 - 4009.
dc.identifier.citedreferenceAmann, R., Ludwig, W., and Schleifer, K. ( 1995 ) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143 - 169.
dc.identifier.citedreferenceArpigny, J., and Jaeger, K. ( 1999 ) Bacterial lipolytic enzymes: classification and properties. Biochem J 343: 177 - 183.
dc.identifier.citedreferenceArriaga, L., Amstad, E., and Weitz, D. ( 2015 ) Scalable single- step microfluidic production of single- core double emulsions with ultra- thin shells. Lab Chip 15: 3335 - 3340.
dc.identifier.citedreferenceBarbier, V., Tatoulian, M., Li, H., Arefi- Khonsari, F., Ajdari, A., and Tabeling, P. ( 2006 ) Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems. Langmuir 22: 5230 - 5232.
dc.identifier.citedreferenceBauer, W., Fischlechner, M., Abell, C., and Huck, W. ( 2010 ) Hydrophilic PDMS microchannels for high- throughput formation of oil- in- water microdroplets and water- in- oil- in- water double emulsions. Lab Chip 10: 1814 - 1819.
dc.identifier.citedreferenceCha, S., An, Y., Jeong, C., Kim, M., Jeon, J.H., Lee, C., et al. ( 2013 ) Structural basis for the β- lactamase activity of EstU1, a family VIII carboxylesterase. Proteins 81: 2045 - 2051.
dc.identifier.citedreferenceChan, H., Ma, S., Tian, J., and Leong, K. ( 2017 ) High- throughput screening of microchip- synthesized genes in programmable double- emulsion droplets. Nanoscale 9: 3485 - 3495.
dc.identifier.citedreferenceChen, H., and Lahann, J. ( 2005 ) Fabrication of discontinuous surface patterns within microfluidic channels using photodefinable vapor- based polymer coatings. Anal Chem 77: 6909 - 6914.
dc.identifier.citedreferenceChen, H., McClelland, A., Chen, Z., and Lahann, J. ( 2008 ) Solventless adhesive bonding using reactive polymer coatings. Anal Chem 80: 4119 - 4124.
dc.identifier.citedreferenceDaniel, R. ( 2005 ) The metagenomics of soil. Nat Rev Microbiol 3: 470 - 478.
dc.identifier.citedreferenceDhananjay, B., and Chantal, K. ( 2006 ) Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectron Eng 83: 1277 - 1279.
dc.identifier.citedreferenceDuffy, D., McDonald, J., Schueller, O., and Whitesides, G. ( 1998 ) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70: 4974 - 4984.
dc.identifier.citedreferenceEfimenko, K., Wallace, W., and Genzer, J. ( 2002 ) Surface modification of Sylgard- 184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254: 306 - 315.
dc.identifier.citedreferenceGabor, E.M., Vries, E.J., and Janssen, D.B. ( 2003 ) Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol 44: 153 - 163.
dc.identifier.citedreferenceHandelsman, J. ( 2004 ) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68: 669 - 685.
dc.identifier.citedreferenceIshmukhametov, R., Galkin, M., and Vik, S. ( 2005 ) Ultrafast purification and reconstitution of His- tagged cysteine- less Escherichia coli F1Fo ATP synthase. Biochim Biophys Acta 1706: 110 - 116.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.