Show simple item record

C3 plant carbon isotope discrimination does not respond to CO2 concentration on decadal to centennial timescales

dc.contributor.authorStein, Rebekah A.
dc.contributor.authorSheldon, Nathan D.
dc.contributor.authorSmith, Selena Y.
dc.date.accessioned2021-03-02T21:46:51Z
dc.date.available2022-04-02 16:46:49en
dc.date.available2021-03-02T21:46:51Z
dc.date.issued2021-03
dc.identifier.citationStein, Rebekah A.; Sheldon, Nathan D.; Smith, Selena Y. (2021). "C3 plant carbon isotope discrimination does not respond to CO2 concentration on decadal to centennial timescales." New Phytologist (5): 2576-2585.
dc.identifier.issn0028-646X
dc.identifier.issn1469-8137
dc.identifier.urihttps://hdl.handle.net/2027.42/166419
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherbiogeochemistry
dc.subject.otheratmosphere
dc.subject.othercarbon
dc.subject.otherclimate
dc.subject.otherevolution
dc.subject.otherisotopes
dc.subject.otherpaleoclimate
dc.subject.otherplants
dc.titleC3 plant carbon isotope discrimination does not respond to CO2 concentration on decadal to centennial timescales
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166419/1/nph17030-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166419/2/nph17030_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166419/3/nph17030.pdf
dc.identifier.doi10.1111/nph.17030
dc.identifier.sourceNew Phytologist
dc.identifier.citedreferenceMervenne C. 2015. Isotope ecology of temperate conifers. Masters’ thesis, University of Michigan, Ann Arbor, MI.
dc.identifier.citedreferenceEggleston S, Schmitt J, Bereiter B, Schneider R, Fischer H. 2016. Evolution of the stable carbon isotope composition of atmospheric CO 2 over the last glacial cycle. Paleoceanography 31: 434 – 452.
dc.identifier.citedreferenceEhleringer JR, Cerling TE. 1995. Atmospheric CO 2 and the ratio of intercellular to ambient CO 2 concentrations in plants. Tree Physiology 15: 105 – 111.
dc.identifier.citedreferenceElsig J, Schmitt J, Leuenberger D, Schneider R, Eyer M, Leuenberger M, Joos F, Fischer H, Stocker TF. 2009. Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature 461: 507 – 510.
dc.identifier.citedreferenceFarquhar GD, Ehleringer JR, Hubick KT. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology 40: 503 – 537.
dc.identifier.citedreferenceFarquhar GD, Richards RA. 1984. Isotopic composition of plant carbon correlates with water‐use efficiency of wheat genotypes. Functional Plant Biology 11: 539 – 552.
dc.identifier.citedreferenceFeng X. 1999. Trends in intrinsic water‐use efficiency of natural trees for the past 100–200 years: a response to atmospheric CO 2 concentration. Geochimica et Cosmochimica Acta 63: 1891 – 1903.
dc.identifier.citedreferenceFick SE, Hijmans RJ. 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302 – 4315.
dc.identifier.citedreferenceDiefendorf AF, Freeman KH, Wing SL, Currano ED, Mueller KE. 2015. Paleogene plants fractionated carbon isotopes similar to modern plants. Earth and Planetary Science Letters 429: 33 – 44.
dc.identifier.citedreferenceDiefendorf AF, Freimuth EJ. 2017. Extracting the most from terrestrial plant‐derived n‐alkyl lipids and their carbon isotopes from the sedimentary record: a review. Organic Geochemistry 103: 1 – 21.
dc.identifier.citedreferenceReich PB, Hungate BA, Luo Y. 2006. Carbon–nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution, and Systematics 37: 611 – 636.
dc.identifier.citedreferenceRoyer DL, Berner RA, Montañez IP, Tabor NJ, Beerling DJ. 2004. CO 2 as a primary driver of Phanerozoic climate. GSA Today 14: 4 – 10.
dc.identifier.citedreferenceLong SP, Ainsworth EA, Leakey AD, Nösberger J, Ort DR. 2006. Food for thought: lower‐than‐expected crop yield stimulation with rising CO 2 concentrations. Science 312: 1918 – 1921.
dc.identifier.citedreferenceLooy C, Kerp H, Duijnstee I, DiMichele B. 2014. The late Paleozoic ecological‐evolutionary laboratory, a land‐plant fossil record perspective. The Sedimentary Record 12: 4 – 18.
dc.identifier.citedreferenceMacfarling Meure C, Etheridge D, Trudinger C, Steele P, Langenfelds R, Van Ommen T, Smith A, Elkins J. 2006. Law Dome CO 2, CH 4 and N 2 O ice core records extended to 2000 years BP. Geophysical Research Letters 33: L14810.
dc.identifier.citedreferenceMcElwain JC. 2018. Paleobotany and global change: important lessons for species to biomes from vegetation responses to past global change. Annual Review of Plant Biology 69: 761 – 787.
dc.identifier.citedreferenceMcKee KL, Feller IC, Popp M, Wanek W. 2002. Mangrove isotopic (δ 15 N and δ 13 C) fractionation across a nitrogen vs. phosphorus limitation gradient. Ecology 83: 1065 – 1075.
dc.identifier.citedreferenceDiefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH. 2010. Global patterns in leaf 13 C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences, USA 107: 5738 – 5743.
dc.identifier.citedreferenceMueller KE, Blumenthal DM, Pendall E, Carrillo Y, Dijkstra FA, Williams DG, Follett RF, Morgan JA. 2016. Impacts of warming and elevated CO 2 on a semi‐arid grassland are non‐additive, shift with precipitation, and reverse over time. Ecology Letters 19: 956 – 966.
dc.identifier.citedreferenceNorby RJ, Zak DR. 2011. Ecological lessons from free‐air CO 2 enrichment (FACE) experiments. Annual Review of Ecology, Evolution, and Systematics 42: 181 – 203.
dc.identifier.citedreferenceNowak RS, Ellsworth DS, Smith SD. 2004. Functional responses of plants to elevated atmospheric CO 2 – do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist 162: 253 – 280.
dc.identifier.citedreferencePeñuelas J, Azcón‐Bieto J. 1992. Changes in leaf Δ 13 C of herbarium plant species during the last 3 centuries of CO 2 increase. Plant, Cell & Environment 15: 485 – 489.
dc.identifier.citedreferencePRISM Climate Group. 2004. Oregon State University, [WWW document] URL http://prism.oregonstate.edu. [Accessed 4 February 2004].
dc.identifier.citedreferenceProctor MCF, Raven JA, Rice SK. 1992. Stable carbon isotope discrimination measurements in Sphagnum and other bryophytes: physiological and ecological implications. Journal of Bryology 17: 193 – 202.
dc.identifier.citedreferenceQiaoping X, Fajon A, Zhenyu L, Likuo F, Zhengyu L. 2002. Thuja sutchuenensis: a rediscovered species of the Cupressaceae. Botanical Journal of the Linnean Society 139: 305 – 310.
dc.identifier.citedreferenceRoyles J, Amesbury MJ, Roland TP, Jones GD, Convey P, Griffiths H, Hodgson DA, Charman DJ. 2016. Moss stable isotopes (carbon‐13, oxygen‐18) and testate amoebae reflect environmental inputs and microclimate along a latitudinal gradient on the Antarctic Peninsula. Oecologia 181: 931 – 945.
dc.identifier.citedreferenceRundel PW, Stichler W, Zander RH, Ziegler H. 1979. Carbon and hydrogen isotope ratios of bryophytes from arid and humid regions. Oecologia 44: 91 – 94.
dc.identifier.citedreferenceSaurer M, Siegwolf RT, Schweingruber FH. 2004. Carbon isotope discrimination indicates improving water‐use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biology 10: 2109 – 2120.
dc.identifier.citedreferenceSchlanser K, Diefendorf AF, Greenwood DR, Mueller KE, West CK, Lowe AJ, Basinger JF, Currano ED, Flynn AG, Fricke HC et al. 2020. On geological timescales, plant carbon isotope fractionation responds to precipitation similarly to modern plants and has a small negative correlation with pCO 2. Geochimica et Cosmochimica Acta 270: 264 – 281.
dc.identifier.citedreferenceSchubert BA, Jahren AH. 2012. The effect of atmospheric CO 2 concentration on carbon isotope fractionation in C 3 land plants. Geochimica et Cosmochimica Acta 96: 29 – 43.
dc.identifier.citedreferenceSheldon ND, Smith SY, Stein R, Ng M. 2020. Carbon isotope ecology of gymnosperms and implications for paleoclimatic and paleoecological studies. Global and Planetary Change 184: 103060.
dc.identifier.citedreferenceShen D, Sun H, Huang M, Zheng Y, Qiu Y, Li X, Fei Z. 2013. Comprehensive analysis of expressed sequence tags from cultivated and wild radish ( Raphanus spp.). BMC Genomics 14: 721.
dc.identifier.citedreferenceStein RA, Sheldon ND, Smith S. 2019. Rapid response to anthropogenic climate change by Thuja occidentalis: implications for past climate reconstructions and future climate predictions. PeerJ 7: e7378.
dc.identifier.citedreferenceTipple BJ, Meyers SR, Pagani M. 2010. Carbon isotope ratio of Cenozoic CO 2: a comparative evaluation of available geochemical proxies. Paleoceanography 25: PA3202.
dc.identifier.citedreferenceVan de Water PK, Leavitt SW, Betancourt JL. 1994. Trends in stomatal density and 13 C/ 12 C ratios of Pinus flexilis needles during last glacial‐interglacial cycle. Science 264: 259 – 263.
dc.identifier.citedreferenceWhite JWC, Vaughn BH, Michel SE. 2015. University of Colorado, Institute of Arctic and 720 Alpine Research (INSTAAR). Stable isotopic composition of atmospheric carbon dioxide ( 13 C and 18 O) from the NOAA ESRL carbon cycle cooperative global air sampling network, 722 1990–2014, Version: 2015‐10‐26.
dc.identifier.citedreferenceYan W, Zhong Y, Shangguan Z. 2017. Contrasting responses of leaf stomatal characteristics to climate change: a considerable challenge to predict carbon and water cycles. Global Change Biology 23: 3781 – 3793.
dc.identifier.citedreferenceAinsworth EA, Long SP. 2005. What have we learned from 15 years of free‐air CO 2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2. New Phytologist 165: 351 – 372.
dc.identifier.citedreferenceAraus JL, Slafer GA, Reynolds MP, Royo C. 2002. Plant breeding and drought in C 3 cereals: what should we breed for? Annals of Botany 89: 925 – 940.
dc.identifier.citedreferenceArens NC, Jahren AH, Amundson R. 2000. Can C 3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology 26: 137 – 164.
dc.identifier.citedreferenceBauska TK, Brook EJ, Marcott SA, Baggenstos D, Shackleton S, Severinghaus JP, Petrenko VV. 2018. Controls on millennial‐scale atmospheric CO 2 variability during the last glacial period. Geophysical Research Letters 45: 7731 – 7740.
dc.identifier.citedreferenceBazzaz FA, Williams WE. 1991. Atmospheric CO 2 concentrations within a mixed forest: implications for seedling growth. Ecology 72: 12 – 16.
dc.identifier.citedreferenceBeerling DJ, Royer DL. 2002. Fossil plants as indicators of the Phanerozoic global carbon cycle. Annual Review of Earth and Planetary Sciences 30: 527 – 556.
dc.identifier.citedreferenceBeilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S. 2010. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 107: 18724 – 18728.
dc.identifier.citedreferenceBonal D, Born C, Brechet C, Coste S, Marcon E, Roggy JC, Guehl JM. 2007. The successional status of tropical rainforest tree species is associated with differences in leaf carbon isotope discrimination and functional traits. Annals of Forest Science 64: 169 – 176.
dc.identifier.citedreferenceBowman WD, Hubick KT, von Caemmerer S, Farquhar GD. 1989. Short‐term changes in leaf carbon isotope discrimination in salt‐and water‐stressed C 4 grasses. Plant Physiology 90: 162 – 166.
dc.identifier.citedreferenceCondon AG, Richards RA, Farquhar GD. 1992. The effect of variation in soil water availability, vapour pressure deficit and nitrogen nutrition on carbon isotope discrimination in wheat. Australian Journal of Agricultural Research 43: 935 – 947.
dc.identifier.citedreferenceCornwell WK, Wright IJ, Turner J, Maire V, Barbour MM, Cernusak LA, Dawson T, Ellsworth D, Farquhar GD, Griffiths H et al. 2018. Climate and soils together regulate photosynthetic carbon isotope discrimination within C 3 plants worldwide. Global Ecology and Biogeography 27: 1056 – 1067.
dc.identifier.citedreferenceCui Y, Schubert BA. 2016. Quantifying uncertainty of past p CO 2 determined from changes in C 3 plant carbon isotope fractionation. Geochimica et Cosmochimica Acta 172: 127 – 138.
dc.identifier.citedreferenceCui Y, Schubert BA. 2017. Atmospheric pCO 2 reconstructed across five early Eocene global warming events. Earth and Planetary Science Letters 478: 225 – 233.
dc.identifier.citedreferenceCui Y, Schubert BA, Jahren AH. 2020. A 23‐my record of low atmospheric CO 2. Geology 48: 888 – 892.
dc.identifier.citedreferenceDawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP. 2002. Stable isotopes in plant ecology. Annual Review of Ecology and Systematics 33: 507 – 559.
dc.identifier.citedreferenceFranks P, Adams M, Amthor JS, Barbour M, Berry J, Ellsworth DS, Ghannoum O, Lloyd J, Lloyd J, McDowell NG et al. 2013. Sensitivity of plants to changing atmospheric CO 2 concentration: from the geological past to the next century. New Phytologist 197: 1077 – 1094.
dc.identifier.citedreferenceFranks PJ, Royer DL, Beerling DJ, Van de Water PK, Cantrill DJ, Barbour MM, Berry JA. 2014. New constraints on atmospheric CO 2 concentration for the Phanerozoic. Geophysical Research Letters 41: 4685 – 4694.
dc.identifier.citedreferenceGiguère‐Croteau C, Boucher É, Bergeron Y, Girardin MP, Drobyshev I, Silva LC, Hélie J‐F, Garneau M. 2019. North America’s oldest boreal trees are more efficient water users due to increased [CO 2 ], but do not grow faster. Proceedings of the National Academy of Sciences, USA 116: 2749 – 2754.
dc.identifier.citedreferenceGuehl JM, Fort C, Ferhi A. 1995. Differential response of leaf conductance, carbon isotope discrimination and water‐use efficiency to nitrogen deficiency in maritime pine and pedunculate oak plants. New Phytologist 131: 149 – 157.
dc.identifier.citedreferenceHickler T, Smith B, Prentice IC, Mjöfors K, Miller P, Arneth A, Sykes MT. 2008. CO 2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Global Change Biology 14: 1531 – 1542.
dc.identifier.citedreferenceHögberg P, Johannisson C, Hällgren JE. 1993. Studies of 13 C in the foliage reveal interactions between nutrients and water in forest fertilization experiments. Plant and Soil 152: 207 – 214.
dc.identifier.citedreferenceJones TH, Thompson LJ, Lawton JH, Bezemer TM, Bardgett RD, Blackburn TM, Bruce KD, Cannon PF, Hall GS, Hartley SE et al. 1998. Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science 280: 441 – 443.
dc.identifier.citedreferenceKaplan JO, Prentice IC, Buchmann N. 2002. The stable carbon isotope composition of the terrestrial biosphere: Modeling at scales from the leaf to the globe. Global Biogeochemical Cycles 16: 8 – 1.
dc.identifier.citedreferenceKeeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA. 2001. Atmospheric CO 2 and 13 CO 2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. New York, NY, USA: Springer, 83 – 113.
dc.identifier.citedreferenceKohn MJ. 2010. Carbon isotope compositions of terrestrial C 3 plants as indicators of (paleo) ecology and (paleo) climate. Proceedings of the National Academy of Sciences, USA 107: 19691 – 19695.
dc.identifier.citedreferenceKohn MJ. 2016. Carbon isotope discrimination in C 3 land plants is independent of natural variations in pCO 2. Geochemical Perspectives Letters 2: 35 – 43.
dc.identifier.citedreferenceLomax BH, Lake JA, Leng MJ, Jardine PE. 2019. An experimental evaluation of the use of Δ 13 C as a proxy for palaeoatmospheric CO 2. Geochimica et Cosmochimica Acta 247: 162 – 174.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.