Show simple item record

Assessment of Equilibrium Climate Sensitivity of the Community Earth System Model Version 2 Through Simulation of the Last Glacial Maximum

dc.contributor.authorZhu, Jiang
dc.contributor.authorOtto‐bliesner, Bette L.
dc.contributor.authorBrady, Esther C.
dc.contributor.authorPoulsen, Christopher J.
dc.contributor.authorTierney, Jessica E.
dc.contributor.authorLofverstrom, Marcus
dc.contributor.authorDiNezio, Pedro
dc.date.accessioned2021-03-02T21:47:13Z
dc.date.available2022-03-02 16:47:10en
dc.date.available2021-03-02T21:47:13Z
dc.date.issued2021-02
dc.identifier.citationZhu, Jiang; Otto‐bliesner, Bette L. ; Brady, Esther C.; Poulsen, Christopher J.; Tierney, Jessica E.; Lofverstrom, Marcus; DiNezio, Pedro (2021). "Assessment of Equilibrium Climate Sensitivity of the Community Earth System Model Version 2 Through Simulation of the Last Glacial Maximum." Geophysical Research Letters 48(3): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/166424
dc.description.abstractThe upper end of the equilibrium climate sensitivity (ECS) has increased substantially in the latest Coupled Model Intercomparison Projects phase 6 with eight models (as of this writing) reporting an ECS > 5°C. The Community Earth System Model version 2 (CESM2) is one such high- ECS model. Here we perform paleoclimate simulations of the Last Glacial Maximum (LGM) using CESM2 to examine whether its high ECS is realistic. We find that the simulated LGM global mean temperature decrease exceeds 11°C, greater than both the cooling estimated from proxies and simulated by an earlier model version (CESM1). The large LGM cooling in CESM2 is attributed to a strong shortwave cloud feedback in the newest atmosphere model. Our results indicate that the high ECS of CESM2 is incompatible with LGM constraints and that the projected future warming in CESM2, and models with a similarly high ECS, is thus likely too large.Plain Language SummaryEquilibrium climate sensitivity (ECS) is one of the most important metrics in climate science. It measures the amount of global warming over hundreds of years after a doubling of the atmospheric CO2 concentration. An ECS range of 1.5°C- 4.5°C has been consistently supported by climate models over the past 40 years. However, this has changed in the latest generation of climate models with eight (as of this writing) showing an ECS > 5°C. Such a high ECS implies that future warming will be much greater than previously thought for the same amount of greenhouse gas emissions, making it more challenging for human and natural systems to adapt. This study examines whether the ECS in one - high- ECS- model- Community Earth System Model version 2 (CESM2)- is realistic. Our approach is to perform a paleoclimate simulation of the culmination of the last glacial period, which was colder and had a lower atmospheric CO2 level than today. We find that the magnitude of cooling in the CESM2 simulation is much larger than supported by the observational evidence, indicating the model’s ECS is too large. We further find that the high ECS of CESM2 is caused by the treatment of clouds in the model.Key PointsCommunity Earth System Model version 2 simulates an Last Glacial Maximum (LGM) global temperature at least 5°C colder than the proxy estimate, indicating its equilibrium climate sensitivity is too highThe large LGM cooling is caused by a strong shortwave cloud feedback in the new atmosphere modelThe shortwave cloud feedback in LGM simulations is connected to that in abrupt 4à CO2 simulations from the present- day climate
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.otherequilibrium climate sensitivity
dc.subject.othercloud feedback
dc.subject.otherlast glacial maximum
dc.titleAssessment of Equilibrium Climate Sensitivity of the Community Earth System Model Version 2 Through Simulation of the Last Glacial Maximum
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166424/1/grl61831.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166424/2/grl61831_am.pdf
dc.identifier.doi10.1029/2020GL091220
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceZhu, J., Poulsen, C. J., & Otto- Bliesner, B. L. ( 2020 ). High climate sensitivity in CMIP6 model not supported by paleoclimate. Nature Climate Change, 10 ( 5 ). 1 - 2. https://doi.org/10.1038/s41558-020-0764-6
dc.identifier.citedreferencePeltier, W. R., Argus, D. F., & Drummond, R. ( 2015 ). Space geodesy constrains ice age terminal deglaciation: The global ICE- 6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth, 120 ( 1 ), 450 - 487. https://doi.org/10.1002/2014JB011176
dc.identifier.citedreferenceRose, B. E. J., Armour, K. C., Battisti, D. S., Feldl, N., & Koll, D. D. B. ( 2014 ). The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophysical Research Letters, 41 ( 3 ), 1071 - 1078. https://doi.org/10.1002/2013GL058955
dc.identifier.citedreferenceSchmidt, G. A., Bader, D., Donner, L. J., Elsaesser, G. S., Golaz, J. C., Hannay, C., et al. ( 2017 ). Practice and philosophy of climate model tuning across six US modeling centers. Geoscientific Model Development, 10 ( 9 ), 3207 - 3223. https://doi.org/10.5194/gmd-10-3207-2017
dc.identifier.citedreferenceSchmittner, A., Urban, N. M., Shakun, J. D., Mahowald, N. M., Clark, P. U., Bartlein, P. J., et al. ( 2011 ). Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum. Science, 334 ( 6061 ), 1385 - 1388. https://doi.org/10.1126/science.1203513
dc.identifier.citedreferenceShakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z., et al. ( 2012 ). Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 484 ( 7392 ), 49 - 54. https://doi.org/10.1038/nature10915
dc.identifier.citedreferenceSherwood, S. C., Bony, S., Boucher, O., Bretherton, C., Forster, P. M., Gregory, J. M., et al. ( 2015 ). Adjustments in the forcing- feedback framework for understanding climate change. Bulletin of the American Meteorological Society, 96 ( 2 ), 217 - 228. https://doi.org/10.1175/BAMS-D-13-00167.1
dc.identifier.citedreferenceSherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., et al. ( 2020 ). An assessment of Earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58, e2019RG000678. https://doi.org/10.1029/2019RG000678
dc.identifier.citedreferenceSnyder, C. W. ( 2016 ). Evolution of global temperature over the past two million years. Nature, 538 ( 7624 ), 226 - 228. https://doi.org/10.1038/nature19798
dc.identifier.citedreferenceTan, I., Storelvmo, T., & Zelinka, M. D. ( 2016 ). Observational constraints on mixed- phase clouds imply higher climate sensitivity. Science, 352 ( 6282 ), 224. https://doi.org/10.1126/science.aad5300
dc.identifier.citedreferenceTaylor, K. E., Crucifix, M., Braconnot, P., Hewitt, C. D., Doutriaux, C., Broccoli, A. J., et al. ( 2007 ). Estimating shortwave radiative forcing and response in climate models. Journal of Climate, 20 ( 11 ), 2530 - 2543. https://doi.org/10.1175/JCLI4143.1
dc.identifier.citedreferenceTierney, J. E., Malevich, S. B., Gray, W., Vetter, L., & Thirumalai, K. ( 2019 ). Bayesian calibration of the Mg/Ca paleothermometer in planktic foraminifera. Paleoceanography and Paleoclimatology, 34 ( 12 ). 2005 - 2030. https://doi.org/10.1029/2019PA003744
dc.identifier.citedreferenceTierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng, R., Ford, H. L., & Zhang, Y. G. ( 2020a ). Past climates inform our future. Science, 370 ( 6517 ), eaay3701. https://doi.org/10.1126/science.aay3701
dc.identifier.citedreferenceTierney, J. E., & Tingley, M. P. ( 2014 ). A Bayesian, spatially- varying calibration model for the TEX86 proxy. Geochimica et Cosmochimica Acta, 127, 83 - 106. https://doi.org/10.1016/j.gca.2013.11.026
dc.identifier.citedreferenceTierney, J. E., & Tingley, M. P. ( 2018 ). BAYSPLINE: A new calibration for the alkenone paleothermometer. Paleoceanography and Paleoclimatology, 33 ( 3 ), 281 - 301. https://doi.org/10.1002/2017pa003201
dc.identifier.citedreferenceTierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., & Poulsen, C. J. ( 2020b ). Glacial cooling and climate sensitivity revisited. Nature, 584 ( 7822 ), 569 - 573. https://doi.org/10.1038/s41586-020-2617-x
dc.identifier.citedreferenceTokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J., Lehner, F., et al. ( 2020 ). Past warming trend constrains future warming in CMIP6 models. Science Advances, 6 ( 12 ), eaaz9549. https://doi.org/10.1126/sciadv.aaz9549
dc.identifier.citedreferenceVon Deimling, T. S., Ganopolski, A., Held, H., & Rahmstorf, S. ( 2006 ). How cold was the Last Glacial maximum? Geophysical Research Letters, 33 ( 14 ), L14709 - L14709. https://doi.org/10.1029/2006GL026484
dc.identifier.citedreferenceWaelbroeck, C., Paul, A., Kucera, M., Rosell- Melé, A., Weinelt, M., Schneider, R., et al. ( 2009 ). Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geoscience, 2 ( 2 ), 127 - 132. https://doi.org/10.1038/ngeo411
dc.identifier.citedreferenceWilliams, G. P., & Bryan, K. ( 2006 ). Ice Age Winds: An aquaplanet model. Journal of Climate, 19 ( 9 ), 1706 - 1715. https://doi.org/10.1175/JCLI3766.1
dc.identifier.citedreferenceZelinka, M. D., Myers, T. A., McCoy, D. T., Po- Chedley, S., Caldwell, P. M., Ceppi, P., et al. ( 2020 ). Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters, 47 ( 1 ), e2019GL085782. https://doi.org/10.1029/2019GL085782
dc.identifier.citedreferenceZhou, C., Zelinka, M. D., & Klein, S. A. ( 2016 ). Impact of decadal cloud variations on the Earth’s energy budget. Nature Geoscience, 9 ( 12 ), 871 - 874. https://doi.org/10.1038/ngeo2828
dc.identifier.citedreferenceZhu, J., Liu, Z., Brady, E., Otto- Bliesner, B., Zhang, J., Noone, D., et al. ( 2017 ). Reduced ENSO variability at the LGM revealed by an isotope- enabled Earth system model. Geophysical Research Letters, 44 ( 13 ), 6984 - 6992. https://doi.org/10.1002/2017GL073406
dc.identifier.citedreferenceZhu, J., & Poulsen, C. J. ( 2020a ). LGM climate forcing and ocean dynamical feedback and their implications for estimating climate sensitivity. Climate of the Past Discussions, 1 - 24. https://doi.org/10.5194/cp-2020-86
dc.identifier.citedreferenceZhu, J., & Poulsen, C. J. ( 2020b ). On the increase of climate sensitivity and cloud feedback with warming in the community atmosphere models. Geophysical Research Letters, 47 ( 18 ), e2020GL089143. https://doi.org/10.1029/2020gl089143
dc.identifier.citedreferenceZhu, J., Poulsen, C. J., & Tierney, J. E. ( 2019 ). Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Science Advances, 5 ( 9 ), eaax1874. https://doi.org/10.1126/sciadv.aax1874
dc.identifier.citedreferenceAnnan, J. D., & Hargreaves, J. C. ( 2013 ). A new global reconstruction of temperature changes at the Last Glacial Maximum. Climate of the Past, 9 ( 1 ), 367 - 376. https://doi.org/10.5194/cp-9-367-2013
dc.identifier.citedreferenceArmour, K. C., Bitz, C. M., & Roe, G. H. ( 2013 ). Time- Varying climate sensitivity from regional feedbacks. Journal of Climate, 26 ( 13 ), 4518 - 4534. https://doi.org/10.1175/jcli-d-12-00544.1
dc.identifier.citedreferenceBacmeister, J. T., Hannay, C., Medeiros, B., Gettelman, A., Neale, R., Fredriksen, H. B., et al. ( 2020 ). CO2 increase experiments using the CESM: Relationship to climate sensitivity and comparison of CESM1 to CESM2. Journal of Advances in Modeling Earth Systems, 12 ( 11 ), e2020MS002120. https://doi.org/10.1029/2020MS002120
dc.identifier.citedreferenceBereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K., & Severinghaus, J. ( 2018 ). Mean global ocean temperatures during the last glacial transition. Nature, 553 ( 7686 ), 39 - 44. https://doi.org/10.1038/nature25152
dc.identifier.citedreferenceBrady, E. C., Otto- Bliesner, B. L., Kay, J. E., & Rosenbloom, N. ( 2013 ). Sensitivity to glacial forcing in the CCSM4. Journal of Climate, 26 ( 6 ), 1901 - 1925. https://doi.org/10.1175/JCLI-D-11-00416.1
dc.identifier.citedreferenceBretherton, C. S., Blossey, P. N., & Jones, C. R. ( 2013 ). Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single- LES exploration extending the CGILS cases. Journal of Advances in Modeling Earth Systems, 5 ( 2 ), 316 - 337. https://doi.org/10.1002/jame.20019
dc.identifier.citedreferenceBrunner, L., Pendergrass, A. G., Lehner, F., Merrifield, A. L., Lorenz, R., & Knutti, R. ( 2020 ). Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth System Dynamics, 11 ( 4 ), 995 - 1012. https://doi.org/10.5194/esd-11-995-2020
dc.identifier.citedreferenceCLIMAP Project Members. ( 1976 ). The Surface of the Ice- Age Earth. Science, 191 ( 4232 ), 1131 - 1137. https://doi.org/10.1126/science.191.4232.1131
dc.identifier.citedreferenceDanabasoglu, G., Lamarque, J.- F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., et al. ( 2020 ). The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12 ( 2 ), e2019MS001916. https://doi.org/10.1029/2019ms001916
dc.identifier.citedreferenceDiNezio, P. N., Timmermann, A., Tierney, J. E., Jin, F. F., Otto- Bliesner, B., Rosenbloom, N., et al. ( 2016 ). The climate response of the Indo- Pacific warm pool to glacial sea level. Paleoceanography, 31 ( 6 ), 866 - 894. https://doi.org/10.1002/2015PA002890
dc.identifier.citedreferenceFeng, R., Otto- Bliesner, B. L., Brady, E. C., & Rosenbloom, N. ( 2020 ). Increased climate response and Earth system sensitivity from CCSM4 to CESM2 in Mid- Pliocene simulations. Journal of Advances in Modeling Earth Systems, 12 ( 8 ), e2019MS002033. https://doi.org/10.1029/2019ms002033
dc.identifier.citedreferenceFlato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., et al. ( 2013 ). Evaluation of climate models. In T. F. Stocker, D. Qin, G.- K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 741 - 866 ). Cambridge: Cambridge University Press.
dc.identifier.citedreferenceFrey, W. R., & Kay, J. E. ( 2018 ). The influence of extratropical cloud phase and amount feedbacks on climate sensitivity. Climate Dynamics, 50 ( 7 ), 3097 - 3116. https://doi.org/10.1007/s00382-017-3796-5
dc.identifier.citedreferenceFriedrich, T., & Timmermann, A. ( 2020 ). Using Late Pleistocene sea surface temperature reconstructions to constrain future greenhouse warming. Earth and Planetary Science Letters, 530, 115911. https://doi.org/10.1016/j.epsl.2019.115911
dc.identifier.citedreferenceGettelman, A., Hannay, C., Bacmeister, J. T., Neale, R. B., Pendergrass, A. G., Danabasoglu, G., et al. ( 2019 ). High climate sensitivity in the Community Earth System Model Version 2 (CESM2). Geophysical Research Letters, 46, 8329 - 8337. https://doi.org/10.1029/2019GL083978
dc.identifier.citedreferenceGettelman, A., Kay, J. E., & Shell, K. M. ( 2012 ). The Evolution of climate sensitivity and climate feedbacks in the community atmosphere model. Journal of Climate, 25 ( 5 ), 1453 - 1469. https://doi.org/10.1175/JCLI-D-11-00197.1
dc.identifier.citedreferenceGregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B., et al. ( 2004 ). A new method for diagnosing radiative forcing and climate sensitivity. Geophysical Research Letters, 31 ( 3 ), L03205. https://doi.org/10.1029/2003GL018747
dc.identifier.citedreferenceHolden, P. B., Edwards, N. R., Oliver, K. I. C., Lenton, T. M., & Wilkinson, R. D. ( 2010 ). A probabilistic calibration of climate sensitivity and terrestrial carbon change in GENIE- 1. Climate Dynamics, 35 ( 5 ), 785 - 806. https://doi.org/10.1007/s00382-009-0630-8
dc.identifier.citedreferenceHourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.- C., Balaji, V., Duan, Q., et al. ( 2017 ). The art and science of climate model tuning. Bulletin of the American Meteorological Society, 98 ( 3 ), 589 - 602. https://doi.org/10.1175/bams-d-15-00135.1
dc.identifier.citedreferenceKageyama, M., Albani, S., Braconnot, P., Harrison, S. P., Hopcroft, P. O., Ivanovic, R. F., et al. ( 2017 ). The PMIP4 contribution to CMIP6 - Part 4: Scientific objectives and experimental design of the PMIP4- CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geoscientific Model Development, 10 ( 11 ), 4035 - 4055. https://doi.org/10.5194/gmd-10-4035-2017
dc.identifier.citedreferenceKageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J. H., Otto- Bliesner, B. L., et al. ( 2018 ). The PMIP4 contribution to CMIP6 - Part 1: Overview and over- arching analysis plan. Geoscientific Model Development, 11 ( 3 ), 1033 - 1057. https://doi.org/10.5194/gmd-11-1033-2018
dc.identifier.citedreferenceKöhler, P., Bintanja, R., Fischer, H., Joos, F., Knutti, R., Lohmann, G., et al. ( 2010 ). What caused Earth’s temperature variations during the last 800,000 years? Data- based evidence on radiative forcing and constraints on climate sensitivity. Quaternary Science Reviews, 29 ( 1 ), 129 - 145. https://doi.org/10.1016/j.quascirev.2009.09.026
dc.identifier.citedreferenceLauritzen, P. H., Bacmeister, J. T., Callaghan, P. F., & Taylor, M. A. ( 2015 ). NCAR_Topo (v1.0): NCAR global model topography generation software for unstructured grids. Geoscientific Model Development, 8 ( 12 ), 3975 - 3986. https://doi.org/10.5194/gmd-8-3975-2015
dc.identifier.citedreferenceLawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., et al. ( 2019 ). The community land model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11 ( 12 ), 4245 - 4287. https://doi.org/10.1029/2018ms001583
dc.identifier.citedreferenceLofverstrom, M. ( 2020 ). A dynamic link between high- intensity precipitation events in southwestern North America and Europe at the Last Glacial Maximum. Earth and Planetary Science Letters, 534, 116081. https://doi.org/10.1016/j.epsl.2020.116081
dc.identifier.citedreferenceLofverstrom, M., Caballero, R., Nilsson, J., & Messori, G. ( 2016 ). Stationary wave reflection as a mechanism for zonalizing the Atlantic Winter Jet at the LGM. Journal of the Atmospheric Sciences, 73 ( 8 ), 3329 - 3342. https://doi.org/10.1175/jas-d-15-0295.1
dc.identifier.citedreferenceManabe, S., & Broccoli, A. J. ( 1985 ). A comparison of climate model sensitivity with data from the Last Glacial Maximum. Journal of the Atmospheric Sciences, 42 ( 23 ), 2643 - 2651. https://doi.org/10.1175/1520-0469(1985)042<2643:ACOCMS>2.0.CO;2
dc.identifier.citedreferenceManabe, S., & Wetherald, R. T. ( 1967 ). Thermal equilibrium of the atmosphere with a given distribution of relative humidity. Journal of the Atmospheric Sciences, 24 ( 3 ), 241 - 259. https://doi.org/10.1175/1520-0469(1967)024%3C0241:TEOTAW%3E2.0.CO
dc.identifier.citedreferenceMeehl, G. A., Arblaster, J. M., Bates, S., Richter, J. H., Tebaldi, C., Gettelman, A., et al. ( 2020 ). Characteristics of future warmer base states in CESM2. Earth and Space Science, 7 ( 9 ), e2020EA001296. https://doi.org/10.1029/2020ea001296
dc.identifier.citedreferenceMitchell, J. F. B., Senior, C. A., & Ingram, W. J. ( 1989 ). CO2 and climate: A missing feedback? Nature, 341 ( 6238 ), 132 - 134. https://doi.org/10.1038/341132a0
dc.identifier.citedreferenceNijsse, F. J. M. M., Cox, P. M., & Williamson, M. S. ( 2020 ). Emergent constraints on transient climate response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in CMIP5 and CMIP6 models. Earth System Dynamics, 11 ( 3 ), 737 - 750. https://doi.org/10.5194/esd-11-737-2020
dc.identifier.citedreferenceOtto- Bliesner, B. L., Brady, E. C., Tomas, R. A., Albani, S., Bartlein, P. J., Mahowald, N. M., et al. ( 2020 ). A comparison of the CMIP6 midHolocene and lig127k simulations in CESM2. Paleoceanography and Paleoclimatology, 35 ( 11 ), e2020PA003957. https://doi.org/10.1029/2020PA003957
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.