Lightning Generation in Moist Convective Clouds and Constraints on the Water Abundance in Jupiter
dc.contributor.author | Aglyamov, Yury S. | |
dc.contributor.author | Lunine, Jonathan | |
dc.contributor.author | Becker, Heidi N. | |
dc.contributor.author | Guillot, Tristan | |
dc.contributor.author | Gibbard, Seran G. | |
dc.contributor.author | Atreya, Sushil | |
dc.contributor.author | Bolton, Scott J. | |
dc.contributor.author | Levin, Steven | |
dc.contributor.author | Brown, Shannon T. | |
dc.contributor.author | Wong, Michael H. | |
dc.date.accessioned | 2021-03-02T21:48:29Z | |
dc.date.available | 2022-03-02 16:48:27 | en |
dc.date.available | 2021-03-02T21:48:29Z | |
dc.date.issued | 2021-02 | |
dc.identifier.citation | Aglyamov, Yury S.; Lunine, Jonathan; Becker, Heidi N.; Guillot, Tristan; Gibbard, Seran G.; Atreya, Sushil; Bolton, Scott J.; Levin, Steven; Brown, Shannon T.; Wong, Michael H. (2021). "Lightning Generation in Moist Convective Clouds and Constraints on the Water Abundance in Jupiter." Journal of Geophysical Research: Planets 126(2): n/a-n/a. | |
dc.identifier.issn | 2169-9097 | |
dc.identifier.issn | 2169-9100 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/166445 | |
dc.description.abstract | Recent Juno observations have greatly extended the temporal and spatial coverage of lightning detection on Jupiter. We use these data to constrain a model of moist convection and lightning generation in Jupiter’s atmosphere, and derive a roughly solar abundance of water at the base of the water cloud. Shallow lightning, observed by Juno (Becker et al., 2020, https://doi.org/10.1038/s41586‐020‐2532‐1, Nature, 584, 55–58) and defined as flashes originating at altitudes corresponding to pressure less than 2 bars, is reproduced, as is lightning at a deeper range of pressures, including those below the water cloud base. It is found that the generation of lightning requires ammonia to stabilize liquid water at altitudes corresponding to sub‐freezing temperatures. We find a range of local water abundances in which lightning is possible, including subsolar values of water—consistent with other determinations of deep oxygen abundance.Plain Language SummaryMany missions to Jupiter have detected lightning in its atmosphere, but the Juno mission now in orbit has made the most extensive observations on where, and the rate at which, lightning flashes occur. Lightning on Earth is the discharge of electricity that happens when positive and negative charges separate between raindrops and small ice particles in towering thunderheads, somewhat like how combing a cat’s fur can create a static electric discharge. This same process is thought to occur in Jupiter’s atmosphere, though with some important differences, and we model that process here. Comparing our model with the Juno data also supports the idea that ammonia is in Jupiter’s thunderheads, dissolving some of the water ice and increasing the abundance of raindrops.Key PointsA model of the generation of lightning is applied to Jupiter, constrained by Juno data; the model reproduces well terrestrial ratesThe model allows for lightning at moderately subsolar abundances of water if ammonia is presentThe model produces lightning at shallow altitudes (heights above 2 bars) while also producing lightning at deeper levels seen by Galileo | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Zenodo | |
dc.subject.other | ammonia | |
dc.subject.other | convection | |
dc.subject.other | Juno | |
dc.subject.other | Jupiter | |
dc.subject.other | lightning | |
dc.title | Lightning Generation in Moist Convective Clouds and Constraints on the Water Abundance in Jupiter | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Geological Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/166445/1/jgre21579.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/166445/2/jgre21579_am.pdf | |
dc.identifier.doi | 10.1029/2020JE006504 | |
dc.identifier.source | Journal of Geophysical Research: Planets | |
dc.identifier.citedreference | Pruppacher, H. R., & Klett, J. D. ( 1997 ). Microphysics of clouds and precipitation. Dordrecht: Kluwer. | |
dc.identifier.citedreference | Stolzenberg, M., Rust, D., Smull, B. F., & Marshall, T. C. ( 1998 ). Electrical structure in thunderstorm convective regions.1. Mesoscale convective systems. Journal of Geophysical Research, 103, 14059 – 14078. | |
dc.identifier.citedreference | von Zahn, U., Hunten, D. M., & Lehmacher, G. ( 1998 ). Helium in Jupiter’s atmosphere: Results from the Galileo probe helium interferometer experiment. Journal of Geophysical Research, 103, 22815 – 22830. | |
dc.identifier.citedreference | Keith, W. D., & Saunders, C. P. R. ( 1989 ). Charge transfer during multiple large ice crystal interactions with a riming target. Journal of Geophysical Research, 94, 13103 – 13106. | |
dc.identifier.citedreference | Lanzerotti, L. J., Rinnert, K., Dehmel, G., Gliem, F. O., Krider, E. P., Uman, M. A., & Bach, J. ( 1996 ). Radio frequency signals in Jupiter’s atmosphere. Science, 272, 858 – 860. | |
dc.identifier.citedreference | Li, C., & Chen, X. ( 2019 ). Simulating nonhydrostatic atmospheres on planets (SNAP): Formulation, validation, and application to the Jovian atmosphere. The Astrophysical Journal: Supplement Series, 240, 37. https://doi.org/10.3847/1538-4365/aafdaa | |
dc.identifier.citedreference | Li, C., Ingersoll, A., Bolton, S., Levin, S., Janssen, M., Atreya, S., et al. ( 2020 ). The water abundance in Jupiter’s equatorial zone. Nature Astronomy, 4, 609 – 616. https://doi.org/10.1038/s41550-020-1009-3 | |
dc.identifier.citedreference | Li, L., Ingersoll, A. P., Vasavada, A. R., Porco, C. C., Del Genio, A. D., & Ewald, S. P. ( 2004 ). Life cycles of spots on Jupiter from Cassini images. Icarus, 172, 9 – 23. | |
dc.identifier.citedreference | Little, B., Anger, C. D., Ingersoll, A. P., Vasavada, A. R., Senske, D. A., Breneman, H. H., et al. ( 1999 ). Galileo images of lightning on Jupiter. Icarus, 142, 306 – 323. | |
dc.identifier.citedreference | Lowe, P. R. ( 1977 ). An approximating polynomial for the computation of saturation vapor pressure. Journal of Applied Meteorology, 16, 100 – 103. | |
dc.identifier.citedreference | Lunine, J. I., Hubbard, W. B., Burrows, A., Wang, Y.‐P., & Garlow, K. ( 1989 ). The effect of gas and grain opacity on the cooling of brown dwarfs. The Astrophysical Journal, 338, 314 – 337. | |
dc.identifier.citedreference | Maggio, C. R., Marshall, T. C., & M Stolzenburg, M. ( 2009 ). Estimations of charge transferred and energy released by lightning flashes. Journal of Geophysical Research, 114, D14203. https://doi.org/10.1029/2008JD011506 | |
dc.identifier.citedreference | Orton, G. S., Fisher, B. M., Baines, K. H., Stewart, S. T., Friedson, A. J., Ortiz, J. L., et al. ( 1998 ). Characteristics of the Galileo probe entry site from Earth‐based remote sensing observations. Journal of Geophysical Research, 103, 22791 – 22814. | |
dc.identifier.citedreference | Orville, R. E., & Spencer, D. W. ( 1979 ). Global lightning flash frequency. Monthly Weather Review, 107, 934 – 943. | |
dc.identifier.citedreference | Palotai, C., Dowling, T. E., & Fletcher, L. N. ( 2014 ). 3D Modeling of interactions between Jupiter’s ammonia clouds and large anticyclones. Icarus, 232, 141 – 156. | |
dc.identifier.citedreference | Goodman, S. J., & MacGorman, D. R. ( 1986 ). Cloud‐to‐ground lightning activity in mesoscale convective complexes. Monthly Weather Review, 114, 2320 – 2328. | |
dc.identifier.citedreference | Rinnert, K., Lanzerotti, L. J., Uman, M. A., Dehmel, G., Gliem, F. O., Krider, E. P., & Bach, J. ( 1998 ). Measurements of radio frequency signals from lightning in Jupiter’s atmosphere. Journal of Geophysical Research, 103, 22979 – 22992. | |
dc.identifier.citedreference | Rutledge, S. A., & Hobbs, P. V. ( 1984 ). The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold‐frontal rainbands. Journal of the Atmospheric Sciences, 41, 2949 – 2972. | |
dc.identifier.citedreference | Saunders, C. P. R. ( 1993 ). A review of thunderstorm electrification processes. Journal of Applied Meteorology, 32, 642 – 655. | |
dc.identifier.citedreference | Saunders, C. ( 2008 ). Charge separation mechanisms in clouds. Space Science Reviews, 137, 335 – 353. | |
dc.identifier.citedreference | Seiff, A., Kirk, D. B., Knight, T. C. D., Young, R. E., Mihalov, J. D., Young, L. A., et al. ( 1998 ). Thermal structure of Jupiter’s atmosphere near the edge of a 5‐ μ m hot spot in the north equatorial belt. Journal of Geophysical Research, 103, 22857 – 22889. | |
dc.identifier.citedreference | Spilhaus, A. F. ( 1948 ). Raindrop size, shape, and falling speed. Journal of Meteorology, 5, 108 – 110. | |
dc.identifier.citedreference | Stetten, A. Z., Golovko, D. S., Weber, S. A. L., & Butt, H.‐J. ( 2019 ). Slide electrification: charging of surfaces by moving water drops. Soft Matter, 15, 8667 – 8679. | |
dc.identifier.citedreference | Stoker, C. R. ( 1986 ). Moist convection: a mechanism for producing the vertical structure of the Jovian equatorial plumes. Icarus, 67, 106 – 125. | |
dc.identifier.citedreference | Wahl, S. M., Hubbard, W. B., Militzer, B., Guillot, T., Miguel, Y., Movshovitz, N., et al. ( 2017 ). Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophysical Research Letters, 44, 4649 – 4659. https://doi.org/10.1002/2017GL073160 | |
dc.identifier.citedreference | Wang, D., Gierasch, P. J., Lunine, J. I., & Mousis, O. ( 2015 ). New insights on Jupiter’s deep water abundance from disequilibrium species. Icarus, 250, 154 – 164. | |
dc.identifier.citedreference | Wong, M. H., Lunine, J., Atreya, S. K., Johnson, T., Mahaffy, P. R., Owen, T. C., & Encrenaz, T. ( 2008 ). Oxygen and other volatiles in the giant planets and their satellites., et al. (Eds.), Reviews in mineralogy and geochemistry (Vol. 68): Oxygen in the solar system. Chantilly, VA: Mineralogical Society of America. | |
dc.identifier.citedreference | Wong, M. H., Mahaffy, P. R., Atreya, S. K., Niemann, H. B., & Owen, T. C. ( 2004 ). Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus, 171, 153 – 170. | |
dc.identifier.citedreference | Workman, E. J., & Reynolds, S. E. ( 1950 ). Electrical phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity. Physics Review, 78, 254 – 259. | |
dc.identifier.citedreference | Yair, Y., Fischer, G., Simões, F., Renno, N., & Zarka, P. ( 2008 ). Updated review of planetary atmospheric electricity. Space Science Reviews, 137, 29 – 49. | |
dc.identifier.citedreference | Yair, Y., Levin, Z., & Tzivion, S. ( 1995a ). Microphysical processes and dynamics of a Jovian thundercloud. Icarus, 114, 278 – 299. | |
dc.identifier.citedreference | Yair, Y., Levin, Z., & Tzivion, S. ( 1995b ). Lightning generation in a Jovian thundercloud: Results from an axisymmetric numerical cloud model. Icarus, 115, 421 – 434. | |
dc.identifier.citedreference | Yair, Y., Levin, Z., & Tzivion, S. ( 1998 ). Model interpretation of Jovian lightning activity and the Galileo Probe results. Journal of Geophysical Research, 103, 14157 – 14166. | |
dc.identifier.citedreference | Gibbard, S., Levy, E. H., & Morfill, G. E. ( 1997 ). On the possibility of lightning in the protosolar nebula. Icarus, 130, 517 – 533. | |
dc.identifier.citedreference | Aglyamov, Y. S. ( 2020 ). Giant‐planetary Entraining Plume Electrification Version 0.4.23. Zenodo. http://doi.org/10.5281/zenodo.4283101 | |
dc.identifier.citedreference | Asplund, M., Grevess, N., Sauval, A. J., & Scott, P. ( 2009 ). The chemical composition of the Sun. Annual Review of Astronomy and Astrophysics, 47, 481 – 522. | |
dc.identifier.citedreference | Atreya, S. K., Wong, M. H., Owen, T. C., Mahaffy, P. R., Niemann, H. B., de Pater, I., et al. ( 1999 ). A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. Planetary and Space Science, 47, 1243 – 1262. | |
dc.identifier.citedreference | Becker, H. N., Alexander, J. W., Atreya, S. K., Bolton, S. J., Brennan, M. J., Brown, S. T., et al. ( 2020 ). Small lightning flashes from shallow electrical storms on Jupiter. Nature, 584, 55 – 58. https://doi.org/10.1038/s41586-020-2532-1 | |
dc.identifier.citedreference | Bjoraker, G., Wong, M. H., de Pater, I., Hewagama, T., Adamkovics, M., & Orton, G. S. ( 2018 ). The gas composition and deep cloud structure of Jupiter’s Great Red Spot. The Astronomical Journal, 156, 101. | |
dc.identifier.citedreference | Borucki, W. J., Bar‐Nun, A., Scarf, F. L., Cook, A. F., II, & Hunt, G. E. ( 1982 ). Lightning activity on Jupiter. Icarus, 52, 492 – 502. | |
dc.identifier.citedreference | Borucki, W. J., & Williams, M. A. ( 1986 ). Lightning in the Jovian water cloud. Journal of Geophysical Research, 91, 9893 – 9903. | |
dc.identifier.citedreference | Brown, S., Janssen, M., Adumitroale, V., Atreya, S. K., Bolton, S., Gulkis, S., et al. ( 2018 ). Prevalent lightning sferics at 600 megahertz near Jupiter’s poles. Nature, 558, 87 – 90. | |
dc.identifier.citedreference | Chase, M. W., Jr. ( 1998 ). NIST‐JANAF Thermochemical Tables ( 4th ed. ). Journal of physical and chemical reference data monographs. New York, NY: American Institute of Physics. | |
dc.identifier.citedreference | Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., et al. ( 2003 ). Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research, 108 ( D1 ), 4005. https://doi.org/10.1029/2002JD002347 | |
dc.identifier.citedreference | Cook, A. F., II, Duxbury, T. C., & Hunt, E. G. ( 1979 ). First results on Jovian lightning. Nature, 280, 794. | |
dc.identifier.citedreference | Dye, J. E., & Bansemer, A. ( 2019 ). Electrification in mesoscale updrafts of deep stratiform and anvil clouds in Florida. Journal of Geophysical Research: Atmosphere, 124, 1021 – 1049. | |
dc.identifier.citedreference | Dyudina, U. A., Del Genio, A. D., Ingersoll, A. P., Porco, C. C., West, R. A., Vasavada, A. R., & Barbara, J. M. ( 2004 ). Lightning on Jupiter observed in the H α line by the Cassini imaging science subsystem. Icarus, 172, 24 – 36. | |
dc.identifier.citedreference | Dyudina, U. A., Ingersoll, A. P., Vasavada, A. R., Ewald, S. P., & Galileo SSI Team ( 2002 ). Monte Carlo radiative transfer modeling of lightning observed in Galileo images of Jupiter. Icarus, 160, 336 – 349. | |
dc.identifier.citedreference | Gautier, D., Hersant, F., Mousis, O., & Lunine, J. I. ( 2001 ). Enrichments in volatiles in Jupiter: A new interpretation of the Galileo measurements. The Astrophysical Journal, 550, L227 – L230. | |
dc.identifier.citedreference | Gibbard, S. G. ( 1996 ). Lightning in the Solar System. Dissertation, University of Arizona. | |
dc.identifier.citedreference | Gibbard, S., Levy, E. H., & Lunine, J. I. ( 1995 ). Generation of lightning in Jupiter’s water cloud. Nature, 378, 592 – 595. | |
dc.identifier.citedreference | Guillot, T., Stevenson, D. J., Atreya, S. K., Bolton, S. J., & Becker, H. N. ( 2020 ). Storms and the depletion of ammonia in Jupiter: I. Microphysics of mushballs. Journal of Geophysical Research: Planets, 125, e2020JE006403. https://doi.org/10.1029/2020JE006403 | |
dc.identifier.citedreference | Gurnett, D. A., Shaw, R. R., Anderson, R. R., Kurth, W. S., & Scarf, F. L. ( 1979 ). Whistlers observed by voyager 1: Detection of lightning on Jupiter. Geophysical Research Letters, 6, 511 – 514. | |
dc.identifier.citedreference | Hueso, R., Sanchez‐Lavega, A., & Guillot, T. ( 2002 ). A model for large‐scale convective storms in Jupiter. Journal of Geophysical Research, 10 ( E10 ), 5075. https://doi.org/10.1029/2001JE001839,2002 | |
dc.identifier.citedreference | Ingersoll, A. P., Gierasch, P. J., Banfield, D., Vasavada, A. R., & Galileo Imaging Team ( 2000 ). Moist convection as an energy source for the large‐scale motions in Jupiter’s atmosphere. Nature, 403, 630 – 632. | |
dc.identifier.citedreference | Ingersoll, A. P., & Kanamori, H. ( 1995 ). Waves from the collisions of comet Shoemaker‐Levy 9 with Jupiter. Nature, 374, 706 – 708. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.