Show simple item record

Temperature‐corrected proton density fat fraction estimation using chemical shift‐encoded MRI in phantoms

dc.contributor.authorNavaratna, Ruvini
dc.contributor.authorZhao, Ruiyang
dc.contributor.authorColgan, Timothy J.
dc.contributor.authorHu, Houchun Harry
dc.contributor.authorBydder, Mark
dc.contributor.authorYokoo, Takeshi
dc.contributor.authorBashir, Mustafa R.
dc.contributor.authorMiddleton, Michael S.
dc.contributor.authorSerai, Suraj D.
dc.contributor.authorMalyarenko, Dariya
dc.contributor.authorChenevert, Thomas
dc.contributor.authorSmith, Mark
dc.contributor.authorHenderson, Walter
dc.contributor.authorHamilton, Gavin
dc.contributor.authorShu, Yunhong
dc.contributor.authorSirlin, Claude B.
dc.contributor.authorTkach, Jean A.
dc.contributor.authorTrout, Andrew T.
dc.contributor.authorBrittain, Jean H.
dc.contributor.authorHernando, Diego
dc.contributor.authorReeder, Scott B.
dc.date.accessioned2021-04-06T02:09:40Z
dc.date.available2022-08-05 22:09:38en
dc.date.available2021-04-06T02:09:40Z
dc.date.issued2021-07
dc.identifier.citationNavaratna, Ruvini; Zhao, Ruiyang; Colgan, Timothy J.; Hu, Houchun Harry; Bydder, Mark; Yokoo, Takeshi; Bashir, Mustafa R.; Middleton, Michael S.; Serai, Suraj D.; Malyarenko, Dariya; Chenevert, Thomas; Smith, Mark; Henderson, Walter; Hamilton, Gavin; Shu, Yunhong; Sirlin, Claude B.; Tkach, Jean A.; Trout, Andrew T.; Brittain, Jean H.; Hernando, Diego; Reeder, Scott B. (2021). "Temperature‐corrected proton density fat fraction estimation using chemical shift‐encoded MRI in phantoms." Magnetic Resonance in Medicine (1): 69-81.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/167019
dc.publisherWiley Periodicals, Inc.
dc.subject.otherchemical shift‐encoded MRI
dc.subject.otherfat quantification
dc.subject.otherphantom
dc.subject.otherproton density fat fraction
dc.subject.otherquantitative imaging biomarker
dc.subject.othertemperature correction
dc.titleTemperature‐corrected proton density fat fraction estimation using chemical shift‐encoded MRI in phantoms
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167019/1/mrm28669-sup-0001-supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167019/2/mrm28669.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167019/3/mrm28669_am.pdf
dc.identifier.doi10.1002/mrm.28669
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferenceRockey DC, Caldwell SH, Goodman ZD, Nelson RC, Smith AD. Liver biopsy. Hepatology. 2009; 49: 1017 ‐ 1044.
dc.identifier.citedreferenceMatteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999; 116: 1413 ‐ 1419.
dc.identifier.citedreferenceIdilman IS, Keskin O, Elhan AH, Idilman R, Karcaaltincaba M. Impact of sequential proton density fat fraction for quantification of hepatic steatosis in nonalcoholic fatty liver disease. Scand J Gastroenterol. 2014; 419: 617 ‐ 624.
dc.identifier.citedreferenceMiddleton MS, Van Natta ML, Heba ER, et al. Diagnostic accuracy of magnetic resonance imaging hepatic proton density fat fraction in pediatric nonalcoholic fatty liver disease. Hepatol Baltim Md. 2018; 67: 858 ‐ 872.
dc.identifier.citedreferenceHernando D, Hines CDG, Yu H, Reeder SB. Addressing phase errors in fat‐water imaging using a mixed magnitude/complex fitting method. Magn Reson Med. 2012; 67: 638 ‐ 644.
dc.identifier.citedreferenceLiu C‐Y, McKenzie CA, Yu H, Brittain JH, Reeder SB. Fat quantification with IDEAL gradient echo imaging: correction of bias from T1 and noise. Magn Reson Med. 2007; 58: 354 ‐ 364.
dc.identifier.citedreferenceLoomba R, Sirlin CB, Ang B, et al. Ezetimibe for the treatment of nonalcoholic steatohepatitis: assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (MOZART trial). Hepatol Baltim Md. 2015; 61: 1239 ‐ 1250.
dc.identifier.citedreferenceNoureddin M, Lam J, Peterson MR, et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatol Baltim Md. 2013; 58: 1930 ‐ 1940.
dc.identifier.citedreferenceMiddleton MS, Heba ER, Hooker CA, et al. Agreement between magnetic resonance imaging proton density fat fraction measurements and pathologist‐assigned steatosis grades of liver biopsies from adults with nonalcoholic steatohepatitis. Gastroenterology. 2017; 153: 753 ‐ 761.
dc.identifier.citedreferenceBydder M, Yokoo T, Hamilton G, et al. Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging. 2008; 26: 347 ‐ 359.
dc.identifier.citedreferenceYokoo T, Serai SD, Pirasteh A, et al. Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: a meta‐analysis. Radiology. 2018; 286: 486 ‐ 498.
dc.identifier.citedreferenceVernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non‐alcoholic fatty liver disease and non‐alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011; 34: 274 ‐ 285.
dc.identifier.citedreferenceYu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water‐fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med. 2008; 60: 1122 ‐ 1134.
dc.identifier.citedreferenceRieke V, Pauly KB. MR thermometry. J Magn Reson Imaging. 2008; 27: 376 ‐ 390.
dc.identifier.citedreferenceBagur AT, Hutton C, Irving B, Gyngell ML, Robson MD, Brady M. Magnitude‐intrinsic water–fat ambiguity can be resolved with multipeak fat modeling and a multipoint search method. Magn Reson Med. 2019; 82: 460 ‐ 475.
dc.identifier.citedreferenceHu HH, Yokoo T, Hernando D, et al. Multi‐site, multi‐vendor, and multi‐platform reproducibility and accuracy of quantitative proton‐density fat fraction (PDFF) at 1.5 and 3 Tesla with a standardized spherical phantom: preliminary results from a study by the RSNA QIBA PDFF committee. In Proc Intl Soc Mag Reson Med. 2019. Montréal, QC, Canada. #1023.
dc.identifier.citedreferenceHines CDG, Yu H, Shimakawa A, McKenzie CA, Brittain JH, Reeder SB. T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat‐water‐SPIO phantom. J Magn Reson Imaging. 2009; 30: 1215 ‐ 1222.
dc.identifier.citedreferenceWyatt C, Soher BJ, Arunachalam K, MacFall J. Comprehensive analysis of the Cramer‐Rao bounds for magnetic resonance temperature change measurement in fat–water voxels using multi‐echo imaging. Magn Reson Mater Phys Biol Med. 2012; 25: 49 ‐ 61.
dc.identifier.citedreferenceKeenan KE, Stupic KF, Russek SE, Mirowski E. MRI‐visible liquid crystal thermometer. Magn Reson Med. 2020; 84: 1552 ‐ 1563.
dc.identifier.citedreferenceHernando D, Kellman P, Haldar JP, Liang Z‐P. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med. 2010; 63: 79 ‐ 90.
dc.identifier.citedreferenceHamilton G, Yokoo T, Bydder M, et al. In vivo characterization of the liver fat 1H MR spectrum. NMR Biomed. 2011; 24: 784 ‐ 790.
dc.identifier.citedreferenceNavaratna R, Colgan TJ, Zhao R, et al. Multi‐center phantom validation of a novel method for temperature correction in PDFF estimation using magnitude chemical shift‐encoded MRI. In Proceedings of the ISMRM & SMRT Virtual Conference & Exhibition, 2020. No. 1009.
dc.identifier.citedreferenceYu H, Shimakawa A, Hines CDG, et al. Combination of complex‐based and magnitude‐based multiecho water‐fat separation for accurate quantification of fat‐fraction. Magn Reson Med. 2011; 66: 199 ‐ 206.
dc.identifier.citedreferenceBrix O, Apablaza P, Baker A, Taxt T, Grüner R. Chemical shift based MR imaging and gas chromatography for quantification and localization of fat in Atlantic mackerel. J Exp Mar Biol Ecol. 2009; 376: 68 ‐ 75.
dc.identifier.citedreferenceBannas P, Kramer H, Hernando D, et al. Quantitative magnetic resonance imaging of hepatic steatosis: validation in ex vivo human livers. Hepatol Baltim Md. 2015; 62: 1444 ‐ 1455.
dc.identifier.citedreferenceHernando D, Sharma SD, Kramer H, Reeder SB. On the confounding effect of temperature on chemical shift‐encoded fat quantification. Magn Reson Med. 2014; 72: 464 ‐ 470.
dc.identifier.citedreferenceVan Geet AL. Calibration of methanol nuclear magnetic resonance thermometer at low temperature. Anal Chem. 1970; 42: 679 ‐ 680.
dc.identifier.citedreferenceKarampinos DC, Yu H, Shimakawa A, Link TM, Majumdar S. Chemical shift‐based water/fat separation in the presence of susceptibility‐induced fat resonance shift. Magn Reson Med. 2012; 68: 1495 ‐ 1505.
dc.identifier.citedreferenceBydder M, Hamilton G, de Rochefort L, et al. Sources of systematic error in proton density fat fraction (PDFF) quantification in the liver evaluated from magnitude images with different numbers of echoes. NMR Biomed. 2018; 31: e3843.
dc.identifier.citedreferenceSoher BJ, Wyatt C, Reeder SB, MacFall JR. Noninvasive temperature mapping with MRI using chemical shift water‐fat separation. Magn Reson Med. 2010; 63: 1238 ‐ 1246.
dc.identifier.citedreferenceSprinkhuizen S, Konings M, Bom M, Viergever M, Bakker C, Bartels L. Temperature‐induced tissue susceptibility changes lead to significant temperature errors in PRFS‐based MR thermometry during thermal interventions. Magn Reson Med. 2010; 64: 1360 ‐ 1372.
dc.identifier.citedreferenceKuroda K, Mulkern RV, Oshio K, et al. Temperature mapping using the water proton chemical shift: self‐referenced method with echo‐planar spectroscopic imaging. Magn Reson Med. 2000; 43: 220 ‐ 225.
dc.identifier.citedreferenceYu H, McKenzie CA, Shimakawa A, et al. Multiecho reconstruction for simultaneous water‐fat decomposition and T2* estimation. J Magn Reson Imaging. 2007; 26: 1153 ‐ 1161.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.