Show simple item record

DHA 12- LOX- derived oxylipins regulate platelet activation and thrombus formation through a PKA- dependent signaling pathway

dc.contributor.authorYamaguchi, Adriana
dc.contributor.authorStanger, Livia
dc.contributor.authorFreedman, Cody J.
dc.contributor.authorStandley, Melissa
dc.contributor.authorHoang, Timothy
dc.contributor.authorAdili, Reheman
dc.contributor.authorTsai, Wan‐chen
dc.contributor.authorHoorebeke, Christopher
dc.contributor.authorHolman, Theodore R.
dc.contributor.authorHolinstat, Michael
dc.date.accessioned2021-04-06T02:09:51Z
dc.date.available2022-04-05 22:09:49en
dc.date.available2021-04-06T02:09:51Z
dc.date.issued2021-03
dc.identifier.citationYamaguchi, Adriana; Stanger, Livia; Freedman, Cody J.; Standley, Melissa; Hoang, Timothy; Adili, Reheman; Tsai, Wan‐chen ; Hoorebeke, Christopher; Holman, Theodore R.; Holinstat, Michael (2021). "DHA 12- LOX- derived oxylipins regulate platelet activation and thrombus formation through a PKA- dependent signaling pathway." Journal of Thrombosis and Haemostasis (3): 839-851.
dc.identifier.issn1538-7933
dc.identifier.issn1538-7836
dc.identifier.urihttps://hdl.handle.net/2027.42/167023
dc.description.abstractBackgroundThe effects of docosahexaenoic acid (DHA) on cardiovascular disease are controversial and a mechanistic understanding of how this omega- 3 polyunsaturated fatty acid (Ï - 3 PUFA) regulates platelet reactivity and the subsequent risk of a thrombotic event is warranted. In platelets, DHA is oxidized by 12- lipoxygenase (12- LOX) producing the oxidized lipids (oxylipins) 11- HDHA and 14- HDHA. We hypothesized that 12- LOX DHA- oxylipins may be involved in the beneficial effects observed in dietary supplemental treatment with Ï - 3 PUFAs or DHA itself.ObjectivesTo determine the effects of DHA, 11- HDHA, and 14- HDHA on platelet function and thrombus formation, and to elucidate the mechanism by which these Ï - 3 PUFAs regulate platelet activation.Methods and resultsDHA, 11- HDHA, and 14- HDHA attenuated collagen- induced human platelet aggregation, but only the oxylipins inhibited - ºIIbβ3 activation and decreased - º- granule secretion. Furthermore, treatment of whole blood with DHA and its oxylipins impaired platelet adhesion and accumulation to a collagen- coated surface. Interestingly, thrombus formation was only diminished in mice treated with 11- HDHA or 14- HDHA, and mouse platelet activation was inhibited following acute treatment with these oxylipins or chronic treatment with DHA, suggesting that under physiologic conditions, the effects of DHA are mediated through its oxylipins. Finally, the protective mechanism of DHA oxylipins was shown to be mediated via activation of protein kinase A.ConclusionsThis study provides the first mechanistic evidence of how DHA and its 12- LOX oxylipins inhibit platelet activity and thrombus formation. These findings support the beneficial effects of DHA as therapeutic intervention in atherothrombotic diseases.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherplatelet
dc.subject.otherthrombosis
dc.subject.otherdocosahexaenoic acid
dc.subject.other12- lipoxygenase
dc.subject.otheromega- 3 polyunsaturated fatty acids
dc.titleDHA 12- LOX- derived oxylipins regulate platelet activation and thrombus formation through a PKA- dependent signaling pathway
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167023/1/jth15184-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167023/2/jth15184.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167023/3/jth15184_am.pdf
dc.identifier.doi10.1111/jth.15184
dc.identifier.sourceJournal of Thrombosis and Haemostasis
dc.identifier.citedreferenceFreedman C, Tran A, Tourdot BE, et al. Biosynthesis of the maresin intermediate, 13S,14S- Epoxy- DHA, by human 15- lipoxygenase and 12- lipoxygenase and its regulation through negative allosteric modulators. Biochemistry. 2020; 59: 1832 - 1844.
dc.identifier.citedreferencePhang M, Lincz LF, Garg ML. Eicosapentaenoic and docosahexaenoic acid supplementations reduce platelet aggregation and hemostatic markers differentially in men and women. J Nutr. 2013; 143: 457 - 463.
dc.identifier.citedreferenceLarson MK, Shearer GC, Ashmore JH, et al. Omega- 3 fatty acids modulate collagen signaling in human platelets. Prostaglandins Leukot Essent Fatty Acids. 2011; 84: 93 - 98.
dc.identifier.citedreferenceLi XL, Steiner M. Fish oil: a potent inhibitor of platelet adhesiveness. Blood. 1990; 76: 938 - 945.
dc.identifier.citedreferenceLi XL, Steiner M. Dose response of dietary fish oil supplementations on platelet adhesion. Arterioscler Thromb. 1991; 11: 39 - 46.
dc.identifier.citedreferenceUmemura K, Toshima Y, Asai F, Nakashima M. Effect of dietary docosahexaenoic acid supplementation on platelet function: studies in the rat femoral artery thrombosis model. Platelets. 1994; 5: 214 - 218.
dc.identifier.citedreferenceAndriamampandry MD, Leray C, Freund M, Cazenave J- P, Gachet C. Antithrombotic effects of (n- 3) polyunsaturated fatty acids in rat models of arterial and venous thrombosis. Thromb Res. 1999; 93: 9 - 16.
dc.identifier.citedreferenceAdili R, Voigt EM, Bormann JL, et al. In vivo modeling of docosahexaenoic acid and eicosapentaenoic acid- mediated inhibition of both platelet function and accumulation in arterial thrombi. Platelets. 2019; 30: 271 - 279.
dc.identifier.citedreferenceYokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open- label, blinded endpoint analysis. Lancet. 2007; 369: 1090 - 1098.
dc.identifier.citedreferencePlourde M, Chouinard- Watkins R, Rioux- Perreault C, et al. Kinetics of 13C- DHA before and during fish- oil supplementation in healthy older individuals. Am J Clin Nutr. 2014; 100: 105 - 112.
dc.identifier.citedreferenceTourdot BE, Adili R, Isingizwe ZR, et al. 12- HETrE inhibits platelet reactivity and thrombosis in part through the prostacyclin receptor. Blood Adv. 2017; 1: 1124 - 1131.
dc.identifier.citedreferenceSmolenski A. Novel roles of cAMP/cGMP- dependent signaling in platelets. J Thromb Haemost. 2012; 10: 167 - 176.
dc.identifier.citedreferenceRaslan Z, Aburima A, Naseem KM. The spatiotemporal regulation of cAMP signaling in blood platelets- old friends and new players. Front Pharmacol. 2015; 6: 266.
dc.identifier.citedreferenceCattaneo M. Light transmission aggregometry and ATP release for the diagnostic assessment of platelet function. Semin Thromb Hemost. 2009; 35: 158 - 167.
dc.identifier.citedreferenceNelson GJ, Schmidt PC, Bartolini GL, Kelley DS, Kyle D. The effect of dietary docosahexaenoic acid on plasma lipoproteins and tissue fatty acid composition in humans. Lipids. 1997; 32: 1137 - 1146.
dc.identifier.citedreferenceDas UN. COX- 2 inhibitors and metabolism of essential fatty acids. Med Sci Monit. 2005; 11: RA233 - RA237.
dc.identifier.citedreferenceCottin SC, Alsaleh A, Sanders TA, Hall WL. Lack of effect of supplementation with EPA or DHA on platelet- monocyte aggregates and vascular function in healthy men. Nutr Metab Cardiovasc Dis. 2016; 26: 743 - 751.
dc.identifier.citedreferenceKuda O. Bioactive metabolites of docosahexaenoic acid. Biochimie. 2017; 136: 12 - 20.
dc.identifier.citedreferenceYeung J, Hawley M, Holinstat M. The expansive role of oxylipins on platelet biology. J Mol Med (Berl). 2017; 95: 575 - 588.
dc.identifier.citedreferenceDong L, Zou H, Yuan C, Hong YH, Kuklev DV, Smith WL. Different fatty acids compete with arachidonic acid for binding to the allosteric or catalytic subunits of cyclooxygenases to regulate prostanoid synthesis. J Biol Chem. 2016; 291: 4069 - 4078.
dc.identifier.citedreferenceLagarde M, Guichardant M, Bernoud- Hubac N, Calzada C, Vericel E. Oxygenation of polyunsaturated fatty acids and oxidative stress within blood platelets. Biochim Biophys Acta Mol Cell Biol Lipids. 2018; 1863: 651 - 656.
dc.identifier.citedreferenceLagarde M, Liu M, Vericel E, et al. Docosahexaenoic acid, protectin synthesis: relevance against atherothrombogenesis. Proc Nutr Soc. 2014; 73: 186 - 189.
dc.identifier.citedreferenceAveldano MI, Sprecher H. Synthesis of hydroxy fatty acids from 4, 7, 10, 13, 16, 19- [1- 14C] docosahexaenoic acid by human platelets. J Biol Chem. 1983; 258: 9339 - 9343.
dc.identifier.citedreferenceWoodman RJ, Mori TA, Burke V, et al. Effects of purified eicosapentaenoic acid and docosahexaenoic acid on platelet, fibrinolytic and vascular function in hypertensive type 2 diabetic patients. Atherosclerosis. 2003; 166: 85 - 93.
dc.identifier.citedreferencePerry SC, Kalyanaraman C, Tourdot BE, et al. 15- Lipoxygenase- 1 biosynthesis of 7S,14S- diHDHA implicates 15- Lipoxygenase- 2 in biosynthesis of resolvin D5. J Lipid Res. 2020; 61: 1087 - 1103.
dc.identifier.citedreferenceIkei KN, Yeung J, Apopa PL, et al. Investigations of human platelet- type 12- lipoxygenase: role of lipoxygenase products in platelet activation. J Lipid Res. 2012; 53: 2546 - 2559.
dc.identifier.citedreferenceYeung J, Tourdot BE, Adili R, et al. 12(S)- HETrE, a 12- Lipoxygenase Oxylipin of Dihomo- γ- Linolenic Acid, inhibits thrombosis via Gαs signaling in platelets. Arterioscler Thromb Vasc Biol. 2016; 36: 2068 - 2077.
dc.identifier.citedreferenceAdili R, Tourdot BE, Mast K, et al. First selective 12- LOX Inhibitor, ML355, impairs thrombus formation and vessel occlusion in vivo with minimal effects on hemostasis. Arterioscler Thromb Vasc Biol. 2017; 37: 1828 - 1839.
dc.identifier.citedreferenceReheman A, Gross P, Yang H, et al. Vitronectin stabilizes thrombi and vessel occlusion but plays a dual role in platelet aggregation. J Thromb Haemost. 2005; 3: 875 - 883.
dc.identifier.citedreferenceWang Y, Reheman A, Spring CM, et al. Plasma fibronectin supports hemostasis and regulates thrombosis. J Clin Invest. 2014; 124: 4281 - 4293.
dc.identifier.citedreferenceJohansen O, Seljeflot I, Hostmark AT, Arnesen H. The effect of supplementation with omega- 3 fatty acids on soluble markers of endothelial function in patients with coronary heart disease. Arterioscler Thromb Vasc Biol. 1999; 19: 1681 - 1686.
dc.identifier.citedreferenceCroset M, Sala A, Folco G, Lagarde M. Inhibition by lipoxygenase products of TXA2- like responses of platelets and vascular smooth muscle. 14- Hydroxy from 22:6n- 3 is more potent than 12- HETE. Biochem Pharmacol. 1988; 37: 1275 - 1280.
dc.identifier.citedreferenceDopheide SM, Yap CL, Jackson SP. Dynamic aspects of platelet adhesion under flow. Clin Exp Pharmacol Physiol. 2001; 28: 355 - 363.
dc.identifier.citedreferenceCoenen DM, Mastenbroek TG, Cosemans J. Platelet interaction with activated endothelium: mechanistic insights from microfluidics. Blood. 2017; 130: 2819 - 2828.
dc.identifier.citedreferenceAndrioli G, Carletto A, Guarini P, et al. Differential effects of dietary supplementation with fish oil or soy lecithin on human platelet adhesion. Thromb Haemost. 1999; 82: 1522 - 1527.
dc.identifier.citedreferenceTourdot BE, Stoveken H, Trumbo D, et al. Genetic variant in human PAR (Protease- Activated Receptor) 4 enhances thrombus formation resulting in resistance to antiplatelet therapeutics. Arterioscler Thromb Vasc Biol. 2018; 38: 1632 - 1643.
dc.identifier.citedreferenceSerhan CN, Levy BD. Resolvins in inflammation: emergence of the pro- resolving superfamily of mediators. J Clin Invest. 2018; 128: 2657 - 2669.
dc.identifier.citedreferenceSerhan CN, Yang R, Martinod K, et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med. 2009; 206: 15 - 23.
dc.identifier.citedreferenceChen P, Fenet B, Michaud S, et al. Full characterization of PDX, a neuroprotectin/protectin D1 isomer, which inhibits blood platelet aggregation. FEBS Lett. 2009; 583: 3478 - 3484.
dc.identifier.citedreferenceCherpokova D, Jouvene CC, Libreros S, et al. Resolvin D4 attenuates the severity of pathological thrombosis in mice. Blood. 2019; 134: 1458 - 1468.
dc.identifier.citedreferenceYeung J, Adili R, Yamaguchi A, et al. Omega- 6 DPA and its 12- lipoxygenase- oxidized lipids regulate platelet reactivity in a nongenomic PPARα- dependent manner. Blood Adv. 2020; 4: 4522 - 4537.
dc.identifier.citedreferenceHarper CR, Edwards MJ, DeFilippis AP, Jacobson TA. Flaxseed oil increases the plasma concentrations of cardioprotective (n- 3) fatty acids in humans. J Nutr. 2006; 136: 83 - 87.
dc.identifier.citedreferencePomponi M, Janiri L, La Torre G, et al. Plasma levels of n- 3 fatty acids in bipolar patients: deficit restricted to DHA. J Psychiatr Res. 2013; 47: 337 - 342.
dc.identifier.citedreferenceAbdelmagid SA, Clarke SE, Nielsen DE, et al. Comprehensive profiling of plasma fatty acid concentrations in young healthy Canadian adults. PLoS One. 2015; 10: e0116195.
dc.identifier.citedreferenceHolinstat M, Boutaud O, Apopa PL, et al. Protease- activated receptor signaling in platelets activates cytosolic phospholipase A2α differently for cyclooxygenase- 1 and 12- lipoxygenase catalysis. Arterioscler Thromb Vasc Biol. 2011; 31: 435 - 442.
dc.identifier.citedreferenceJung UJ, Torrejon C, Tighe AP, Deckelbaum RJ. n- 3 Fatty acids and cardiovascular disease: mechanisms underlying beneficial effects. Am J Clin Nutr. 2008; 87: 2003S - 2009S.
dc.identifier.citedreferenceINVESTIGATORS G- P. Dietary supplementation with n- 3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI- Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet. 1999; 354: 447 - 455.
dc.identifier.citedreferenceGuasch- Ferre M, Babio N, Martinez- Gonzalez MA, et al. Dietary fat intake and risk of cardiovascular disease and all- cause mortality in a population at high risk of cardiovascular disease. Am J Clin Nutr. 2015; 102: 1563 - 1573.
dc.identifier.citedreferencePetsini F, Fragopoulou E, Antonopoulou S. Fish consumption and cardiovascular disease related biomarkers: a review of clinical trials. Crit Rev Food Sci Nutr. 2019; 59: 2061 - 2071.
dc.identifier.citedreferenceManson JE, Bassuk SS, Cook NR, et al. Vitamin D, marine n- 3 fatty acids, and primary prevention of cardiovascular disease current evidence. Circ Res. 2020; 126: 112 - 128.
dc.identifier.citedreferenceKris- Etherton PM, Harris WS, Appel LJ; American Heart Association. Nutrition C. Fish consumption, fish oil, omega- 3 fatty acids, and cardiovascular disease. Circulation. 2002; 106: 2747 - 2757.
dc.identifier.citedreferenceSiscovick DS, Barringer TA, Fretts AM, et al. American Heart Association Nutrition Committee of the Council on L, Cardiometabolic H, Council on E, Prevention, Council on Cardiovascular Disease in the Y, Council on C, Stroke N, Council on Clinical C. Omega- 3 Polyunsaturated Fatty Acid (Fish Oil) Supplementation and the Prevention of Clinical Cardiovascular Disease: a Science Advisory From the American Heart Association. Circulation. 2017; 135: e867 - e884.
dc.identifier.citedreferenceCalder P. New evidence that omega- 3 fatty acids have a role in primary prevention of coronary heart disease. J Public Health Emerg. 2017; 1: 35.
dc.identifier.citedreferenceSkulas- Ray AC, Wilson PWF, Harris WS, et al. Omega- 3 Fatty Acids for the Management of Hypertriglyceridemia: a Science Advisory from the American Heart Association. Circulation. 2019; 140: e673 - e691.
dc.identifier.citedreferenceMori TA, Burke V, Puddey IB, et al. Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men. Am J Clin Nutr. 2000; 71: 1085 - 1094.
dc.identifier.citedreferenceMorris MC, Sacks F, Rosner B. Does fish oil lower blood pressure? A meta- analysis of controlled trials. Circulation. 1993; 88: 523 - 533.
dc.identifier.citedreferenceGeleijnse JM, Giltay EJ, Grobbee DE, Donders AR, Kok FJ. Blood pressure response to fish oil supplementation: metaregression analysis of randomized trials. J Hypertens. 2002; 20: 1493 - 1499.
dc.identifier.citedreferenceAndriamampandry M, Freund M, Wiesel ML, et al. Diets enriched in (n- 3) fatty acids affect rat coagulation factors dependent on vitamin K. C R Acad Sci. 1998; 321 ( 5 ): 415 - 421.
dc.identifier.citedreferenceLarson MK, Tormoen GW, Weaver LJ, et al. Exogenous modification of platelet membranes with the omega- 3 fatty acids EPA and DHA reduces platelet procoagulant activity and thrombus formation. Am J Physiol Cell Physiol. 2013; 304: C273 - C279.
dc.identifier.citedreferenceBays HE, Ballantyne CM, Kastelein JJ, Isaacsohn JL, Braeckman RA, Soni PN. Eicosapentaenoic acid ethyl ester (AMR101) therapy in patients with very high triglyceride levels (from the Multi- center, plAcebo- controlled, Randomized, double- blINd, 12- week study with an open- label Extension [MARINE] trial). Am J Cardiol. 2011; 108: 682 - 690.
dc.identifier.citedreferenceMuhammad K, Morledge T, Sachar R, Zeldin A, Wolski K, Bhatt D. Treatment with w- 3 fatty acids reduces serum C- reactive protein concentration. Clin Lipidol. 2011; 6: 723 - 729.
dc.identifier.citedreferenceBallantyne CM, Bays HE, Kastelein JJ, et al. Efficacy and safety of eicosapentaenoic acid ethyl ester (AMR101) therapy in statin- treated patients with persistent high triglycerides (from the ANCHOR study). Am J Cardiol. 2012; 110: 984 - 992.
dc.identifier.citedreferenceNishio R, Shinke T, Otake H, et al. Stabilizing effect of combined eicosapentaenoic acid and statin therapy on coronary thin- cap fibroatheroma. Atherosclerosis. 2014; 234: 114 - 119.
dc.identifier.citedreferenceNosaka K, Miyoshi T, Iwamoto M, et al. Early initiation of eicosapentaenoic acid and statin treatment is associated with better clinical outcomes than statin alone in patients with acute coronary syndromes: 1- year outcomes of a randomized controlled study. Int J Cardiol. 2017; 228: 173 - 179.
dc.identifier.citedreferenceBhatt DL, Steg PG, Brinton EA, et al. Rationale and design of REDUCE- IT: reduction of cardiovascular events with Icosapent Ethyl- intervention trial. Clin Cardiol. 2017; 40: 138 - 148.
dc.identifier.citedreferenceBhatt DL, Steg PG, Miller M, et al. Cardiovascular risk reduction with icosapent Ethyl for hypertriglyceridemia. N Engl J Med. 2019; 380: 11 - 22.
dc.identifier.citedreferenceBhatt DL, Miller M, Brinton EA, et al. REDUCE- IT USA: results from the 3146 patients randomized in the United States. Circulation. 2020; 141: 367 - 375.
dc.identifier.citedreferenceAllaire J, Couture P, Leclerc M, et al. A randomized, crossover, head- to- head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the Comparing EPA to DHA (ComparED) Study. Am J Clin Nutr. 2016; 104: 280 - 287.
dc.identifier.citedreferencevon Schacky C, Angerer P, Kothny W, Theisen K, Mudra H. The effect of dietary Ï - 3 fatty acids on coronary atherosclerosis. Ann Intern Med. 1999; 130: 554 - 562.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.