Cytochrome c oxidase‐modulatory near‐infrared light penetration into the human brain: Implications for the noninvasive treatment of ischemia/reperfusion injury
dc.contributor.author | Morse, Paul T. | |
dc.contributor.author | Goebel, Dennis J. | |
dc.contributor.author | Wan, Junmei | |
dc.contributor.author | Tuck, Samuel | |
dc.contributor.author | Hakim, Lara | |
dc.contributor.author | Hüttemann, Charlotte L. | |
dc.contributor.author | Malek, Moh H. | |
dc.contributor.author | Lee, Icksoo | |
dc.contributor.author | Sanderson, Thomas H. | |
dc.contributor.author | Hüttemann, Maik | |
dc.date.accessioned | 2021-04-06T02:09:55Z | |
dc.date.available | 2022-04-05 22:09:54 | en |
dc.date.available | 2021-04-06T02:09:55Z | |
dc.date.issued | 2021-03 | |
dc.identifier.citation | Morse, Paul T.; Goebel, Dennis J.; Wan, Junmei; Tuck, Samuel; Hakim, Lara; Hüttemann, Charlotte L. ; Malek, Moh H.; Lee, Icksoo; Sanderson, Thomas H.; Hüttemann, Maik (2021). "Cytochrome c oxidase‐modulatory near‐infrared light penetration into the human brain: Implications for the noninvasive treatment of ischemia/reperfusion injury." IUBMB Life 73(3): 554-567. | |
dc.identifier.issn | 1521-6543 | |
dc.identifier.issn | 1521-6551 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/167025 | |
dc.description.abstract | Near‐infrared light (IRL) has been evaluated as a therapeutic for a variety of pathological conditions, including ischemia/reperfusion injury of the brain, which can be caused by an ischemic stroke or cardiac arrest. Strategies have focused on modulating the activity of mitochondrial electron transport chain (ETC) enzyme cytochrome c oxidase (COX), which has copper centers that broadly absorb IRL between 700 and 1,000 nm. We have recently identified specific COX‐inhibitory IRL wavelengths that are profoundly neuroprotective in rodent models of brain ischemia/reperfusion through the following mechanism: COX inhibition by IRL limits mitochondrial membrane potential hyperpolarization during reperfusion, which otherwise causes reactive oxygen species (ROS) production and cell death. Prior to clinical application of IRL on humans, IRL penetration must be tested, which may be wavelength dependent. In the present study, four fresh (unfixed) cadavers and isolated cadaver tissues were used to examine the transmission of infrared light through human biological tissues. We conclude that the transmission of 750 and 940 nm IRL through 4 cm of cadaver head supports the viability of IRL to treat human brain ischemia/reperfusion injury and is similar for skin with different skin pigmentation. We discuss experimental difficulties of working with fresh cadavers and strategies to overcome them as a guide for future studies. | |
dc.publisher | John Wiley & Sons, Inc. | |
dc.subject.other | cadaver | |
dc.subject.other | infrared light | |
dc.subject.other | ischemia/reperfusion | |
dc.subject.other | laser | |
dc.subject.other | light penetration | |
dc.subject.other | mitochondria | |
dc.subject.other | neuroprotection | |
dc.subject.other | stroke | |
dc.title | Cytochrome c oxidase‐modulatory near‐infrared light penetration into the human brain: Implications for the noninvasive treatment of ischemia/reperfusion injury | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/167025/1/iub2405_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/167025/2/iub2405.pdf | |
dc.identifier.doi | 10.1002/iub.2405 | |
dc.identifier.source | IUBMB Life | |
dc.identifier.citedreference | van Spronsen PH, Weijs WA, Valk J, Prahl‐Andersen B, van Ginkel FC. Relationships between jaw muscle cross‐sections and craniofacial morphology in normal adults, studied with magnetic resonance imaging. Eur J Orthod. 1991; 13: 351 – 361. | |
dc.identifier.citedreference | Jagdeo JR, Adams LE, Brody NI, Siegel DM. Transcranial red and near infrared light transmission in a cadaveric model. PLoS One. 2012; 7: e47460. | |
dc.identifier.citedreference | Stolik S, Delgado JA, Pérez A, Anasagasti L. Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. J Photochem Photobiol B: Biol. 2000; 57: 90 – 93. | |
dc.identifier.citedreference | Johansson JD. Spectroscopic method for determination of the absorption coefficient in brain tissue. J Biomed Opt. 2010; 15: 057005. | |
dc.identifier.citedreference | Samoilova KA, Bogacheva ON, Obolenskaya KD, Blinova MI, Kalmykova NV, Kuzminikh EV. Enhancement of the blood growth promoting activity after exposure of volunteers to visible and infrared polarized light. Part I: Stimulation of human keratinocyte proliferation in vitro. Photochem Photobiol Sci. 2004; 3: 96 – 101. | |
dc.identifier.citedreference | Henderson TA, Morries LD. Near‐infrared photonic energy penetration: Can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat. 2015; 11: 2191 – 2208. | |
dc.identifier.citedreference | Fukui Y, Ajichi Y, Okada E. Monte Carlo prediction of near‐infrared light propagation in realistic adult and neonatal head models. Appl Opt. 2003; 42: 2881 – 2887. | |
dc.identifier.citedreference | Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier HJ. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol. 2002; 47: 2059 – 2073. | |
dc.identifier.citedreference | Zhang L, Shi A, Lu H. Determination of optical coefficients of biological tissue from a single integrating‐sphere. J Mod Opt. 2012; 59: 121 – 125. | |
dc.identifier.citedreference | Lampl Y, Zivin JA, Fisher M, et al. Infrared laser therapy for ischemic stroke: A new treatment strategy: Results of the NeuroThera effectiveness and safety Trial‐1 (NEST‐1). Stroke. 2007; 38: 1843 – 1849. | |
dc.identifier.citedreference | Zivin JA, Albers GW, Bornstein N, et al. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke. 2009; 40: 1359 – 1364. | |
dc.identifier.citedreference | Ma S, Baillie LJ, Stringer MD. Reappraising the surface anatomy of the pterion and its relationship to the middle meningeal artery. Clin Anat. 2012; 25: 330 – 339. | |
dc.identifier.citedreference | Hwang K, Kim JH, Baik SH. Thickness map of parietal bone in Korean adults. J Craniofac Surg. 1997; 8: 208 – 212. | |
dc.identifier.citedreference | Pensler J, McCarthy JG. The calvarial donor site: An anatomic study in cadavers. Plast Reconstr Surg. 1985; 75: 648 – 651. | |
dc.identifier.citedreference | Ellis H, Mahadevan V. The surgical anatomy of the scalp. Surgery (Oxford). 2014; 32: e1 – e5. | |
dc.identifier.citedreference | Kolari PJ. Penetration of unfocused laser light into the skin. Arch Dermatol Res. 1985; 277: 342 – 344. | |
dc.identifier.citedreference | Kolari PJ, Airaksinen O. Poor penetration of infra‐red and helium Neon low power laser light into the dermal tissue. Acupunct Electro‐Ther Res. 1993; 18: 17 – 21. | |
dc.identifier.citedreference | Hüttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr. 2008; 40: 445 – 456. | |
dc.identifier.citedreference | Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia‐reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 2013; 47: 9 – 23. | |
dc.identifier.citedreference | Hüttemann M, Helling S, Sanderson TH, et al. Regulation of mitochondrial respiration and apoptosis through cell signaling: Cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim Biophys Acta. 1817; 2012: 598 – 609. | |
dc.identifier.citedreference | Goto S, Xue R, Sugo N, et al. Poly(ADP‐ribose) polymerase impairs early and long‐term experimental stroke recovery. Stroke. 2002; 33: 1101 – 1106. | |
dc.identifier.citedreference | Rodriguez‐Vargas JM, Ruiz‐Magana MJ, Ruiz‐Ruiz C, et al. ROS‐induced DNA damage and PARP‐1 are required for optimal induction of starvation‐induced autophagy. Cell Res. 2012; 22: 1181 – 1198. | |
dc.identifier.citedreference | Pellegrini‐Giampietro DE, Cherici G, Alesiani M, Carla V, Moroni F. Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia‐induced neuronal damage. J Neurosci. 1990; 10: 1035 – 1041. | |
dc.identifier.citedreference | Chiarugi A. Poly(ADP‐ribosyl)ation and stroke. Pharmacol Res. 2005; 52: 15 – 24. | |
dc.identifier.citedreference | Pleschke JM, Kleczkowska HE, Strohm M, Althaus FR. Poly(ADP‐ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem. 2000; 275: 40974 – 40980. | |
dc.identifier.citedreference | Vaziri H, West MD, Allsopp RC, et al. ATM‐dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post‐translational activation of p53 protein involving poly(ADP‐ribose) polymerase. EMBO J. 1997; 16: 6018 – 6033. | |
dc.identifier.citedreference | Dawson VL, Dawson TM. Deadly conversations: Nuclear‐mitochondrial cross‐talk. J Bioenerg Biomembr. 2004; 36: 287 – 294. | |
dc.identifier.citedreference | Komjáti K, Mabley J, Virág L, Southan G, Salzman A, Szabó C. Poly(ADP‐ribose) polymerase inhibition protect neurons and the white matter and regulates the translocation of apoptosis‐inducing factor in stroke. Int J Mol Med. 2004; 13: 373 – 382. | |
dc.identifier.citedreference | Cregan SP, Fortin A, MacLaurin JG, et al. Apoptosis‐inducing factor is involved in the regulation of caspase‐independent neuronal cell death. J Cell Biol. 2002; 158: 507 – 517. | |
dc.identifier.citedreference | Culmsee C, Zhu C, Landshamer S, et al. Apoptosis‐inducing factor triggered by poly(ADP‐ribose) polymerase and bid mediates neuronal cell death after oxygen‐glucose deprivation and focal cerebral ischemia. J Neurosci. 2005; 25: 10262 – 10272. | |
dc.identifier.citedreference | Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke. Redox Biol. 2018; 16: 263 – 275. | |
dc.identifier.citedreference | Gonzalez‐Arzola K, Diaz‐Moreno I, Cano‐Gonzalez A, et al. Structural basis for inhibition of the histone chaperone activity of SET/TAF‐Ibeta by cytochrome c. Proc Natl Acad Sci U S A. 2015; 112: 9908 – 9913. | |
dc.identifier.citedreference | Gonzalez‐Arzola K, Diaz‐Quintana A, Rivero‐Rodriguez F, et al. Histone chaperone activity of Arabidopsis thaliana NRP1 is blocked by cytochrome c. Nucleic Acids Res. 2017; 45: 2150 – 2165. | |
dc.identifier.citedreference | Jacques SL. Optical properties of biological tissues: A review. Phys Med Biol. 2013; 58: R37 – R61. | |
dc.identifier.citedreference | Karu T. Primary and secondary mechanisms of action of visible to near‐IR radiation on cells. J Photochem Photobiol B. 1999; 49: 1 – 17. | |
dc.identifier.citedreference | Wharton DC, Tzagoloff A. Studies on the Electron transfer system. Lvii. The near infrared absorption band of cytochrome oxidase. J Biol Chem. 1964; 239: 2036 – 2041. | |
dc.identifier.citedreference | Johnson CO, Nguyen M, Roth GA, et al. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019; 18: 439 – 458. | |
dc.identifier.citedreference | Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke Statistics‐2017 update: A report from the American Heart Association. Circulation. 2017; 135: e146 – e603. | |
dc.identifier.citedreference | Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke Statistics‐2019 update: A report from the American Heart Association. Circulation. 2019; 139: e56 – e528. | |
dc.identifier.citedreference | Hüttemann M, Lee I, Samavati L, Yu H, Doan JW. Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochim et Biophys Acta (BBA) Mol Cell Res. 2007; 1773: 1701 – 1720. | |
dc.identifier.citedreference | Lo EH, Moskowitz MA, Jacobs TP. Exciting, radical, suicidal: How brain cells die after stroke. Stroke. 2005; 36: 189 – 192. | |
dc.identifier.citedreference | Kalpage HA, Wan J, Morse PT, et al. Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis. Int J Biochem Cell Biol. 2020; 121: 105704. | |
dc.identifier.citedreference | Kalpage HA, Vaishnav A, Liu J, et al. Serine‐47 phosphorylation of cytochrome c in the mammalian brain regulates cytochrome c oxidase and caspase‐3 activity. FASEB J. 2019; 33: 13503 – 13514. | |
dc.identifier.citedreference | Kalpage HA, Wan J, Morse PT, Lee I, Hüttemann M. Brain‐specific Serine‐47 modification of cytochrome c regulates cytochrome c oxidase activity attenuating ROS production and cell death: Implications for ischemia/reperfusion injury and Akt signaling. Cells. 2020; 9: 1 – 18. | |
dc.identifier.citedreference | Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014; 515: 431 – 435. | |
dc.identifier.citedreference | Guerra‐Castellano A, Diaz‐Moreno I, Velazquez‐Campoy A, De la Rosa MA, Diaz‐Quintana A. Structural and functional characterization of phosphomimetic mutants of cytochrome c at threonine 28 and serine 47. Biochim Biophys Acta. 1857; 2016: 387 – 395. | |
dc.identifier.citedreference | Ogbi M, Johnson JA. Protein kinase Cepsilon interacts with cytochrome c oxidase subunit IV and enhances cytochrome c oxidase activity in neonatal cardiac myocyte preconditioning. Biochem J. 2006; 393: 191 – 199. | |
dc.identifier.citedreference | Fang JK, Prabu SK, Sepuri NB, et al. Site specific phosphorylation of cytochrome c oxidase subunits I, IVi1 and Vb in rabbit hearts subjected to ischemia/reperfusion. FEBS Lett. 2007; 581: 1302 – 1310. | |
dc.identifier.citedreference | The RANTTAS Investigators. A randomized trial of tirilazad mesylate in patients with acute stroke (RANTTAS). Stroke. 1996; 27: 1453 – 1458. | |
dc.identifier.citedreference | van der Worp HB, de Haan P, Morrema E, Kalkman CJ. Methodological quality of animal studies on neuroprotection in focal cerebral ischaemia. J Neurol. 2005; 252: 1108 – 1114. | |
dc.identifier.citedreference | Liu RR, Murphy TH. Reversible cyclosporin A‐sensitive mitochondrial depolarization occurs within minutes of stroke onset in mouse somatosensory cortex in vivo: A two‐photon imaging study. J Biol Chem. 2009; 284: 36109 – 36117. | |
dc.identifier.citedreference | Hamblin MR. Photobiomodulation for traumatic brain injury and stroke. J Neurosci Res. 2018; 96: 731 – 743. | |
dc.identifier.citedreference | Zivin JA, Sehra R, Shoshoo A, et al. NeuroThera(R) efficacy and safety Trial‐3 (NEST‐3): A double‐blind, randomized, sham‐controlled, parallel group, multicenter, pivotal study to assess the safety and efficacy of transcranial laser therapy with the NeuroThera(R) laser system for the treatment of acute ischemic stroke within 24 h of stroke onset. Int J Stroke. 2014; 9: 950 – 955. | |
dc.identifier.citedreference | Giacci MK, Wheeler L, Lovett S, et al. Differential effects of 670 and 830 nm red near infrared irradiation therapy: A comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury. PLoS One. 2014; 9: e104565. | |
dc.identifier.citedreference | Sanderson TH, Wider JM, Lee I, et al. Inhibitory modulation of cytochrome c oxidase activity with specific near‐infrared light wavelengths attenuates brain ischemia/reperfusion injury. Sci Rep. 2018; 8: 3481. | |
dc.identifier.citedreference | Strubakos CD, Malik M, Wider JM, et al. Non‐invasive treatment with near‐infrared light: A novel mechanisms‐based strategy that evokes sustained reduction in brain injury after stroke. J Cereb Blood Flow Metab. 2019; 40: 833 – 844. | |
dc.identifier.citedreference | Rubira‐Bullen IR, Rubira CM, Sarmento VA, Azevedo RA. Frontal sinus size on facial plain radiographs. J Morphol Sci. 2010; 27: 77 – 81. | |
dc.identifier.citedreference | Belaldavar C, Kotrashetti VS, Hallikerimath SR, Kale AD. Assessment of frontal sinus dimensions to determine sexual dimorphism among Indian adults. J Forensic Dent Sci. 2014; 6: 25 – 30. | |
dc.identifier.citedreference | Eboh DEO, Ogbeide OU, Ivwighren T. Radiographic anthropometric study of frontal sinus for sex determination in Benin city, South‐South Nigeria. J Forensic Dent Sci. 2017; 9: 31 – 35. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.