Show simple item record

A Meta- Analysis of the Transferability of Bone Mineral Density Genetic Loci Associations From European to African Ancestry Populations

dc.contributor.authorYau, Michelle S
dc.contributor.authorKuipers, Allison L
dc.contributor.authorPrice, Ryan
dc.contributor.authorNicolas, Aude
dc.contributor.authorTajuddin, Salman M
dc.contributor.authorHandelman, Samuel K
dc.contributor.authorArbeeva, Liubov
dc.contributor.authorChesi, Alessandra
dc.contributor.authorHsu, Yi‐hsiang
dc.contributor.authorLiu, Ching‐ti
dc.contributor.authorKarasik, David
dc.contributor.authorZemel, Babette S
dc.contributor.authorGrant, Struan FA
dc.contributor.authorJordan, Joanne M
dc.contributor.authorJackson, Rebecca D
dc.contributor.authorEvans, Michele K
dc.contributor.authorHarris, Tamara B
dc.contributor.authorZmuda, Joseph M
dc.contributor.authorKiel, Douglas P
dc.date.accessioned2021-04-06T02:10:27Z
dc.date.available2022-04-05 22:10:26en
dc.date.available2021-04-06T02:10:27Z
dc.date.issued2021-03
dc.identifier.citationYau, Michelle S; Kuipers, Allison L; Price, Ryan; Nicolas, Aude; Tajuddin, Salman M; Handelman, Samuel K; Arbeeva, Liubov; Chesi, Alessandra; Hsu, Yi‐hsiang ; Liu, Ching‐ti ; Karasik, David; Zemel, Babette S; Grant, Struan FA; Jordan, Joanne M; Jackson, Rebecca D; Evans, Michele K; Harris, Tamara B; Zmuda, Joseph M; Kiel, Douglas P (2021). "A Meta- Analysis of the Transferability of Bone Mineral Density Genetic Loci Associations From European to African Ancestry Populations." Journal of Bone and Mineral Research 36(3): 469-479.
dc.identifier.issn0884-0431
dc.identifier.issn1523-4681
dc.identifier.urihttps://hdl.handle.net/2027.42/167036
dc.description.abstractGenetic studies of bone mineral density (BMD) largely have been conducted in European populations. We therefore conducted a meta- analysis of six independent African ancestry cohorts to determine whether previously reported BMD loci identified in European populations were transferable to African ancestry populations. We included nearly 5000 individuals with both genetic data and assessments of BMD. Genotype imputation was conducted using the 1000G reference panel. We assessed single- nucleotide polymorphism (SNP) associations with femoral neck and lumbar spine BMD in each cohort separately, then combined results in fixed effects (or random effects if study heterogeneity was high, I2 index >60) inverse variance weighted meta- analyses. In secondary analyses, we conducted locus- based analyses of rare variants using SKAT- O. Mean age ranged from 12 to 68- years. One cohort included only men and another cohort included only women; the proportion of women in the other four cohorts ranged from 52% to 63%. Of 56 BMD loci tested, one locus, 6q25 (C6orf97, p =- 8.87- à - 10- 4), was associated with lumbar spine BMD and two loci, 7q21 (SLC25A13, p =- 2.84- à - 10- 4) and 7q31 (WNT16, p =- 2.96- à - 10- 5), were associated with femoral neck BMD. Effects were in the same direction as previously reported in European ancestry studies and met a Bonferroni- adjusted p value threshold, the criteria for transferability to African ancestry populations. We also found associations that met locus- specific Bonferroni- adjusted p value thresholds in 11q13 (LRP5, p <- 2.23- à - 10- 4), 11q14 (DCDC5, p <- 5.35- à - 10- 5), and 17p13 (SMG6, p <- 6.78- à - 10- 5) that were not tagged by European ancestry index SNPs. Rare single- nucleotide variants in AKAP11 (p =- 2.32- à - 10- 2), MBL2 (p =- 4.09- à - 10- 2), MEPE (p =- 3.15- à - 10- 2), SLC25A13 (p =- 3.03- à - 10- 2), STARD3NL (p =- 3.35- à - 10- 2), and TNFRSF11A (p =- 3.18- à - 10- 3) were also associated with BMD. The majority of known BMD loci were not transferable. Larger genetic studies of BMD in African ancestry populations will be needed to overcome limitations in statistical power and to identify both other loci that are transferable across populations and novel population- specific variants. © 2020 American Society for Bone and Mineral Research (ASBMR).
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherGENERAL POPULATION STUDIES
dc.subject.otherGENETICS RESEARCH
dc.subject.otherHUMAN ASSOCIATION STUDIES
dc.subject.otherOSTEOPOROSIS
dc.subject.otherBMD
dc.subject.otherGENETICS
dc.subject.otherAFRICAN ANCESTRY POPULATION
dc.subject.otherDXA
dc.subject.otherMETA- ANALYSIS
dc.titleA Meta- Analysis of the Transferability of Bone Mineral Density Genetic Loci Associations From European to African Ancestry Populations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialities
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167036/1/jbmr4220.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167036/2/jbmr4220_am.pdf
dc.identifier.doi10.1002/jbmr.4220
dc.identifier.sourceJournal of Bone and Mineral Research
dc.identifier.citedreferenceShaffer JR, Kammerer CM, Reich D, et al. Genetic markers for ancestry are correlated with body composition traits in older African Americans. Osteoporos Int. 2007; 18 ( 6 ): 733 - 41.
dc.identifier.citedreferenceChen Z, Qi L, Beck TJ, et al. Stronger bone correlates with African admixture in African- American women. J Bone Miner Res. 2011; 26 ( 9 ): 2307 - 16.
dc.identifier.citedreferenceMedina- Gomez C, Chesi A, Heppe DH, et al. BMD loci contribute to ethnic and developmental differences in skeletal fragility across populations: assessment of evolutionary selection pressures. Mol Biol Evol. 2015; 32 ( 11 ): 2961 - 72.
dc.identifier.citedreferenceAdeyemo A, Rotimi C. Genetic variants associated with complex human diseases show wide variation across multiple populations. Public Health Genomics. 2010; 13 ( 2 ): 72 - 9.
dc.identifier.citedreferenceMarigorta UM, Navarro A. High trans- ethnic replicability of GWAS results implies common causal variants. PLoS Genet. 2013; 9 ( 6 ): e1003566.
dc.identifier.citedreferenceStyrkarsdottir U, Halldorsson BV, Gudbjartsson DF, et al. European bone mineral density loci are also associated with BMD in east- Asian populations. PLoS One. 2010; 5 ( 10 ): e13217.
dc.identifier.citedreferenceLiu JM, Zhang MJ, Zhao L, et al. Analysis of recently identified osteoporosis susceptibility genes in Han Chinese women. J Clin Endocrinol Metab. 2010; 95 ( 9 ): E112 - 20.
dc.identifier.citedreferenceTaylor KC, Evans DS, Edwards DRV, et al. A genome- wide association study meta- analysis of clinical fracture in 10,012 African American women. Bone Rep. 2016; 5: 233 - 42.
dc.identifier.citedreferenceNtzani EE, Liberopoulos G, Manolio TA, Ioannidis JP. Consistency of genome- wide associations across major ancestral groups. Hum Genet. 2012; 131 ( 7 ): 1057 - 71.
dc.identifier.citedreferenceNakamura T, Imai Y, Matsumoto T, et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell. 2007; 130 ( 5 ): 811 - 23.
dc.identifier.citedreferenceEstrada K, Styrkarsdottir U, Evangelou E, et al. Genome- wide meta- analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012; 44 ( 5 ): 491 - 501.
dc.identifier.citedreferenceMorris JA, Kemp JP, Youlten SE, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019; 51 ( 2 ): 258 - 66.
dc.identifier.citedreferenceKim SK. Identification of 613 new loci associated with heel bone mineral density and a polygenic risk score for bone mineral density osteoporosis and fracture. PLoS One. 2018; 13 ( 7 ): e0200785.
dc.identifier.citedreferenceCummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002; 359 ( 9319 ): 1761 - 7.
dc.identifier.citedreferenceCauley JA. Defining ethnic and racial differences in osteoporosis and fragility fractures. Clin Orthop Relat Res. 2011; 469 ( 7 ): 1891 - 9.
dc.identifier.citedreferenceBurge R, Dawson- Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis- related fractures in the United States, 2005- 2025. J Bone Miner Res. 2007; 22 ( 3 ): 465 - 75.
dc.identifier.citedreferenceCauley JA. Public health impact of osteoporosis. J Gerontol A Biol Sci Med Sci. 2013; 68 ( 10 ): 1243 - 51.
dc.identifier.citedreferenceFerrari S, Rizzoli R, Slosman D, Bonjour JP. Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab. 1998; 83 ( 2 ): 358 - 61.
dc.identifier.citedreferenceRalston SH, Uitterlinden AG. Genetics of osteoporosis. Endocr Rev. 2010; 31 ( 5 ): 629 - 62.
dc.identifier.citedreferenceSlemenda CW, Turner CH, Peacock M, et al. The genetics of proximal femur geometry, distribution of bone mass and bone mineral density. Osteoporos Int. 1996; 6 ( 2 ): 178 - 82.
dc.identifier.citedreferenceSmith DM, Nance WE, Kang KW, Christian JC, Johnston CC Jr. Genetic factors in determining bone mass. J Clin Invest. 1973; 52 ( 11 ): 2800 - 8.
dc.identifier.citedreferenceGueguen R, Jouanny P, Guillemin F, Kuntz C, Pourel J, Siest G. Segregation analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res. 1995; 10 ( 12 ): 2017 - 22.
dc.identifier.citedreferenceKrall EA, Dawson- Hughes B. Heritable and life- style determinants of bone mineral density. J Bone Miner Res. 1993; 8 ( 1 ): 1 - 9.
dc.identifier.citedreferenceSlemenda CW, Christian JC, Williams CJ, Norton JA, Johnston CC Jr. Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res. 1991; 6 ( 6 ): 561 - 7.
dc.identifier.citedreferenceKoller DL, Ichikawa S, Lai D, et al. Genome- wide association study of bone mineral density in premenopausal European- American women and replication in African- American women. J Clin Endocrinol Metab. 2010; 95 ( 4 ): 1802 - 9.
dc.identifier.citedreferenceHill DD, Cauley JA, Sheu Y, et al. Correlates of bone mineral density in men of African ancestry: the Tobago bone health study. Osteoporos Int. 2008; 19 ( 2 ): 227 - 34.
dc.identifier.citedreferenceMiljkovic- Gacic I, Ferrell RE, Patrick AL, Kammerer CM, Bunker CH. Estimates of African, European and native American ancestry in Afro- Caribbean men on the island of Tobago. Hum Hered. 2005; 60 ( 3 ): 129 - 33.
dc.identifier.citedreferenceEvans MK, Lepkowski JM, Powe NR, LaVeist T, Kuczmarski MF, Zonderman AB. Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS): overcoming barriers to implementing a longitudinal, epidemiologic, urban study of health, race, and socioeconomic status. Ethn Dis. 2010; 20 ( 3 ): 267 - 75.
dc.identifier.citedreferenceDesign of the Women’s Health Initiative clinical trial and observational study. The Women’s Health Initiative study group. Control Clin Trials. 1998; 19 ( 1 ): 61 - 109.
dc.identifier.citedreferenceBeck TJ, Petit MA, Wu G, LeBoff MS, Cauley JA, Chen Z. Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the Women’s Health Initiative observational study. J Bone Miner Res. 2009; 24 ( 8 ): 1369 - 79.
dc.identifier.citedreferenceLaCroix AZ, Beck TJ, Cauley JA, et al. Hip structural geometry and incidence of hip fracture in postmenopausal women: what does it add to conventional bone mineral density? Osteoporos Int. 2010; 21 ( 6 ): 919 - 29.
dc.identifier.citedreferenceChen Z, Maricic M, Pettinger M, et al. Osteoporosis and rate of bone loss among postmenopausal survivors of breast cancer. Cancer. 2005; 104 ( 7 ): 1520 - 30.
dc.identifier.citedreferenceChen Z, Arendell L, Aickin M, et al. Hip bone density predicts breast cancer risk independently of Gail score: results from the Women’s Health Initiative. Cancer. 2008; 113 ( 5 ): 907 - 15.
dc.identifier.citedreferenceJordan JM, Helmick CG, Renner JB, et al. Prevalence of knee symptoms and radiographic and symptomatic knee osteoarthritis in African Americans and Caucasians: the Johnston County osteoarthritis project. J Rheumatol. 2007; 34 ( 1 ): 172 - 80.
dc.identifier.citedreferenceKalkwarf HJ, Zemel BS, Gilsanz V, et al. The Bone Mineral Density in Childhood study: bone mineral content and density according to age, sex, and race. J Clin Endocrinol Metab. 2007; 92 ( 6 ): 2087 - 99.
dc.identifier.citedreferenceZemel BS, Kalkwarf HJ, Gilsanz V, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non- black children: results of the Bone Mineral Density in Childhood study. J Clin Endocrinol Metab. 2011; 96 ( 10 ): 3160 - 9.
dc.identifier.citedreferenceDelaneau O, Marchini J, Zagury JF. A linear complexity phasing method for thousands of genomes. Nat Methods. 2012; 9 ( 2 ): 179 - 81.
dc.identifier.citedreferenceHowie BN, Donnelly P, Marchini J. A Flexible and accurate genotype imputation method for the next generation of genome- wide association studies. PLoS Genet. 2009; 5 ( 6 ): e1000529.
dc.identifier.citedreferencePrice AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome- wide association studies. Nat Genet. 2006; 38 ( 8 ): 904 - 9.
dc.identifier.citedreference1000 Genomes Project Consortium, Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature. 2015; 526 ( 7571 ): 68 - 74.
dc.identifier.citedreferenceLee S, Emond MJ, Bamshad MJ, et al. Optimal unified approach for rare- variant association testing with application to small- sample case- control whole- exome sequencing studies. Am J Hum Genet. 2012; 91 ( 2 ): 224 - 37.
dc.identifier.citedreferenceMagi R, Morris AP. GWAMA: software for genome- wide association meta- analysis. BMC Bioinform. 2010; 11: 288.
dc.identifier.citedreferenceXiao X, Wu Q. Association between a literature- based genetic risk score and bone mineral density of African American women in Women Health Initiative study. Osteoporos Int. 2020; 31 ( 5 ): 913 - 20.
dc.identifier.citedreferenceDeng YH, Zhao L, Zhang MJ, et al. The influence of the genetic and non- genetic factors on bone mineral density and osteoporotic fractures in Chinese women. Endocrine. 2013; 43 ( 1 ): 127 - 35.
dc.identifier.citedreferenceZhang L, Choi HJ, Estrada K, et al. Multistage genome- wide association meta- analyses identified two new loci for bone mineral density. Hum Mol Genet. 2014; 23 ( 7 ): 1923 - 33.
dc.identifier.citedreferenceMoverare- Skrtic S, Henning P, Liu X, et al. Osteoblast- derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med. 2014; 20 ( 11 ): 1279 - 88.
dc.identifier.citedreferenceZheng HF, Tobias JH, Duncan E, et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength and osteoporotic fracture risk. PLoS Genet. 2012; 8 ( 7 ): e1002745.
dc.identifier.citedreferenceAlam I, Alkhouli M, Gerard- O’Riley RL, et al. Osteoblast- specific overexpression of human WNT16 increases both cortical and trabecular bone mass and structure in mice. Endocrinology. 2016; 157 ( 2 ): 722 - 36.
dc.identifier.citedreferenceOhlsson C, Nilsson KH, Henning P, et al. WNT16 overexpression partly protects against glucocorticoid- induced bone loss. Am J Physiol Endocrinol Metab. 2018; 314 ( 6 ): E597 - 604.
dc.identifier.citedreferenceAlam I, Oakes DK, Reilly AM, et al. Overexpression of WNT16 does not prevent cortical bone loss due to glucocorticoid treatment in mice. JBMR Plus. 2019; 3 ( 4 ): e10084.
dc.identifier.citedreferenceLeonard MB, Elmi A, Mostoufi- Moab S, et al. Effects of sex, race, and puberty on cortical bone and the functional muscle bone unit in children, adolescents, and young adults. J Clin Endocrinol Metab. 2010; 95 ( 4 ): 1681 - 9.
dc.identifier.citedreferenceWarden SJ, Hill KM, Ferira AJ, et al. Racial differences in cortical bone and their relationship to biochemical variables in black and white children in the early stages of puberty. Osteoporos Int. 2013; 24 ( 6 ): 1869 - 79.
dc.identifier.citedreferencePopejoy AB, Fullerton SM. Genomics is failing on diversity. Nature. 2016; 538 ( 7624 ): 161 - 4.
dc.identifier.citedreferenceFu J, Festen EA, Wijmenga C. Multi- ethnic studies in complex traits. Hum Mol Genet. 2011; 20 ( R2 ): R206 - 13.
dc.identifier.citedreferenceMitchell JA, Chesi A, Elci O, et al. Genetic risk scores implicated in adult bone fragility associate with pediatric bone density. J Bone Miner Res. 2016; 31 ( 4 ): 789 - 95.
dc.identifier.citedreferenceArden NK, Baker J, Hogg C, Baan K, Spector TD. The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res. 1996; 11 ( 4 ): 530 - 4.
dc.identifier.citedreferencePocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S. Genetic determinants of bone mass in adults. A twin study. J Clin Invest. 1987; 80 ( 3 ): 706 - 10.
dc.identifier.citedreferenceWright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014; 29 ( 11 ): 2520 - 6.
dc.identifier.citedreferenceKanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002; 359 ( 9321 ): 1929 - 36.
dc.identifier.citedreferenceJohnell O, Kanis JA, Oden A, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005; 20 ( 7 ): 1185 - 94.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.