Show simple item record

Cholinergic Denervation Patterns Across Cognitive Domains in Parkinson’s Disease

dc.contributor.authorZee, Sygrid
dc.contributor.authorMüller, Martijn L.t.m.
dc.contributor.authorKanel, Prabesh
dc.contributor.authorLaar, Teus
dc.contributor.authorBohnen, Nicolaas I.
dc.date.accessioned2021-04-06T02:10:36Z
dc.date.available2022-04-05 22:10:34en
dc.date.available2021-04-06T02:10:36Z
dc.date.issued2021-03
dc.identifier.citationZee, Sygrid; Müller, Martijn L.t.m. ; Kanel, Prabesh; Laar, Teus; Bohnen, Nicolaas I. (2021). "Cholinergic Denervation Patterns Across Cognitive Domains in Parkinson’s Disease." Movement Disorders 36(3): 642-650.
dc.identifier.issn0885-3185
dc.identifier.issn1531-8257
dc.identifier.urihttps://hdl.handle.net/2027.42/167040
dc.description.abstractBackgroundThe cholinergic system plays a key role in cognitive impairment in Parkinson’s disease (PD). Previous acetylcholinesterase positron emission tomography imaging studies found memory, attention, and executive function correlates of global cortical cholinergic losses. Vesicular acetylcholine transporter positron emission tomography allows for more accurate topographic assessment of not only cortical but also subcortical cholinergic changes.ObjectiveThe objectiveof this study was to investigate the topographic relationship between cognitive functioning and regional cholinergic innervation in patients with PD.MethodsA total of 86 nondemented patients with PD (mean ± SD age 67.8 ± 7.6 years, motor disease duration 5.8 ± 4.6 years), and 12 healthy control participants (age 67.8 ± 7.8 years) underwent cholinergic [18F]Fluoroethoxybenzovesamicol positron emission tomography imaging. Patients with PD underwent neuropsychological assessment. The z scores for each cognitive domain were determined using an age‐matched, gender‐matched, and educational level–matched control group. Correlations between domain‐specific cognitive functioning and cholinergic innervation were examined, controlling for motor impairments and levodopa equivalent dose. Additional correlational analyses were performed using a mask limited to PD versus normal aging binding differences to assess for disease‐specific versus normal aging effects.ResultsVoxel‐based whole‐brain analysis demonstrated partial overlapping topography across cognitive domains, with most robust correlations in the domains of memory, attention, and executive functioning (P < 0.01, corrected for multiple comparisons). The shared pattern included the cingulate cortex, insula/operculum, and (visual) thalamus.ConclusionOur results confirm and expand on previous observations of cholinergic system involvement in cognitive functioning in PD. The topographic overlap across domains may reflect a partially shared cholinergic functionality underlying cognitive functioning, representing a combination of disease‐specific and aging effects. © 2020 International Parkinson and Movement Disorder Society
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherParkinson’s disease; acetylcholine; cognition; PET
dc.titleCholinergic Denervation Patterns Across Cognitive Domains in Parkinson’s Disease
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167040/1/mds28360_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167040/2/mds28360.pdf
dc.identifier.doi10.1002/mds.28360
dc.identifier.sourceMovement Disorders
dc.identifier.citedreferenceKotagal V, Muller MLTM, Kaufer DI, Koeppe RA, Bohnen NI. Thalamic cholinergic innervation is spared in Alzheimer disease compared to parkinsonian disorders. Neurosci Lett 2012; 514 ( 2 ): 169 – 172.
dc.identifier.citedreferenceGoldman JG, Holden S, Ouyang B, Bernard B, Goetz CG, Stebbins GT. Diagnosing PD‐MCI by MDS task force criteria: how many and which neuropsychological tests? Mov Disord 2015; 30 ( 3 ): 402 – 406.
dc.identifier.citedreferenceSantangelo G, Lagravinese G, Battini V, et al. The Parkinson’s disease‐cognitive rating scale (PD‐CRS): normative values from 268 healthy Italian individuals. Neurol Sci 2017; 38 ( 5 ): 845 – 853.
dc.identifier.citedreferenceShao X, Hoareau R, Hockley BG, et al. Highlighting the versatility of the Tracerlab synthesis modules. Part 1: fully automated production of [18F]labelled radiopharmaceuticals using a Tracerlab FX(FN). J Labelled Comp Radiopharm 2011; 54 ( 6 ): 292 – 307.
dc.identifier.citedreferenceMinoshima S, Koeppe RA, Fessler JA, et al. Integrated and Automated Data Analysis Method for Neuronal Activation Studying Using O15 Water PET. Tokyo, Japan: Excerpta Medica; 1993.
dc.identifier.citedreferenceMuller‐Gartner HW, Links JM, Prince JL, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI‐based correction for partial volume effects. J Cereb Blood Flow Metab 1992; 12 ( 4 ): 571 – 583.
dc.identifier.citedreferenceKlein A, Tourville J. 101 labeled brain images and a consistent human cortical labeling protocol. Front Neurosci 2012; 6: 171.
dc.identifier.citedreferenceAghourian M, Legault‐Denis C, Soucy JP, et al. Quantification of brain cholinergic denervation in Alzheimer’s disease using PET imaging with [18F]‐FEOBV. Mol Psychiatry 2017; 22 ( 11 ): 1531 – 1538.
dc.identifier.citedreferenceKanel P, Müller MLTM, van der Zee S, et al. Topography of cholinergic changes in dementia with lewy bodies and key neural network hubs [published online ahead of print June 5, 2020]. J Neuropsychiatry Clin Neurosci. https://doi.org/10.1176/appi.neuropsych.19070165
dc.identifier.citedreferenceAshburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007; 38 ( 1 ): 95 – 113.
dc.identifier.citedreferenceDosenbach NUF, Visscher KM, Palmer ED, et al. A core system for the implementation of task sets. Neuron 2006; 50 ( 5 ): 799 – 812.
dc.identifier.citedreferenceDosenbach NUF, Fair DA, Miezin FM, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci 2007; 104 ( 26 ): 11073 – 11078.
dc.identifier.citedreferenceChristopher L, Koshimori Y, Lang AE, Criaud M, Strafella AP. Uncovering the role of the insula in non‐motor symptoms of Parkinson’s disease. Brain 2014; 137 ( 8 ): 2143 – 2154.
dc.identifier.citedreferenceMenon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 2010; 214 ( 5–6 ): 655 – 667.
dc.identifier.citedreferencePapma JM, Smits M, de Groot M, et al. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment. Eur Radiol 2017; 27 ( 9 ): 3716 – 3724.
dc.identifier.citedreferenceHuang C, Wahlund L‐O, Svensson L, Winblad B, Julin P. Cingulate cortex hypoperfusion predicts Alzheimer’s disease in mild cognitive impairment. BMC Neurol 2002; 2: 9.
dc.identifier.citedreferenceAlbin RL, Bohnen NI, Muller MLTM, et al. Regional vesicular acetylcholine transporter distribution in human brain: a [(18) F]fluoroethoxybenzovesamicol positron emission tomography study. J Comp Neurol 2018; 526 ( 17 ): 2884 – 2897.
dc.identifier.citedreferenceBohnen NI, Albin RL, Koeppe RA, et al. Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab 2006; 26 ( 9 ): 1198 – 1212.
dc.identifier.citedreferenceGuttman M, Burkholder J, Kish SJ, et al. [11C]RTI‐32 PET studies of the dopamine transporter in early dopa‐naive Parkinson’s disease: implications for the symptomatic threshold. Neurology 1997; 48 ( 6 ): 1578 – 1583.
dc.identifier.citedreferenceGargouri F, Gallea C, Mongin M, et al. Multimodal magnetic resonance imaging investigation of basal forebrain damage and cognitive deficits in Parkinson’s disease. Mov Disord 2019; 34 ( 4 ): 516 – 525.
dc.identifier.citedreferenceHalassa MM, Kastner S. Thalamic functions in distributed cognitive control. Nat Neurosci 2017; 20 ( 12 ): 1669 – 1679.
dc.identifier.citedreferenceArcaro MJ, Pinsk MA, Kastner S. The anatomical and functional organization of the human visual pulvinar. J Neurosci 2015; 35 ( 27 ): 9848 LP – 9871.
dc.identifier.citedreferencePost B, Muslimovic D, van Geloven N, et al. Progression and prognostic factors of motor impairment, disability and quality of life in newly diagnosed Parkinson’s disease. Mov Disord 2011; 26 ( 3 ): 449 – 456.
dc.identifier.citedreferenceLawson RA, Yarnall AJ, Duncan GW, et al. Severity of mild cognitive impairment in early Parkinson’s disease contributes to poorer quality of life. Parkinsonism Relat Disord 2014; 20 ( 10 ): 1071 – 1075.
dc.identifier.citedreferenceAarsland D, Bronnick K, Williams‐Gray C, et al. Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology 2010; 75 ( 12 ): 1062 – 1069.
dc.identifier.citedreferenceAarsland D, Andersen K, Larsen JP, Lolk A, Kragh‐Sorensen P. Prevalence and characteristics of dementia in Parkinson disease: an 8‐year prospective study. Arch Neurol 2003; 60 ( 3 ): 387 – 392.
dc.identifier.citedreferenceHely MA, Reid WGJ, Adena MA, Halliday GM, Morris JGL. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord 2008; 23 ( 6 ): 837 – 844.
dc.identifier.citedreferenceKalia LV, Lang AE. Parkinson’s disease. Lancet 2015; 386 ( 9996 ): 896 – 912.
dc.identifier.citedreferenceHilker R, Thomas AV, Klein JC, et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 2005; 65 ( 11 ): 1716 – 1722.
dc.identifier.citedreferenceKlein JC, Eggers C, Kalbe E, et al. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 2010; 74 ( 11 ): 885 – 892.
dc.identifier.citedreferenceShimada H, Hirano S, Shinotoh H, et al. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 2009; 73 ( 4 ): 273 – 278.
dc.identifier.citedreferenceBohnen NI, Müller MLTM, Kotagal V, et al. Heterogeneity of cholinergic denervation in Parkinson’s disease without dementia. J Cereb Blood Flow Metab 2012; 32 ( 8 ): 1609 – 1617.
dc.identifier.citedreferenceBohnen NI, Albin RL, Müller MLTM, et al. Frequency of cholinergic and caudate nucleus dopaminergic deficits across the predemented cognitive spectrum of parkinson disease and evidence of interaction effects. JAMA Neurol 2015; 72 ( 2 ): 194 – 200.
dc.identifier.citedreferenceBohnen NI, Kaufer DI, Hendrickson R, et al. Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 2006; 253 ( 2 ): 242 – 247.
dc.identifier.citedreferenceWoolf N. Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol 1991; 37: 475 – 524.
dc.identifier.citedreferenceBallinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 2016; 91 ( 6 ): 1199 – 1218. https://doi.org/10.1016/j.neuron.2016.09.006
dc.identifier.citedreferenceSarter M, Lustig C, Howe WM, Gritton H, Berry AS. Deterministic functions of cortical acetylcholine. Eur J Neurosci 2014; 39 ( 11 ): 1912 – 1920.
dc.identifier.citedreferenceZaborszky L, Csordas A, Mosca K, et al. Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cereb Cortex 2015; 25 ( 1 ): 118 – 137.
dc.identifier.citedreferenceLiu AKL, Chang RCC, Pearce RKB, Gentleman SM. Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol 2015; 129 ( 4 ): 527 – 540.
dc.identifier.citedreferenceSelden NR, Gitelman DR, Salamon‐Murayama N, Parrish TB, Mesulam MM. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 1998; 121 ( Pt 1 ): 2249 – 2257.
dc.identifier.citedreferencePetrou M, KA F, Kilbourn MR, et al. In vivo imaging of human cholinergic nerve terminals with (−)‐5‐18F‐Fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J Nucl Med 2014; 55 ( 3 ): 396 – 404.
dc.identifier.citedreferenceNejad‐Davarani S, Koeppe RA, Albin RL, Frey KA, Müller MLTM, Bohnen NI. Quantification of brain cholinergic denervation in dementia with Lewy bodies using PET imaging with [18F]‐FEOBV. Mol Psychiatry 2019; 24 ( 3 ): 322 – 327.
dc.identifier.citedreferencevan der Zee S, Vallez Garcia D, Elsinga PH, et al. [18F]Fluoroethoxybenzovesamicol in Parkinson’s disease patients: Quantification of a novel cholinergic positron emission tomography tracer. Mov Disord 2019; 34: 924 – 926.
dc.identifier.citedreferenceHughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico‐pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55 ( 3 ): 181 – 184.
dc.identifier.citedreferenceYesavage JA, Brink TL, Rose TL, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatry Res 1982; 17 ( 1 ): 37 – 49.
dc.identifier.citedreferenceTomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 2010; 25 ( 15 ): 2649 – 2653.
dc.identifier.citedreferenceLitvan I, Goldman JG, Tröster AI, et al. diagnostic criteria for mild cognitive impairment in Parkinson’s disease: movement Disorder Society task force guidelines. Mov Disord 2012; 27 ( 3 ): 349 – 356.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.