Show simple item record

The functions of autophagy at the tumour‐immune interface

dc.contributor.authorLuo, Xiaobo
dc.contributor.authorQiu, Yan
dc.contributor.authorDinesh, Palani
dc.contributor.authorGong, Wang
dc.contributor.authorJiang, Lu
dc.contributor.authorFeng, Xiaodong
dc.contributor.authorLi, Jing
dc.contributor.authorJiang, Yuchen
dc.contributor.authorLei, Yu L.
dc.contributor.authorChen, Qianming
dc.date.accessioned2021-04-06T02:10:43Z
dc.date.available2022-04-05 22:10:42en
dc.date.available2021-04-06T02:10:43Z
dc.date.issued2021-03
dc.identifier.citationLuo, Xiaobo; Qiu, Yan; Dinesh, Palani; Gong, Wang; Jiang, Lu; Feng, Xiaodong; Li, Jing; Jiang, Yuchen; Lei, Yu L.; Chen, Qianming (2021). "The functions of autophagy at the tumour‐immune interface." Journal of Cellular and Molecular Medicine (5): 2333-2341.
dc.identifier.issn1582-1838
dc.identifier.issn1582-4934
dc.identifier.urihttps://hdl.handle.net/2027.42/167043
dc.description.abstractAutophagy is frequently induced in the hypoxic tumour microenvironment. Accumulating evidence reveals important functions of autophagy at the tumour‐immune interface. Herein, we propose an update on the roles of autophagy in modulating tumour immunity. Autophagy promotes adaptive resistance of established tumours to the cytotoxic effects of natural killer cells (NKs), macrophages and effector T cells. Increased autophagic flux in tumours dampen their immunogenicity and inhibits the expansion of cytotoxic T lymphocytes (CTLs) by suppressing the activation of STING type I interferon signalling (IFN‐I) innate immune sensing pathway. Autophagy in suppressive tumour‐infiltrating immune subsets maintains their survival through metabolic remodelling. On the other hand, autophagy is involved in the antigen processing and presentation process, which is essential for anti‐tumour immune responses. Genetic deletion of autophagy induces spontaneous tumours in some models. Thus, the role of autophagy is context‐dependent. In summary, our review has revealed the dichotomous roles of autophagy in modulating tumour immunity. Broad targeting of autophagy may not yield maximal benefits. The characterization of specific genes regulating tumour immunogenicity and innovation in targeted delivery of autophagy inhibitors into certain tumours are among the most urgent tasks to sensitize cold cancers to immunotherapy.
dc.publisherWiley Periodicals, Inc.
dc.subject.othertumour cell
dc.subject.otherimmune cell
dc.subject.othertumour immunity
dc.subject.otherautophagy
dc.titleThe functions of autophagy at the tumour‐immune interface
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167043/1/jcmm16331_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167043/2/jcmm16331.pdf
dc.identifier.doi10.1111/jcmm.16331
dc.identifier.sourceJournal of Cellular and Molecular Medicine
dc.identifier.citedreferenceRao S, Tortola L, Perlot T, et al. A dual role for autophagy in a murine model of lung cancer. Nat Commun. 2014; 5: 3056.
dc.identifier.citedreferenceAlissafi T, Hatzioannou A, Mintzas K, et al. Autophagy orchestrates the regulatory program of tumor‐associated myeloid‐derived suppressor cells. J Clin Invest. 2018; 128: 3840 ‐ 3852.
dc.identifier.citedreferenceBaghdadi M, Yoneda A, Yamashina T, et al. TIM‐4 glycoprotein‐mediated degradation of dying tumor cells by autophagy leads to reduced antigen presentation and increased immune tolerance. Immunity. 2013; 39: 1070 ‐ 1081.
dc.identifier.citedreferenceLi X‐F, Chen D‐P, Ouyang F‐Z, et al. Increased autophagy sustains the survival and pro‐tumourigenic effects of neutrophils in human hepatocellular carcinoma. J Hepatol. 2015; 62: 131 ‐ 139.
dc.identifier.citedreferenceZhong Z, Sanchez‐Lopez E, Karin M. Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell. 2016; 166: 288 ‐ 298.
dc.identifier.citedreferenceMa Y, Galluzzi L, Zitvogel L, Kroemer G. Autophagy and cellular immune responses. Immunity. 2013; 39: 211 ‐ 227.
dc.identifier.citedreferenceShibutani ST, Saitoh T, Nowag H, Münz C, Yoshimori T. Autophagy and autophagy‐related proteins in the immune system. Nat Immunol. 2015; 16: 1014 ‐ 1024.
dc.identifier.citedreferenceLi Y, Hahn T, Garrison K, et al. The vitamin E analogue α‐TEA stimulates tumor autophagy and enhances antigen cross‐presentation. Cancer Res. 2012; 72: 3535 ‐ 3545.
dc.identifier.citedreferenceLi Y, Wang L‐X, Pang P, et al. Cross‐presentation of tumor associated antigens through tumor‐derived autophagosomes. Autophagy. 2009; 5: 576 ‐ 577.
dc.identifier.citedreferenceLi T‐F, Xu Y‐H, Li KE, et al. Doxorubicin‐polyglycerol‐nanodiamond composites stimulate glioblastoma cell immunogenicity through activation of autophagy. Acta Biomater. 2019; 86: 381 ‐ 394.
dc.identifier.citedreferenceZiegler PK, Bollrath J, Pallangyo CK, et al. Mitophagy in intestinal epithelial cells triggers adaptive immunity during tumorigenesis. Cell. 2018; 174: 88 ‐ 101.e16.
dc.identifier.citedreferenceWang Z, Song P, Li Y, et al. Recombinant human arginase I elicited immunosuppression in activated macrophages through inhibiting autophagy. Appl Microbiol Biotechnol. 2019; 103: 4825 ‐ 4838.
dc.identifier.citedreferenceLin H, Yan J, Wang Z, et al. Loss of immunity‐supported senescence enhances susceptibility to hepatocellular carcinogenesis and progression in Toll‐like receptor 2‐deficient mice. Hepatology. 2013; 57: 171 ‐ 182.
dc.identifier.citedreferenceCurry A, Khatri I, Kos O, Zhu F, Gorczynski R. Importance of CD200 expression by tumor or host cells to regulation of immunotherapy in a mouse breast cancer model. PLoS One. 2017; 12: e0171586.
dc.identifier.citedreferenceXu Y, Shen J, Ran Z. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy. 2020; 16: 3 ‐ 17.
dc.identifier.citedreferenceLi W, Li Y, Siraj S, et al. FUN14 domain‐containing 1‐mediated mitophagy suppresses hepatocarcinogenesis by inhibition of inflammasome activation in mice. Hepatology. 2019; 69: 604 ‐ 621.
dc.identifier.citedreferenceYu Z, Guo J, Hu M, Gao Y, Huang L. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano. 2020; 14: 4816 ‐ 4828.
dc.identifier.citedreferenceDagvadorj J, Mikulska‐Ruminska K, Tumurkhuu G, et al. Recruitment of pro‐IL‐1α to mitochondrial cardiolipin, via shared LC3 binding domain, inhibits mitophagy and drives maximal NLRP3 activation. Proc Natl Acad Sci U S A. 2021; 118: e2015632118.
dc.identifier.citedreferenceRosenfeldt MT, Ryan KM. The role of autophagy in tumour development and cancer therapy. Expert Rev Mol Med. 2009; 11: e36.
dc.identifier.citedreferenceYang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol. 2009; 335: 1 ‐ 32.
dc.identifier.citedreferenceZheng Y, Zhu G. HMGB1 suppresses colon carcinoma cell apoptosis triggered by co‐culture with dendritic cells via an ER stress‐associated autophagy pathway. Mol Med Rep. 2018; 17: 3123 ‐ 3132.
dc.identifier.citedreferenceKang R, Livesey KM, Zeh HJ, Loze MT, Tang D. HMGB1: a novel Beclin 1‐binding protein active in autophagy. Autophagy. 2010; 6: 1209 ‐ 1211.
dc.identifier.citedreferenceJanji B, Berchem G, Chouaib S. Targeting autophagy in the tumor microenvironment: new challenges and opportunities for regulating tumor immunity. Front Immunol. 2018; 9: 887.
dc.identifier.citedreferenceVaupel P, Briest S, Höckel M. Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications. Wien Med Wochenschr. 2002; 152: 334 ‐ 342.
dc.identifier.citedreferenceBellot Grégory, Garcia‐Medina R, Gounon P, et al. Hypoxia‐induced autophagy is mediated through hypoxia‐inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009; 29: 2570 ‐ 2581.
dc.identifier.citedreferenceEgan DF, Shackelford DB, Mihaylova MM, et al. Phosphorylation of ULK1 (hATG1) by AMP‐activated protein kinase connects energy sensing to mitophagy. Science. 2011; 331: 456 ‐ 461.
dc.identifier.citedreferencePapandreou I, Lim AL, Laderoute K, Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF‐1, BNIP3, and BNIP3L. Cell Death Differ. 2008; 15: 1572 ‐ 1581.
dc.identifier.citedreferenceSiemens H, Jackstadt R, Hünten S, et al. miR‐34 and SNAIL form a double‐negative feedback loop to regulate epithelial‐mesenchymal transitions. Cell Cycle. 2011; 10: 4256 ‐ 4271.
dc.identifier.citedreferenceYu Y, Yang L, Zhao M, et al. Targeting microRNA‐30a‐mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia. 2012; 26: 1752 ‐ 1760.
dc.identifier.citedreferenceGordon SR, Maute RL, Dulken BW, et al. PD‐1 expression by tumour‐associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017; 545: 495 ‐ 499.
dc.identifier.citedreferenceJiang G‐M, Tan Y, Wang H, et al. The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Mol Cancer. 2019; 18: 17.
dc.identifier.citedreferenceFeng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res. 2014; 24: 24 ‐ 41.
dc.identifier.citedreferenceMünz C. Enhancing immunity through autophagy. Annu Rev Immunol. 2009; 27: 423 ‐ 449.
dc.identifier.citedreferenceYou L, Jin S, Zhu L, Qian W. Autophagy, autophagy‐associated adaptive immune responses and its role in hematologic malignancies. Oncotarget. 2017; 8: 12374 ‐ 12388.
dc.identifier.citedreferenceLei Y, Kansy BA, Li J, et al. EGFR‐targeted mAb therapy modulates autophagy in head and neck squamous cell carcinoma through NLRX1‐TUFM protein complex. Oncogene. 2016; 35: 4698 ‐ 4707.
dc.identifier.citedreferenceWhite E. The role for autophagy in cancer. J Clin Invest. 2015; 125: 42 ‐ 46.
dc.identifier.citedreferenceViry E, Noman MZ, Arakelian T, et al. Hijacker of the antitumor immune response: autophagy is showing its worst facet. Front Oncol. 2016; 6: 246.
dc.identifier.citedreferenceQu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003; 112: 1809 ‐ 1820.
dc.identifier.citedreferenceWhite E. Deconvoluting the context‐dependent role for autophagy in cancer. Nat Rev Cancer. 2012; 12: 401 ‐ 410.
dc.identifier.citedreferenceXia H, Li S, Li X, et al. Autophagic adaptation to oxidative stress alters peritoneal residential macrophage survival and ovarian cancer metastasis. JCI Insight. 2020; 5: 1 ‐ 18.
dc.identifier.citedreferenceBryceson YT, March ME, Ljunggren HG, Long EO. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood. 2006; 107: 159 ‐ 166.
dc.identifier.citedreferenceBaginska J, Viry E, Berchem G, et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer‐mediated lysis under hypoxia. Proc Natl Acad Sci U S A. 2013; 110: 17450 ‐ 17455.
dc.identifier.citedreferenceIshigami S, Natsugoe S, Tokuda K, et al. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer. 2000; 88: 577 ‐ 583.
dc.identifier.citedreferenceVillegas FR, Coca S, Villarrubia VG, et al. Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer. 2002; 35: 23 ‐ 28.
dc.identifier.citedreferenceTittarelli A, Janji B, Van Moer K, Noman MZ, Chouaib S. The Selective degradation of synaptic connexin 43 protein by hypoxia‐induced autophagy impairs natural killer cell‐mediated tumor cell killing. J Biol Chem. 2015; 290: 23670 ‐ 23679.
dc.identifier.citedreferenceEngedal N, Torgersen ML, Guldvik IJ, et al. Modulation of intracellular calcium homeostasis blocks autophagosome formation. Autophagy. 2013; 9: 1475 ‐ 1490.
dc.identifier.citedreferenceMessai Y, Noman MZ, Hasmim M, et al. ITPR1 protects renal cancer cells against natural killer cells by inducing autophagy. Cancer Res. 2014; 74: 6820 ‐ 6832.
dc.identifier.citedreferenceMgrditchian T, Arakelian T, Paggetti J, et al. Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5‐dependent manner. Proc Natl Acad Sci U S A. 2017; 114 ( 44 ): E9271 ‐ E9279.
dc.identifier.citedreferenceWillingham SB, Volkmer J‐P, Gentles AJ, et al. The CD47‐signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A. 2012; 109: 6662 ‐ 6667.
dc.identifier.citedreferenceZhang X, Wang S, Nan Y, et al. Inhibition of autophagy potentiated the anti‐tumor effects of VEGF and CD47 bispecific therapy in glioblastoma. Appl Microbiol Biotechnol. 2018; 102: 6503 ‐ 6513.
dc.identifier.citedreferenceZhang X, Fan J, Wang S, et al. Targeting CD47 and autophagy elicited enhanced antitumor effects in non‐small cell lung cancer. Cancer Immunol Res. 2017; 5: 363 ‐ 375.
dc.identifier.citedreferenceZhang X, Chen W, Fan J, et al. Disrupting CD47‐SIRPα axis alone or combined with autophagy depletion for the therapy of glioblastoma. Carcinogenesis. 2018; 39: 689 ‐ 699.
dc.identifier.citedreferenceWen Z‐F, Liu H, Gao R, et al. Tumor cell‐released autophagosomes (TRAPs) promote immunosuppression through induction of M2‐like macrophages with increased expression of PD‐L1. J Immunother Cancer. 2018; 6: 151.
dc.identifier.citedreferenceGärtner K, Battke C, Dünzkofer J, et al. Tumor‐derived extracellular vesicles activate primary monocytes. Cancer Med. 2018; 7: 2013 ‐ 2020.
dc.identifier.citedreferenceTan YS, Sansanaphongpricha K, Prince M, et al. Engineering vaccines to reprogram immunity against head and neck cancer. J Dent Res. 2018; 97: 627 ‐ 634.
dc.identifier.citedreferencePolverini PJ, D’Silva NJ, Lei YL. Precision therapy of head and neck squamous cell carcinoma. J Dent Res. 2018; 97: 614 ‐ 621.
dc.identifier.citedreferenceIshikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008; 455: 674 ‐ 678.
dc.identifier.citedreferenceSun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP‐AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013; 339: 786 ‐ 791.
dc.identifier.citedreferenceTan YS, Sansanaphongpricha K, Xie Y, et al. Mitigating SOX2‐potentiated immune escape of head and neck squamous cell carcinoma with a STING‐inducing nanosatellite vaccine. Clin Cancer Res. 2018; 24: 4242 ‐ 4255.
dc.identifier.citedreferenceLuo X, Donnelly CR, Gong W, et al. HPV16 drives cancer immune escape via NLRX1‐mediated degradation of STING. J Clin Invest. 2020; 130: 1635 ‐ 1652.
dc.identifier.citedreferenceJi J, Yu Y, Li Z‐L, et al. XIAP limits autophagic degradation of Sox2 and is a therapeutic target in nasopharyngeal carcinoma stem cells. Theranostics. 2018; 8: 1494 ‐ 1510.
dc.identifier.citedreferenceLee Y, Shin JH, Longmire M, et al. CD44+ cells in head and neck squamous cell carcinoma suppress T‐Cell‐mediated immunity by selective constitutive and inducible expression of PD‐L1. Clin Cancer Res. 2016; 22: 3571 ‐ 3581.
dc.identifier.citedreferenceSaloura V, Fatima A, Zewde M, et al. Characterization of the T‐Cell receptor repertoire and immune microenvironment in patients with locoregionally advanced squamous cell carcinoma of the head and neck. Clin Cancer Res. 2017; 23: 4897 ‐ 4907.
dc.identifier.citedreferenceLei Y, Wen H, Ting JP. The NLR protein, NLRX1, and its partner, TUFM, reduce type I interferon, and enhance autophagy. Autophagy. 2013; 9: 432 ‐ 433.
dc.identifier.citedreferenceLei YU, Wen H, Yu Y, et al. The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity. 2012; 36: 933 ‐ 946.
dc.identifier.citedreferenceLo Cigno I, Calati F, Borgogna C, et al. Human papillomavirus E7 oncoprotein subverts host innate immunity via SUV39H1‐mediated epigenetic silencing of immune sensor genes. J Virol. 2020; 94: e01812 ‐ e1819.
dc.identifier.citedreferenceLo CI, Calati F, Albertini S, Gariglio M. Subversion of host innate immunity by human papillomavirus oncoproteins. Pathogens. 2020; 9: e292.
dc.identifier.citedreferenceShaikh MH, Bortnik V, McMillan NA, Idris A. cGAS‐STING responses are dampened in high‐risk HPV type 16 positive head and neck squamous cell carcinoma cells. Microb Pathog. 2019; 132: 162 ‐ 165.
dc.identifier.citedreferenceZhang Y, Yao Y, Qiu X, et al. Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing. Nat Immunol. 2019; 20: 433 ‐ 446.
dc.identifier.citedreferenceWei H, Wei S, Gan B, Peng X, Zou W, Guan JL. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev. 2011; 25: 1510 ‐ 1527.
dc.identifier.citedreferenceYamamoto K, Venida A, Yano J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC‐I. Nature. 2020; 581: 100 ‐ 105.
dc.identifier.citedreferenceYu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007; 7: 41 ‐ 51.
dc.identifier.citedreferenceWang T, Niu G, Kortylewski M, et al. Regulation of the innate and adaptive immune responses by Stat‐3 signaling in tumor cells. Nat Med. 2004; 10: 48 ‐ 54.
dc.identifier.citedreferenceNoman MZ, Janji B, Kaminska B, et al. Blocking hypoxia‐induced autophagy in tumors restores cytotoxic T‐cell activity and promotes regression. Cancer Res. 2011; 71: 5976 ‐ 5986.
dc.identifier.citedreferenceLiu Y, Zhang H, Wang Z, Wu P, Gong W. 5‐Hydroxytryptamine1a receptors on tumour cells induce immune evasion in lung adenocarcinoma patients with depression via autophagy/pSTAT3. Eur J Cancer. 2019; 114: 8 ‐ 24.
dc.identifier.citedreferenceAkalay I, Janji B, Hasmim M, et al. Epithelial‐to‐mesenchymal transition and autophagy induction in breast carcinoma promote escape from T‐cell‐mediated lysis. Cancer Res. 2013; 73: 2418 ‐ 2427.
dc.identifier.citedreferenceKroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013; 31: 51 ‐ 72.
dc.identifier.citedreferenceDudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev. 2013; 24: 319 ‐ 333.
dc.identifier.citedreferenceGarg AD, Dudek AM, Ferreira GB, et al. ROS‐induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy. 2013; 9: 1292 ‐ 1307.
dc.identifier.citedreferenceGhiringhelli F, Apetoh L, Tesniere A, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL‐1beta‐dependent adaptive immunity against tumors. Nat Med. 2009; 15: 1170 ‐ 1178.
dc.identifier.citedreferenceObeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007; 13: 54 ‐ 61.
dc.identifier.citedreferenceMichaud M, Martins I, Sukkurwala AQ, et al. Autophagy‐dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011; 334: 1573 ‐ 1577.
dc.identifier.citedreferenceGarg AD, Dudek AM, Agostinis P. Autophagy‐dependent suppression of cancer immunogenicity and effector mechanisms of innate and adaptive immunity. Oncoimmunology. 2013; 2: e26260.
dc.identifier.citedreferenceTalmadge JE, Gabrilovich DI. History of myeloid‐derived suppressor cells. Nat Rev Cancer. 2013; 13: 739 ‐ 752.
dc.identifier.citedreferenceWei J, Long L, Yang K, et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol. 2016; 17: 277 ‐ 285.
dc.identifier.citedreferenceParker KH, Horn LA, Ostrand‐Rosenberg S. High‐mobility group box protein 1 promotes the survival of myeloid‐derived suppressor cells by inducing autophagy. J Leukoc Biol. 2016; 100: 463 ‐ 470.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.