Elevated atmospheric concentrations of CO2 increase endogenous immune function in a specialist herbivore
dc.contributor.author | Decker, Leslie E. | |
dc.contributor.author | Jeffrey, Christopher S. | |
dc.contributor.author | Ochsenrider, Kaitlin M. | |
dc.contributor.author | Potts, Abigail S. | |
dc.contributor.author | Roode, Jacobus C. | |
dc.contributor.author | Smilanich, Angela M. | |
dc.contributor.author | Hunter, Mark D. | |
dc.date.accessioned | 2021-04-06T02:11:09Z | |
dc.date.available | 2022-04-05 22:11:07 | en |
dc.date.available | 2021-04-06T02:11:09Z | |
dc.date.issued | 2021-03 | |
dc.identifier.citation | Decker, Leslie E.; Jeffrey, Christopher S.; Ochsenrider, Kaitlin M.; Potts, Abigail S.; Roode, Jacobus C.; Smilanich, Angela M.; Hunter, Mark D. (2021). "Elevated atmospheric concentrations of CO2 increase endogenous immune function in a specialist herbivore." Journal of Animal Ecology (3): 628-640. | |
dc.identifier.issn | 0021-8790 | |
dc.identifier.issn | 1365-2656 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/167053 | |
dc.description.abstract | Animals rely on a balance of endogenous and exogenous sources of immunity to mitigate parasite attack. Understanding how environmental context affects that balance is increasingly urgent under rapid environmental change. In herbivores, immunity is determined, in part, by phytochemistry which is plastic in response to environmental conditions. Monarch butterflies Danaus plexippus, consistently experience infection by a virulent parasite Ophryocystis elektroscirrha, and some medicinal milkweed (Asclepias) species, with high concentrations of toxic steroids (cardenolides), provide a potent source of exogenous immunity.We investigated plant‐mediated influences of elevated CO2 (eCO2) on endogenous immune responses of monarch larvae to infection by O. elektroscirrha. Recently, transcriptomics have revealed that infection by O. elektroscirrha does not alter monarch immune gene regulation in larvae, corroborating that monarchs rely more on exogenous than endogenous immunity. However, monarchs feeding on medicinal milkweed grown under eCO2 lose tolerance to the parasite, associated with changes in phytochemistry. Whether changes in milkweed phytochemistry induced by eCO2 alter the balance between exogenous and endogenous sources of immunity remains unknown.We fed monarchs two species of milkweed; A. curassavica (medicinal) and A. incarnata (non‐medicinal) grown under ambient CO2 (aCO2) or eCO2. We then measured endogenous immune responses (phenoloxidase activity, haemocyte concentration and melanization strength), along with foliar chemistry, to assess mechanisms of monarch immunity under future atmospheric conditions.The melanization response of late‐instar larvae was reduced on medicinal milkweed in comparison to non‐medicinal milkweed. Moreover, the endogenous immune responses of early‐instar larvae to infection by O. elektroscirrha were generally lower in larvae reared on foliage from aCO2 plants and higher in larvae reared on foliage from eCO2 plants. When grown under eCO2, milkweed plants exhibited lower cardenolide concentrations, lower phytochemical diversity and lower nutritional quality (higher C:N ratios). Together, these results suggest that the loss of exogenous immunity from foliage under eCO2 results in increased endogenous immune function.Animal populations face multiple threats induced by anthropogenic environmental change. Our results suggest that shifts in the balance between exogenous and endogenous sources of immunity to parasite attack may represent an underappreciated consequence of environmental change.Animal populations face multiple threats induced by anthropogenic environmental change. The authors’ results suggest that shifts in the balance between exogenous and endogenous sources of immunity to parasite attack may represent an underappreciated consequence of environmental change. | |
dc.publisher | Cornell University Press | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | Danaus plexippus | |
dc.subject.other | ecoimmunology | |
dc.subject.other | haemocytes | |
dc.subject.other | Ophryocystis elektroscirrha | |
dc.subject.other | phenoloxidase | |
dc.subject.other | Asclepias | |
dc.subject.other | cardenolides | |
dc.title | Elevated atmospheric concentrations of CO2 increase endogenous immune function in a specialist herbivore | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/167053/1/jane13395-sup-0001-Supinfo.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/167053/2/jane13395.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/167053/3/jane13395_am.pdf | |
dc.identifier.doi | 10.1111/1365-2656.13395 | |
dc.identifier.source | Journal of Animal Ecology | |
dc.identifier.citedreference | Robinson, E. A., Ryan, G. D., & Newman, J. A. ( 2012 ). A meta‐analytical review of the effects of elevated CO 2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist, 194, 321 – 336. https://doi.org/10.1111/j.1469‐8137.2012.04074.x | |
dc.identifier.citedreference | Mattson, W. J. ( 1980 ). Herbivory in relation plant nitrogen content. Annual Review of Ecology & Systematics, 11, 119 – 161. | |
dc.identifier.citedreference | Mclaughlin, R. E., Myers, J., Diw, E. R., Sem, A. R., & College, S. ( 1970 ). Monarch butterfly Danaus plexippus (L.) and the florida queen butterfly D. gilippus berenice cramerl. Journal of Protozoology, 17 ( 2 ), 300 – 305. | |
dc.identifier.citedreference | Nigam, Y., Maudlin, I., Welburn, S., & Ratcliffe, N. A. ( 1997 ). Detection of phenoloxidase activity in the hemolymph of tsetse flies, refractory and susceptible to infection with Trypanosoma brucei rhodesiense. Journal of Invertebrate Pathology, 69 ( 3 ), 279 – 281. https://doi.org/10.1006/JIPA.1996.4652 | |
dc.identifier.citedreference | Ojala, K., Julkunen‐Tiitto, R., Lindstrom, L., & Mappes, J. ( 2005 ). Diet affects the immune defense and life‐history traits of an Artiid moth Parasemia plantaginis. Evolutionary Ecology Research, 7, 1153 – 1170. | |
dc.identifier.citedreference | R Core Team. ( 2020 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/ | |
dc.identifier.citedreference | Rasmann, S., & Agrawal, A. A. ( 2011 ). Latitudinal patterns in plant defense: Evolution of cardenolides, their toxicity and induction following herbivory. Ecology Letters, 14 ( 5 ), 476 – 483. https://doi.org/10.1111/j.1461‐0248.2011.01609.x | |
dc.identifier.citedreference | Richard, G., Le Bris, C., Guérard, F., Lambert, C., & Paillard, C. ( 2015 ). Immune responses of phenoloxidase and superoxide dismutase in the manila clam Venerupis philippinarum challenged with Vibrio tapetis – Part II: Combined effect of temperature and two V. tapetis strains. Fish & Shellfish Immunology, 44 ( 1 ), 79 – 87. https://doi.org/10.1016/j.fsi.2014.12.039 | |
dc.identifier.citedreference | Richards, L. A., Dyer, L. A., Forister, M. L., Smilanich, A. M., Dodson, C. D., Leonard, M. D., & Jeffrey, C. S. ( 2015 ). Phytochemical diversity drives plant–insect community diversity. Proceedings of the National Academy of Sciences of the United States of America, 112 ( 35 ), 10973 – 10978. https://doi.org/10.1073/pnas.1504977112 | |
dc.identifier.citedreference | Schmid‐Hempel, P. ( 2003 ). Variation in immune defence as a question of evolutionary ecology. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270 ( 1513 ), 357 – 366. https://doi.org/10.1098/rspb.2002.2265 | |
dc.identifier.citedreference | Schmid‐Hempel, P. ( 2005 ). Evolutionary ecology of insect immune defenses. Annual Review of Entomology, 50 ( 1 ), 529 – 551. https://doi.org/10.1146/annurev.ento.50.071803.130420 | |
dc.identifier.citedreference | Sikorska, M. ( 2003 ). Flavonoids in the leaves of Asclepias incarnata L. Acta Poloniae Pharmaceutica – Drug Research. | |
dc.identifier.citedreference | Singer, M. S., Mason, P. A., & Smilanich, A. M. ( 2014 ). Ecological immunology mediated by diet in herbivorous insects. Integrative and Comparative Biology, 54 ( 5 ), 913 – 921. https://doi.org/10.1093/icb/icu089 | |
dc.identifier.citedreference | Smilanich, A. M., Dyer, L. A., Chambers, J. Q., & Bowers, M. D. ( 2009 ). Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecology Letters, 12, 612 – 621. https://doi.org/10.1111/j.1461‐0248.2009.01309.x | |
dc.identifier.citedreference | Smilanich, A. M., Langus, T. C., Doan, L., Dyer, L. A., Harrison, J. G., Hsueh, J., & Teglas, M. B. ( 2017 ). Host plant associated enhancement of immunity and survival in virus infected caterpillars. Journal of Invertebrate Pathology, 151, 102 – 112. https://doi.org/10.1016/J.JIP.2017.11.006 | |
dc.identifier.citedreference | Smilanich, A. M., & Nuss, A. B. ( 2019 ). Unlocking the genetic basis of monarch butterflies’ use of medicinal plants. Molecular Ecology, 28 ( 22 ), 4839 – 4841. https://doi.org/10.1111/mec.15267 | |
dc.identifier.citedreference | Smilanich, A. M., Vargas, J., Dyer, L. A., & Bowers, M. D. ( 2011 ). Effects of ingested secondary metabolites on the immune response of a polyphagous caterpillar Grammia incorrupta. Journal of Chemical Ecology, 37 ( 3 ), 239 – 245. https://doi.org/10.1007/s10886‐011‐9924‐5 | |
dc.identifier.citedreference | Srygley, R. B., Lorch, P. D., Simpson, S. J., & Sword, G. A. ( 2009 ). Immediate protein dietary effects on movement and the generalised immunocompetence of migrating Mormon crickets Anabrus simplex (Orthoptera: Tettigoniidae). Ecological Entomology, 34 ( 5 ), 663 – 668. https://doi.org/10.1111/j.1365‐2311.2009.01117.x | |
dc.identifier.citedreference | Sternberg, E. D., Lefevre, T., Li, J., Lopez, C., Castillejo, F. D., Li, H., & De Roode, J. C. ( 2012 ). Food plant‐derived disease tolerance and resistance in a natural butterfly – Plant‐parasite interactions. Evolution, 66 ( 11 ), 3367 – 3377. https://doi.org/10.5061/dryad.82j66 | |
dc.identifier.citedreference | Strand, M. R. ( 2008 ). The insect cellular immune response. Insect Science, 15 ( 1 ), 1 – 14. https://doi.org/10.1111/j.1744‐7917.2008.00183.x | |
dc.identifier.citedreference | Tan, W. H., Acevedo, T., Harris, E. V., Alcaide, T. Y., Walters, J. R., Hunter, M. D., Gerardo, N. M., & de Roode, J. C. ( 2019 ). Transcriptomics of monarch butterflies ( Danaus plexippus ) reveals that toxic host plants alter expression of detoxification genes and down‐regulate a small number of immune genes. Molecular Ecology, 28 ( 22 ), 4845 ‐ 4863. https://doi.org/10.1111/mec.15219 | |
dc.identifier.citedreference | Tao, L., Ahmad, A., de Roode, J. C., & Hunter, M. D. ( 2015 ). Arbuscular mycorrhizal fungi affect plant tolerance and chemical defenses to herbivory through different mechanisms. Journal of Ecology. https://doi.org/10.1111/1365‐2745.12535 | |
dc.identifier.citedreference | Tao, L., Hoang, K. M., Hunter, M. D., & de Roode, J. C. ( 2016 ). Fitness costs of animal medication: Antiparasitic plant chemicals reduce fitness of monarch butterfly hosts. Journal of Animal Ecology, 85 ( 5 ), 1246 – 1254. https://doi.org/10.1111/1365‐2656.12558 | |
dc.identifier.citedreference | Tao, L., & Hunter, M. D. ( 2012 ). Does anthropogenic nitrogen deposition induce phosphorus limitation in herbivorous insects? Global Change Biology, 18 ( 6 ), 1843 – 1853. https://doi.org/10.1111/j.1365‐2486.2012.02645.x | |
dc.identifier.citedreference | Trowbridge, A. M., Bowers, M. D., & Monson, R. K. ( 2016 ). Conifer monoterpene chemistry during an outbreak enhances consumption and immune response of an eruptive folivore. Journal of Chemical Ecology, 42 ( 12 ), 1281 – 1292. https://doi.org/10.1007/s10886‐016‐0797‐5 | |
dc.identifier.citedreference | Vogelweith, F., Moret, Y., Monceau, K., Thiéry, D., & Moreau, J. ( 2016 ). The relative abundance of hemocyte types in a polyphagous moth larva depends on diet. Journal of Insect Physiology, 88, 33 – 39. https://doi.org/10.1016/J.JINSPHYS.2016.02.010 | |
dc.identifier.citedreference | Warashina, T., & Noro, T. ( 2000 ). Steroidal glycosides from the aerial part of Asclepias incarnata. Phytochemistry, 53 ( 4 ), 485 – 498. https://doi.org/10.1016/S0031‐9422(99)00560‐9 | |
dc.identifier.citedreference | Wojda, I. ( 2017 ). Temperature stress and insect immunity. Journal of Thermal Biology, 68, 96 – 103. https://doi.org/10.1016/j.jtherbio.2016.12.002 | |
dc.identifier.citedreference | Zavala, J. A., Nabity, P. D., & DeLucia, E. H. ( 2013 ). An emerging understanding of mechanisms governing insect herbivory under elevated CO 2. Annual Review of Entomology, 58, 79 – 97. https://doi.org/10.1146/annurev‐ento‐120811‐153544 | |
dc.identifier.citedreference | Zuur, A. F., Ieno, E. N., & Elphick, C. S. ( 2010 ). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1 ( 1 ), 3 – 14. https://doi.org/10.1111/j.2041‐210x.2009.00001.x | |
dc.identifier.citedreference | Adamo, S. A. ( 2004 ). Estimating disease resistance in insects: Phenoloxidase and lysozyme‐like activity and disease resistance in the cricket Gryllus texensis. Journal of Insect Physiology, 50 ( 2–3 ), 209 – 216. https://doi.org/10.1016/J.JINSPHYS.2003.11.011 | |
dc.identifier.citedreference | Adamo, S. A., Bartlett, A., Le, J., Spencer, N., & Sullivan, K. ( 2010 ). Illness‐induced anorexia may reduce trade‐offs between digestion and immune function. Animal Behaviour, 79 ( 1 ), 3 – 10. https://doi.org/10.1016/J.ANBEHAV.2009.10.012 | |
dc.identifier.citedreference | Adamo, S. A., & Lovett, M. M. E. ( 2011 ). Some like it hot: The effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. Journal of Experimental Biology, 214 ( 12 ), 1997 – 2004. https://doi.org/10.1242/jeb.056531 | |
dc.identifier.citedreference | Adamo, S. A., Roberts, J. L., Easy, R. H., & Ross, N. W. ( 2008 ). Competition between immune function and lipid transport for the protein apolipophorin III leads to stress‐induced immunosuppression in crickets. Journal of Experimental Biology, 211 ( 4 ), 531 – 538. https://doi.org/10.1242/jeb.013136 | |
dc.identifier.citedreference | Agrawal, A. A., Petschenka, G., Bingham, R. A., Weber, M. G., & Rasmann, S. ( 2012 ). Toxic cardenolides: Chemical ecology and coevolution of specialized plant‐herbivore interactions. New Phytologist, 194 ( 1 ), 28 – 45. https://doi.org/10.1111/j.1469‐8137.2011.04049.x | |
dc.identifier.citedreference | Altizer, S. M., & de Roode, J. C. ( 2015 ). Monarchs and their debilitating parasites: Immunity, migration and medicinal plant use. In K. S. Oberhauser, K. R. Nail, & S. Altizer (Eds.), Monarchs in a changing world: Biology and conservation of an iconic butterfly (pp. 83 – 93 ). Cornell University Press. | |
dc.identifier.citedreference | Altizer, S. M., & Oberhauser, K. S. ( 1999 ). Effects of the protozoan parasite Ophryocystis elektroscirrha on the fitness of monarch butterflies ( Danaus plexippus ). Journal of Invertebrate Pathology, 74 ( 1 ), 76 – 88. https://doi.org/10.1006/JIPA.1999.4853 | |
dc.identifier.citedreference | Altizer, S. M., Ostfeld, R. S., Johnson, P. T. J., Kutz, S., & Harvell, C. D. ( 2013 ). Climate change and infectious diseases: From evidence to a predictive framework. Science (New York, NY), 341 ( 6145 ), 514 – 519. https://doi.org/10.1126/science.1239401 | |
dc.identifier.citedreference | Barriga, P. A., Sternberg, E. D., Lefèvre, T., de Roode, J. C., & Altizer, S. ( 2016 ). Occurrence and host specificity of a neogregarine protozoan in four milkweed butterfly hosts ( Danaus spp.). Journal of Invertebrate Pathology, 140, 75 – 82. https://doi.org/10.1016/j.jip.2016.09.003 | |
dc.identifier.citedreference | Beckage, N. E. ( 2011 ). Insect Immunology, Second, (First). Elsevier Science. | |
dc.identifier.citedreference | Bradley, C. A., & Altizer, S. M. ( 2005 ). Parasites hinder monarch butterfly flight: Implications for disease spread in migratory hosts. Ecology Letters, 8 ( 3 ), 290 – 300. https://doi.org/10.1111/j.1461‐0248.2005.00722.x | |
dc.identifier.citedreference | Brock, P. M., Murdock, C. C., & Martin, L. B. ( 2014 ). The history of ecoimmunology and its integration with disease ecology. Integrative and Comparative Biology, 54 ( 3 ), 353 – 362. https://doi.org/10.1093/icb/icu046 | |
dc.identifier.citedreference | Cotter, S. C., Simpson, S. J., Raubenheimer, D., & Wilson, K. ( 2011 ). Macronutrient balance mediates trade‐offs between immune function and life history traits. Functional Ecology, 25 ( 1 ), 186 – 198. https://doi.org/10.1111/j.1365‐2435.2010.01766.x | |
dc.identifier.citedreference | de Roode, J. C., Lefèvre, T., & Hunter, M. D. ( 2013 ). Self‐medication in animals. Science (New York, NY), 340 ( 6129 ), 150 – 151. https://doi.org/10.1126/science.1235824 | |
dc.identifier.citedreference | de Roode, J. C., Pedersen, A. B., Hunter, M. D., & Altizer, S. M. ( 2008 ). Host plant species affects virulence in monarch butterfly parasites. Journal of Animal Ecology, 77 ( 1 ), 120 – 126. https://doi.org/10.1111/j.1365‐2656.2007.01305.x | |
dc.identifier.citedreference | de Roode, J. C., Yates, A. J., & Altizer, S. M. ( 2008 ). Virulence‐transmission trade‐offs and population divergence in virulence in a naturally occurring butterfly parasite. Proceedings of the National Academy of Sciences of the United States of America, 105 ( 21 ), 7489 – 7494. https://doi.org/10.1073/pnas.0710909105 | |
dc.identifier.citedreference | Decker, L. E., de Roode, J. C., & Hunter, M. D. ( 2018 ). Elevated atmospheric concentrations of carbon dioxide reduce monarch tolerance and increase parasite virulence by altering the medicinal properties of milkweeds. Ecology Letters, 21 ( 9 ), 1353 – 1363. https://doi.org/10.1111/ele.13101 | |
dc.identifier.citedreference | Decker, L. E., Jeffrey, C. S., Oschenrider, K. M., Potts, A. S., de Roode, J. C., Smilanich, A. M., & Hunter, M. D. ( 2020 ). Data from: Elevated atmospheric concentrations of CO 2 increase endogenous immune function in a specialist herbivore. Dryad Digital Repository, https://doi.org/10.5061/dryad.dr7sqv9ww | |
dc.identifier.citedreference | Dhinaut, J., Chogne, M., & Moret, Y. ( 2018 ). Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. Journal of Animal Ecology, 87 ( 2 ), 448 – 463. https://doi.org/10.1111/1365‐2656.12661 | |
dc.identifier.citedreference | Drake, B. G., Leadley, P. W., Arp, W. J., Nassiry, D., & Curtis, P. S. ( 1989 ). An open top chamber for field studies of elevated atmospheric CO 2 concentration on saltmarsh vegetation. Functional Ecology, 3 ( 3 ), 363. https://doi.org/10.2307/2389377 | |
dc.identifier.citedreference | Faldyn, M. J., Hunter, M. D., & Elderd, B. D. ( 2018 ). Climate change and an invasive, tropical milkweed: An ecological trap for monarch butterflies. Ecology, 99 ( 5 ), 1031 – 1038. https://doi.org/10.1002/ecy.2198 | |
dc.identifier.citedreference | Gherlenda, A. N., Haigh, A. M., Moore, B. D., Johnson, S. N., & Riegler, M. ( 2015 ). Climate change, nutrition and immunity: Effects of elevated CO 2 and temperature on the immune function of an insect herbivore. Journal of Insect Physiology, 85, 57 – 64. https://doi.org/10.1016/j.jinsphys.2015.12.002 | |
dc.identifier.citedreference | Gowler, C. D., Leon, K. E., Hunter, M. D., & de Roode, J. C. ( 2015 ). Secondary defense chemicals in milkweed reduce parasite infection in monarch butterflies, Danaus plexippus. Journal of Chemical Ecology, 41 ( 6 ), 520 – 523. https://doi.org/10.1007/s10886‐015‐0586‐6 | |
dc.identifier.citedreference | Hansen, A. C., Glassmire, A. E., Dyer, L. A., Smilanich, A. M., & Hansen, A. C. ( 2016 ). Patterns in parasitism frequency explained by diet and immunity. Ecography, 40, 803 – 805. https://doi.org/10.1111/ecog.02498 | |
dc.identifier.citedreference | Haribal, M., & Renwick, J. A. A. ( 1996 ). Oviposition stimulants for the monarch butterfly: Flavonol glycosides from Asclepias curassavica. Phytochemistry, 41 ( 1 ), 139 – 144. https://doi.org/10.1016/0031‐9422(95)00511‐0 | |
dc.identifier.citedreference | Heil, M. ( 2016, June 28). Host manipulation by parasites: Cases, patterns, and remaining doubts. Frontiers in Ecology and Evolution. Frontiers Media S. A. https://doi.org/10.3389/fevo.2016.00080 | |
dc.identifier.citedreference | Huffman, M. A., & Seifu, M. ( 1989 ). Observations on the illness and consumption of a possibly medicinal plant Vernonia amygdalina (Del.), by a wild chimpanzee in the Mahale Mountains National Park, Tanzania. Primates, 30 ( 1 ), 51 – 63. https://doi.org/10.1007/BF02381210 | |
dc.identifier.citedreference | Hunter, M. D. ( 2016 ). The phytochemical landscape: Linking trophic interactions and nutrient dynamics. Princeton University Press. | |
dc.identifier.citedreference | IPCC. ( 2013 ). Climate Change 2013: (2013). In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgl (Eds.), The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781107415324 | |
dc.identifier.citedreference | Jolles, A. E., Beechler, B. R., & Dolan, B. P. ( 2015 ). Beyond mice and men: Environmental change, immunity and infections in wild ungulates. Parasite Immunology, 37 ( 5 ), 255 – 266. https://doi.org/10.1111/pim.12153 | |
dc.identifier.citedreference | Kacsoh, B. Z., & Schlenke, T. A. ( 2012 ). High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS ONE, 7 ( 4 ), e34721. https://doi.org/10.1371/journal.pone.0034721 | |
dc.identifier.citedreference | Kavanagh, K., & Reeves, E. P. ( 2007 ). Insect and mammalian innate immune responses are much alike. Microbe Magazine, 2 ( 12 ), 596 – 599. https://doi.org/10.1128/microbe.2.596.1 | |
dc.identifier.citedreference | Klemola, N., Kapari, L., & Klemola, T. ( 2008 ). Host plant quality and defence against parasitoids: No relationship between levels of parasitism and a geometrid defoliator immunoassay. Oikos, 117 ( 6 ), 926 – 934. https://doi.org/10.1111/j.0030‐1299.2008.16611.x | |
dc.identifier.citedreference | Kraaijeveld, A. R., Ferrari, J., & Godfray, H. C. J. ( 2002 ). Costs of resistance in insect‐parasite and insect‐parasitoid interactions. Parasitology, 125 ( 7 ), S71 – S82. https://doi.org/10.1017/S0031182002001750 | |
dc.identifier.citedreference | Lampert, E. C. ( 2012 ). Influences of plant traits on immune responses of specialist and generalist herbivores. Insects, 3 ( 2 ), 573 – 592. https://doi.org/10.3390/insects3020573 | |
dc.identifier.citedreference | Lampert, E. C., & Bowers, M. D. ( 2015 ). Incompatibility between plant‐derived defensive chemistry and immune response of two sphingid herbivores. Journal of Chemical Ecology, 41 ( 1 ), 85 – 92. https://doi.org/10.1007/s10886‐014‐0532‐z | |
dc.identifier.citedreference | Lazzaro, B. P., & Little, T. J. ( 2009 ). Immunity in a variable world. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.2307/40485794 | |
dc.identifier.citedreference | Lefèvre, T., Chiang, A., Kelavkar, M., Li, H., Li, J., de Castillejo, C. L. F., Oliver, L., Potini, Y., Hunter, M. D., & de Roode, J. C. ( 2012 ). Behavioural resistance against a protozoan parasite in the monarch butterfly. Journal of Animal Ecology, 81 ( 1 ), 70 – 79. https://doi.org/10.1111/j.1365‐2656.2011.01901.x | |
dc.identifier.citedreference | Lenth, R. V. ( 2020 ). emmeans: Estimated marginal means, aka least‐squares means. R package version 1.4.8. Retrieved from https://CRAN.R‐project.org/package=emmeans | |
dc.identifier.citedreference | Malcolm, S. B. ( 2017 ). Anthropogenic impacts on mortality and population viability of the monarch butterfly. Annual Review of Entomology, 63 ( 1 ), 277 – 302. https://doi.org/10.1146/annurev‐ento‐020117‐043241 | |
dc.identifier.citedreference | Martin, L. B., Hopkins, W. A., Mydlarz, L. D., & Rohr, J. R. ( 2010 ). The effects of anthropogenic global changes on immune functions and disease resistance. Annals of the New York Academy of Sciences, 1195, 129 – 148. https://doi.org/10.1111/j.1749‐6632.2010.05454.x | |
dc.identifier.citedreference | Mason, A. P., Smilanich, A. M., & Singer, M. S. ( 2014 ). Reduced consumption of protein‐ rich foods follows immune challenge in a polyphagous caterpillar. The Journal of Experimental Biology, 217, 2250 – 2260. https://doi.org/10.1242/jeb.093716 | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.