Show simple item record

Addressing Gaps in Space Weather Operations and Understanding With Small Satellites

dc.contributor.authorVerkhoglyadova, O. P.
dc.contributor.authorBussy‐virat, C. D.
dc.contributor.authorCaspi, A.
dc.contributor.authorJackson, D. R.
dc.contributor.authorKalegaev, V.
dc.contributor.authorKlenzing, J.
dc.contributor.authorNieves‐chinchilla, J.
dc.contributor.authorVourlidas, A.
dc.date.accessioned2021-04-06T02:11:21Z
dc.date.available2022-04-05 22:11:20en
dc.date.available2021-04-06T02:11:21Z
dc.date.issued2021-03
dc.identifier.citationVerkhoglyadova, O. P.; Bussy‐virat, C. D. ; Caspi, A.; Jackson, D. R.; Kalegaev, V.; Klenzing, J.; Nieves‐chinchilla, J. ; Vourlidas, A. (2021). "Addressing Gaps in Space Weather Operations and Understanding With Small Satellites." Space Weather 19(3): n/a-n/a.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/167058
dc.description.abstractGaps in space weather observations that can be addressed with small satellites are identified. Potential improvements in solar inputs to space weather models, space radiation control, estimations of energy budget of the upper Earth’s atmosphere, and satellite drag modeling are briefly discussed. Key observables, instruments, and observation strategies by small satellites are recommended. Tracking optimization for small satellites is proposed.Key PointsEnhancing space weather operations and understanding with small satellites are discussedKey observables and small satellite strategies are recommended
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherspace weather
dc.subject.otherobservations
dc.subject.othersmall satellites
dc.titleAddressing Gaps in Space Weather Operations and Understanding With Small Satellites
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167058/1/swe21089_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167058/2/swe21089.pdf
dc.identifier.doi10.1029/2020SW002566
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceRuf, C., Unwin, M., Dickinson, J., Rose, R., Rose, D., Vincent, M., & Lyons, A. ( 2013 ). CYGNSS: Enabling the future of hurricane prediction [remote sensing satellites]. IEEE Geoscience and Remote Sensing Magazine, 1 ( 2 ), 52 - 67. https://doi.org/10.1109/MGRS.2013.2260911
dc.identifier.citedreferenceMoretto, T., & Robinson, R. M. ( 2008 ). Small satellites for space weather research. Space Weather, 6 ( 5 ), 05007. https://doi.org/10.1029/2008SW000392
dc.identifier.citedreferenceMurray, S. A., Henley, E. M., Jackson, D. R., & Bruinsma, S. L. ( 2015 ). Assessing the performance of thermospheric modeling with data assimilation throughout solar cycles 23 and 24. Space Weather, 13 ( 4 ), 220 - 232. https://doi.org/10.1002/2015SW001163
dc.identifier.citedreferenceNational Academies of Sciences, Engineering, and Medicine. ( 2016 ). Achieving science with CubeSats: Thinking inside the box. Washington, DC: The National Academies Press. https://doi.org/10.17226/23503
dc.identifier.citedreferenceNational Science and Technology Council. ( 2019 ). National space weather strategy and action plan. Washington, DC: Executive Office of the President (EOP). Retrieved from https://www.whitehouse.gov/wp-content/uploads/2019/03/National-Space-Weather-Strategy-and-Action-Plan-2019.pdf
dc.identifier.citedreferenceNieves- Chinchilla, J., Farjas, M., & Martínez, R. ( 2017 ). Measurement of the horizon elevation for satellite tracking antennas located in urban and metropolitan areas combining geographic and electromagnetic sensors. Measurement, 98, 159 - 166. https://doi.org/10.1016/j.measurement.2016.11.030
dc.identifier.citedreferenceNieves- Chinchilla, J., Martínez, R., Farjas, M., Tubio- Pardavila, R., Cruz, D., & Gallego, M. ( 2018 ). Reverse engineering techniques to optimize facility location of satellite ground stations on building roofs. Automation in Construction, 90, 156 - 165. https://doi.org/10.1016/j.autcon.2018.02.019
dc.identifier.citedreferenceNieves- Chinchilla, T., Robinson, R., Caspi, A., Jackson, D. R., Moretto Jørgensen, T., Lol, B., & Spann, J. ( 2020 ). International coordination and support for SmallSat- enabled space weather activities. Space Weather, 18, e2020SW002568. https://doi.org/10.1029/2020SW002568
dc.identifier.citedreferenceOzturk, D. S., Meng, X., Verkhoglyadova, O. P., Varney, R. H., Reimer, A. S., & Semeter, J. L. ( 2020 ). A new framework to incorporate high- latitude input for meso- scale electrodynamics: HIME. Journal of Geophysical Research: Space Physics, 125 ( 1 ), e2019JA027562. https://doi.org/10.1029/2019JA027562
dc.identifier.citedreferencePanasyuk, M. I., Podzolko, M. V., Kovtyukh, A. S., Brilkov, I. A., Vlasova, N. A., Kalegaev, V. V., et al. ( 2017 ). Optimization of measurements of the Earth’s radiation belt particle fluxes. Cosmic Research, 55 ( 2 ), 79 - 87. https://doi.org/10.1134/S0010952516060071
dc.identifier.citedreferenceRodgers, E. M., Bailey, S. M., Warren, H. P., Woods, T. N., & Eparvier, F. G. ( 2006 ). Soft X- ray irradiances during solar flares observed by TIMED- SEE. Journal of Geophysical Research, 111 ( A10 ), A10S13. https://doi.org/10.1029/2005JA011505
dc.identifier.citedreferenceRodriguez, M., Paschalidis, N., Jones, S., Sittler, E., Chornay, D., Uribe, P., & Cameron, T. ( 2016 ). Miniaturized ion and neutral mass spectrometer for CubeSat atmospheric measurements. Proceedings of the 30th Annual AIAA/USU Conference on Small Satellites, Instrument/Science Missions. Retrieved from https://digitalcommons.usu.edu/smallsat/2016/S8InstSciMis/9/
dc.identifier.citedreferenceSchrijver, C. J., Kauristie, K., Aylward, A. D., Denardini, C. M., Gibson, S. E., Glover, A., et al. ( 2015 ). Understanding space weather to shield society: A global road map for 2015- 2025 commissioned by COSPAR and ILWS. Advances in Space Research, 55 ( 12 ), 2745 - 2807. https://doi.org/10.1016/j.asr.2015.03.023
dc.identifier.citedreferenceShprits, Y. Y., Subbotin, D., & Ni, B. ( 2009 ). Evolution of electron fluxes in the outer radiation belt computed with the VERB code. Journal of Geophysical Research, 114 ( A11 ), A11209. https://doi.org/10.1029/2008JA013784
dc.identifier.citedreferenceSiscoe, G., & Solomon, S. C. ( 2006 ). Aspects of data assimilation peculiar to space weather forecasting. Space Weather, 4 ( 4 ), S04002. https://doi.org/10.1029/2005SW000205
dc.identifier.citedreferenceSojka, J. J., Jensen, J., David, M., Schunk, R. W., Woods, T., & Eparvier, F. ( 2013 ). Modeling the ionospheric E and F1 regions: Using SDO- EVE observations as the solar irradiance driver. Journal of Geophysical Research: Space Physics, 118 ( 8 ), 5379 - 5391. https://doi.org/10.1002/jgra.50480
dc.identifier.citedreferenceSojka, J. J., Jensen, J. B., David, M., Schunk, R. W., Woods, T., Eparvier, F., et al. ( 2014 ). Ionospheric model- observation comparisons: E layer at Arecibo incorporation of SDO- EVE solar irradiances. Journal of Geophysical Research: Space Physics, 119 ( 5 ), 3844 - 3856. https://doi.org/10.1002/2013JA019528
dc.identifier.citedreferenceTubío- Pardavila, R., Diaz, J. E. E., Rohling, A. J., Ferreira, M. G. V., Dos Santos, W. A., Puig- Suari, J., & Aguado- Agelet, F. ( 2016 ). Integration of the INPE ground station into the SATNet network for supporting small satellites programs in Brazil. Proceedings of the 1st IAA Latin American Symposium on Small Satellites, IAA- BR- 10- 01. Retrieved from https://www.researchgate.net/publication/331045064_Integration_of_the_INPE_Ground_Station_into_the_SATNet_Network_for_Supporting_Small_Satellites_Programs_in_Brazil
dc.identifier.citedreferenceVallado, D. A., & Finkleman, D. ( 2014 ). A critical assessment of satellite drag and atmospheric density modeling. Acta Astronautica, 95, 141 - 165. https://doi.org/10.1016/j.actaastro.2013.10.005
dc.identifier.citedreferenceVerkhoglyadova, O. P., Meng, X., Mannucci, A. J., Mlynczak, M. G., Hunt, L. A., & Lu, G. ( 2017 ). Ionosphere- thermosphere energy budgets for the ICME storms of March 2013 and 2015 estimated with GITM and observational proxies. Space Weather, 15 ( 9 ), 1102 - 1124. https://doi.org/10.1002/2017SW001650
dc.identifier.citedreferenceVerkhoglyadova, O. P., Meng, X., Mannucci, A. J., Shim, J.- S., & McGranaghan, R. ( 2020 ). Evaluation of total electron content prediction using three ionosphere- thermosphere models. Space Weather, 18 ( 9 ), e2020SW002452. https://doi.org/10.1029/2020SW002452
dc.identifier.citedreferenceVette, J. I. ( 1991 ). The AE- 8 trapped electron environment. NSSDC/WDC- A- R&S 91- 24. Retrieved from https://ntrs.nasa.gov/citations/19920014985
dc.identifier.citedreferenceVourlidas, A. ( 2015 ). Mission to the Sun- Earth L5 Lagrangian point: An optimal platform for space weather research. Space Weather, 13 ( 4 ), 197 - 201. https://doi.org/10.1002/2015SW001173
dc.identifier.citedreferenceWesterhoff, J., Earle, G., Bishop, R., Swenson, G. R., Vadas, S., Clemmons, J., et al. ( 2015 ). LAICE CubeSat mission for gravity wave studies. Advances in Space Research, 56 ( 7 ), 1413 - 1427.
dc.identifier.citedreferenceWoods, T. N., Caspi, A., Chamberlin, P. C., Jones, A., Kohnert, R., Mason, J. P., et al. ( 2017 ). New solar irradiance measurements from the miniature X- ray solar spectrometer CubeSat. The Astrophysical Journal, 835 ( 2 ), 122. https://doi.org/10.3847/1538-4357/835/2/122
dc.identifier.citedreferenceYee, J. H., Gjerloev, J., Wu, D., & Schwartz, M. J. ( 2017 ). First application of the Zeeman technique to remotely measure auroral electrojet intensity from space. Geophysical Research Letters, 44 ( 20 ), 10134 - 10139. https://doi.org/10.1002/2017GL074909
dc.identifier.citedreferenceZhu, Q., Deng, Y., Richmond, A., & Maute, A. ( 2018 ). Small- scale and mesoscale variabilities in the electric field and particle precipitation and their impacts on Joule heating. Journal of Geophysical Research: Space Physics, 123 ( 11 ), 9862 - 9872. https://doi.org/10.1029/2018JA025771
dc.identifier.citedreferenceBishop, R. L., Walterscheid, R., Clemmons, J., Barjatya, A., & Gunter, L. O. ( 2019 ). The low- latitude ionosphere/thermosphere enhancements in density (LLITED) mission. Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, Upcoming Missions, SSC19- WKV- 05. Retrieved from https://digitalcommons.usu.edu/smallsat/2019/all2019/101/
dc.identifier.citedreferenceBourdarie, S., Maget, V., Friedel, R., Boscher, D., Sicard, A., & Lazaro, D. ( 2007 ). Complementarity of measurements and models in reproducing Earth’s radiation belt dynamics. In J. Lilensten (Eds.), Space weather. Astrophysics and space science library (Vol. 344, pp. 219 - 229 ). Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/1-4020-5446-7_20
dc.identifier.citedreferenceBruinsma, S. L. ( 2015 ). The DTM- 2013 thermosphere model. Journal of Space Weather and Space Climate, 5, A1. https://doi.org/10.1051/swsc/2015001
dc.identifier.citedreferenceBussy- Virat, C. D., Ridley, A. J., & Getchius, J. W. ( 2018 ). Effects of uncertainties in the atmospheric density on the probability of collision between space objects. Space Weather, 16 ( 5 ), 519 - 537. https://doi.org/10.1029/2017SW001705
dc.identifier.citedreferenceCaspi, A., Woods, T. N., & Warren, H. P. ( 2015 ). New observations of the solar 0.5- 5 keV soft X- ray spectrum. The Astrophysical Journal, 802 ( 1 ), L2. https://doi.org/10.1088/2041-8205/802/1/L2
dc.identifier.citedreferenceChaston, C. C., Peticolas, L. M., Carlson, C. W., McFadden, J. P., Mozer, F., Wilber, M., et al. ( 2005 ). Energy deposition by Alfvén waves into the dayside auroral oval: Cluster and FAST observations. Journal of Geophysical Research, 110 ( A2 ), A02211. https://doi.org/10.1029/2004JA010483
dc.identifier.citedreferenceChen, J., & Sang, J. ( 2016 ). Thermospheric mass density measurement from precise orbit ephemeris. Geodesy and Geodynamics, 7 ( 3 ), 210 - 215. https://doi.org/10.1016/j.geog.2016.05.004
dc.identifier.citedreferenceDeng, Y., Fuller- Rowell, T. J., Ridley, A. J., Knipp, D., & Lopez, R. E. ( 2013 ). Theoretical study: Influence of different energy sources on the cusp neutral density enhancement. Journal of Geophysical Research: Space Physics, 118 ( 5 ), 2340 - 2349. https://doi.org/10.1002/jgra.50197
dc.identifier.citedreferenceElvidge, S., & Angling, M. J. ( 2019 ). Using the local ensemble Transform Kalman Filter for upper atmospheric modelling. Journal of Space Weather and Space Climate, 9, A30. https://doi.org/10.1051/swsc/2019018
dc.identifier.citedreferenceGill, E., Sundaramoorthy, P., Bouwmeester, J., Zandbergen, B., & Reinhard, R. ( 2013 ). Formation flying within a constellation of nano- satellites: The QB50 mission. Acta Astronautica, 82 ( 1 ), 110 - 117.
dc.identifier.citedreferenceGinet, G. P., O’Brien, T. P., Huston, S. L., Johnston, W. R., Guild, T. B., Friedel, R., et al. ( 2013 ). AE9, AP9 and SPM: New models for specifying the trapped energetic particle and space plasma environment. Space Science Reviews, 179 ( 1- 4 ), 579 - 615. https://doi.org/10.1007/s11214-013-9964-y
dc.identifier.citedreferenceHarlander, J. M., & Englert, C. R. ( 2020 ). Laboratory demonstration of mini- MIGHTI: A prototype sensor for thermospheric red- line (630 nm) neutral wind measurements from a 6U CubeSat. Journal of Atmospheric and Solar- Terrestrial Physics, 207, 105363. https://doi.org/10.1016/j.jastp.2020.105363
dc.identifier.citedreferenceHuang, C. Y., Huang, Y., Su, Y.- J., Hairston, M. R., & Sotirelis, T. ( 2017 ). DMSP observations of high latitude Poynting flux during magnetic storms. Journal of Atmospheric and Solar- Terrestrial Physics, 164, 294 - 307. https://doi.org/10.1016/j.jastp.2017.09.005
dc.identifier.citedreferenceKlenzing, J., Davidson, R. L., Jones, S. L., Martinis, C., Zawdie, K. A., Earle, G. D., et al. ( 2019 ). The petitSat mission: Science goals and instrumentation. Advances in Space Research, 66 ( 1 ), 107 - 115. https://doi.org/10.1016/j.asr.2019.12.013
dc.identifier.citedreferenceKnipp, D. J., & Gannon, J. L. ( 2019 ). The 2019 National Space Weather Strategy and action plan and beyond. Space Weather, 17 ( 6 ), 794 - 795. https://doi.org/10.1029/2019SW002254
dc.identifier.citedreferenceKordella, L. J., Earle, G. D., Roth, G., Moel, S., Robertson, R. V., Davidson, R. L., et al. ( 2018 ). A neutral wind instrument for nano- satellite platforms. Review of Scientific Instruments, 89 ( 9 ), 095001. https://doi.org/10.1063/1.5054097
dc.identifier.citedreferenceKorendyke, C. M., Chua, D. H., Howard, R. A., Plunkett, S. P., Socker, D. G., Thernisien, A. F. R., et al. ( 2015 ). MiniCOR: A Miniature Coronagraph for Interplanetary CubeSat. Proceedings of the 29th Annual AIAA/USU Conference on Small Satellites, Science/Mission Payloads, SSC15- XII- 6. Retrieved from http://digitalcommons.usu.edu/smallsat/2015/all2015/82
dc.identifier.citedreferenceMannucci, A. J., Berger, T., Bortnik, J., Cherniak, I., Gulyaeva, T., Hoeg, P., et al. ( 2020 ). Recommendations for the community. Proceedings of the Chapman Conference on Scientific Challenges Pertaining to Space Weather Forecasting Including Extremes. https://doi.org/10.5281/zenodo.3986940
dc.identifier.citedreferenceMannucci, A. J., Hagan, M. E., Vourlidas, A., Huang, C. Y., Verkhoglyadova, O. P., & Deng, Y. ( 2016 ). Scientific challenges in thermosphere- ionosphere forecasting. Journal of Space Weather and Space Climate, 6, E01. https://doi.org/10.1051/swsc/2016030
dc.identifier.citedreferenceMarch, G., Doornbos, E. N., & Visser, P. N. A. M. ( 2019 ). High- fidelity geometry models for improving the consistency of CHAMP, GRACE, GOCE and Swarm thermospheric density data sets. Advances in Space Research, 63 ( 1 ), 213 - 238. https://doi.org/10.1016/j.asr.2018.07.009
dc.identifier.citedreferenceMason, J. P., Woods, T. N., Caspi, A., Chamberlin, P. C., Moore, C., Jones, A., et al. ( 2016 ). Miniature X- ray Solar Spectrometer: A science- oriented, University 3U CubeSat. Journal of Spacecraft and Rockets, 53 ( 2 ), 328 - 339. https://doi.org/10.2514/1.A33351
dc.identifier.citedreferenceMiles, D. M., Mann, I. R., Pakhotin, I. P., Burchill, J. K., Howarth, A. D., Knudsen, D. J., et al. ( 2018 ). Alfvénic dynamics and fine structuring of discrete auroral arcs: Swarm and ePOP observations. Geophysical Research Letters, 45 ( 2 ), 545 - 555. https://doi.org/10.1002/2017GL076051
dc.identifier.citedreferenceMoore, C. S., Caspi, A., Woods, T. N., Chamberlin, P. C., Dennis, B. R., Jones, A. R., et al. ( 2018 ). The instruments and capabilities of the miniature X- ray solar spectrometer (MinXSS) CubeSats. Solar Physics, 293 ( 2 ), 21. https://doi.org/10.1007/s11207-018-1243-3
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.