Show simple item record

Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners

dc.contributor.authorBillings, S. A.
dc.contributor.authorLajtha, K.
dc.contributor.authorMalhotra, A.
dc.contributor.authorBerhe, A. A.
dc.contributor.authorGraaff, M.‐a.
dc.contributor.authorEarl, S.
dc.contributor.authorFraterrigo, J.
dc.contributor.authorGeorgiou, K.
dc.contributor.authorGrandy, S.
dc.contributor.authorHobbie, S. E.
dc.contributor.authorMoore, J. A. M.
dc.contributor.authorNadelhoffer, K.
dc.contributor.authorPierson, D.
dc.contributor.authorRasmussen, C.
dc.contributor.authorSilver, W. L.
dc.contributor.authorSulman, B. N.
dc.contributor.authorWeintraub, S.
dc.contributor.authorWieder, W.
dc.date.accessioned2021-04-06T02:11:30Z
dc.date.available2022-05-05 22:11:29en
dc.date.available2021-04-06T02:11:30Z
dc.date.issued2021-04
dc.identifier.citationBillings, S. A.; Lajtha, K.; Malhotra, A.; Berhe, A. A.; Graaff, M.‐a. ; Earl, S.; Fraterrigo, J.; Georgiou, K.; Grandy, S.; Hobbie, S. E.; Moore, J. A. M.; Nadelhoffer, K.; Pierson, D.; Rasmussen, C.; Silver, W. L.; Sulman, B. N.; Weintraub, S.; Wieder, W. (2021). "Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners." Ecological Applications 31(3): n/a-n/a.
dc.identifier.issn1051-0761
dc.identifier.issn1939-5582
dc.identifier.urihttps://hdl.handle.net/2027.42/167061
dc.description.abstractSoil organic carbon (SOC) regulates terrestrial ecosystem functioning, provides diverse energy sources for soil microorganisms, governs soil structure, and regulates the availability of organically bound nutrients. Investigators in increasingly diverse disciplines recognize how quantifying SOC attributes can provide insight about ecological states and processes. Today, multiple research networks collect and provide SOC data, and robust, new technologies are available for managing, sharing, and analyzing large data sets. We advocate that the scientific community capitalize on these developments to augment SOC data sets via standardized protocols. We describe why such efforts are important and the breadth of disciplines for which it will be helpful, and outline a tiered approach for standardized sampling of SOC and ancillary variables that ranges from simple to more complex. We target scientists ranging from those with little to no background in soil science to those with more soil- related expertise, and offer examples of the ways in which the resulting data can be organized, shared, and discoverable.
dc.publisherWiley Periodicals, Inc.
dc.publisherOxford University Press
dc.subject.otherglobal C cycle
dc.subject.otherstandardized soil methods
dc.subject.othersoil- climate feedbacks
dc.titleSoil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167061/1/eap2290_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167061/2/eap2290.pdf
dc.identifier.doi10.1002/eap.2290
dc.identifier.sourceEcological Applications
dc.identifier.citedreferenceRobinson, D. A., J. W. Hopmans, V. Filipovic, M. van der Ploeg, I. Lebron, S. B. Jones, S. Reinsch, N. Jarvis, and M. Tuller. 2019. Global environmental changes impact soil hydraulic functions through biophysical feedbacks. Global Change Biology 25: 1895 - 1904.
dc.identifier.citedreferenceJastrow, J. D. 1996. Soil aggregate formation and the accrual of particulate and mineral- associated organic matter. Soil Biology and Biochemistry 28: 665 - 676.
dc.identifier.citedreferenceLawrence, C. R., et al. 2020. An open- source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0. Earth System Science Data 12: 61 - 76.
dc.identifier.citedreferenceThroop, H. L., S. R. Archer, H. C. Monger, and S. Waltman. 2012. When bulk density methods matter: Implications for estimating soil organic carbon pools in rocky soils. Journal of Arid Environments 77: 66 - 71.
dc.identifier.citedreferenceSwift, R. S. 1996. Organic matter characterization. Pages 1011 - 1069 in D. L. Sparks, editor. Methods of soil analysis: Part 3: chemical methods. SSSA Book Series. No. 5. Soil Science Society of America, Madison, Wisconsin, USA.
dc.identifier.citedreferenceThomas, G. W. 1996. Soil pH and soil acidity. Pages 475 - 489 in D. L. Sparks, editor. Methods of soil analysis: Part 3- chemical methods. Book Series No. 5. Soils Science Society of America, Madison, Wisconsin, USA.
dc.identifier.citedreferenceTiemann, L. K., A. S. Grandy, E. E. Atkinson, E. Marin- Spiotta, and M. D. McDanial. 2015. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters 18: 761 - 771.
dc.identifier.citedreferenceTisdall, J. M., and J. M. Oades. 1982. Organic matter and water- stable aggregates in soils. Journal of Soil Science 33: 141 - 163.
dc.identifier.citedreferenceTodd- Brown, K. E. O., et al. 2014. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11: 2341 - 2356.
dc.identifier.citedreferenceTombacz, E., Z. Libor, E. Illes, and A. Majzik. 2004. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Organic Geochemistry 35: 257 - 267.
dc.identifier.citedreferenceTorn, M. S., S. E. Trumbore, O. A. Chadwick, P. M. Vitousek, and D. M. Hendricks. 1997. Mineral control of soil organic carbon storage and turnover. Nature 389: 170 - 173.
dc.identifier.citedreferenceUpton, R. N., E. M. Bach, and K. S. Hofmockel. 2019. Spatio- temporal microbial community dynamics within soil aggregates. Soil Biology and Biochemistry 132: 58 - 68.
dc.identifier.citedreferenceUSDA NRCS. 2014. Kellogg soil survey laboratory methods manual. Report No. 42, Version 5.0, Soil Survey Investigations, Lincoln, Nebraska, USA.
dc.identifier.citedreferencevan Gestel, M., R. Merckx, and K. Vlassak. 1996. Spatial distribution of microbial biomass in microaggregates of a silty- loam soil and the relation with the resistance of microorganisms to soil drying. Soil Biology and Biochemistry 28: 503 - 510.
dc.identifier.citedreferencevan Wesemael, B., et al. 2011. How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO 2 fluxes in agricultural soils? Plant and Soil 338: 247 - 259.
dc.identifier.citedreferenceVerde Arregoitia, L. D., N. Cooper, and G. D’Elía. 2018. Good practices for sharing analysis- ready data in mammalogy and biodiversity research. Hystrix, the Italian Journal of Mammalogy 29: 155 - 161.
dc.identifier.citedreferenceVicca, S., et al. 2018. Using research networks to create the comprehensive datasets needed to assess nutrient availability as a key determinant of terrestrial carbon cycling. Environmental Research Letters 13: 125006. https://doi.org/10.1088/1748- 9326/aaeae7
dc.identifier.citedreferenceViera, M., and R. Rodríguez- Soalleiro. 2019. A complete assessment of carbon stocks in above and belowground biomass components of a hybrid eucalyptus plantation in southern Brazil. Forests 10: 536.
dc.identifier.citedreferencevon Lützow, M., I. Kögel- Knabner, K. Ekschmittb, H. Fless, G. Guggenberger, E. Matzner, and B. Marschner. 2007. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry 39: 2183 - 2207.
dc.identifier.citedreferenceWagai, R., L. M. Mayer, and K. Kitayama. 2009. Nature of the occluded low- density fraction in soil organic matter studies: a critical review. Soil Science and Plant Nutrition 55: 13 - 25.
dc.identifier.citedreferenceWalter, K., A. Don, B. Tiemeyer, and A. Freibauer. 2016. Determining soil bulk density for carbon stock calculations: a systematic method comparison. Soil Science Society of America Journal 80: 579 - 591.
dc.identifier.citedreferenceWalthert, L., U. Graf, A. Kammer, J. Luster, D. Pezzotta, S. Zimmermann, and F. Hagedorn. 2010. Determination of organic and inorganic carbon, δ 13 C, and nitrogen in soils containing carbonates after acid fumigation with HCl. Journal of Plant Nutrition and Soil Science 173: 207 - 216.
dc.identifier.citedreferenceWang, S., H. Y. Chen, Y. Tan, H. Fan, and H. Ruan. 2016. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China. Scientific Reports 6: 1 - 10.
dc.identifier.citedreferenceWebster, R., and M. A. Oliver. 2001. Geostatistics for environmental scientists. John Wiley and Sons, Chichester, UK.
dc.identifier.citedreferenceWeintraub, S. R., et al. 2019. Leveraging environmental research and observation networks to advance soil carbon science. Journal of Geophysical Research Biogeosciences 124: 1047 - 1055.
dc.identifier.citedreferenceWendt, J. W., and S. Hauser. 2013. An equivalent soil mass procedure for monitoring soil organic carbon in multiple soil layers. European Journal of Soil Science 64: 58 - 65.
dc.identifier.citedreferenceWhite, E. P., E. Baldridge, Z. T. Brym, K. J. Locey, D. J. McGlinn, and S. R. Supp. 2013. Nine simple ways to make it easier to (re) use your data. Ideas in Ecology and Evolution 6: 1 - 10.
dc.identifier.citedreferenceWhite, D., W. M. Davis, J. S. Nickels, J. D. King, and R. J. Bobbie. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40: 51 - 62.
dc.identifier.citedreferenceWickham, H. 2014. Tidy data. Journal of Statistical Software 59: 23.
dc.identifier.citedreferenceWieder, W. R., et al. 2020. SOils DAta Harmonization database (SoDaH): an open- source synthesis of soil data from research networks ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/9733f6b6d2ffd12bf126dc36a763e0b4
dc.identifier.citedreferenceWieder, W. R., A. S. Grandy, C. M. Kallenbach, and G. B. Bonan. 2014. Integrating microbial physiology and physiochemical principles in soils with the MIcrobial- MIneral Carbon Stabilization (MIMICS) model. Biogeosciences 11: 3899 - 3917.
dc.identifier.citedreferenceWieder, W. R., M. D. Hartman, B. N. Sulman, Y.- P. Wang, C. D. Koven, and G. C. Bonan. 2018. Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models. Global Change Biology 24: 1563 - 1579. https://doi.org/10.1111/gcb.13979
dc.identifier.citedreferenceWieder, W. R., B. N. Sulman, M. D. Hartman, C. D. Koven, and M. A. Bradford. 2019. Arctic soil governs whether climate change drives global losses or gains in soil carbon. Geophysical Research Letters 46: 14486 - 14495.
dc.identifier.citedreferenceWilkinson, M. D., et al. 2016. The FAIR guiding principles for scientific data management and stewardship. Scientific Data 3: 160018.
dc.identifier.citedreferenceWilliams, E. K., M. L. Fogel, A. A. Berhe, and A. F. Plante. 2018. Distinct bioenergetic signatures in particulate versus mineral- associated soil organic matter. Geoderma 330: 107 - 116.
dc.identifier.citedreferenceWuest, S. B. 2009. Correction of bulk density and sampling method biases using soil mass per unit area. Soil Science Society of America Journal 73: 312 - 316.
dc.identifier.citedreferenceYang, Y., D. Tilman, G. Furey, and C. Lehman. 2019. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nature Communications 10: 718.
dc.identifier.citedreferenceYeasmin, S., B. Singh, C. T. Johnston, and D. L. Sparks. 2017. Organic carbon characteristics in density fractions of soils with contrasting mineralogies. Geochimica et Cosmochimica Acta 218: 215 - 236.
dc.identifier.citedreferenceZhang, H., et al. 2020. Microbial dynamics and soil physicochemical properties explain large- scale variations in soil organic carbon. Glob Change Biology 16: 1 - 18.
dc.identifier.citedreferenceZhao, K., X. Jing, N. J. Sanders, L. Chen, Y. Shi, D. F. B. Flynn, Y. Wang, H. Chu, W. Liang, and J.- S. He. 2017. On the controls of abundance for soil- dwelling organisms on the Tibetan Plateau. Ecosphere 8: e01901.
dc.identifier.citedreferenceAl- Shammary, A. A. G., A. Z. Kouzani, A. Kaynak, S. Y. Khoo, M. Norton, and W. Gates. 2018. Soil bulk density estimation methods: a review. Pedosphere 28: 581 - 596.
dc.identifier.citedreferenceAmundson, R., A. A. Berhe, J. W. Hopmans, C. Olson, A. E. Sztein, and D. L. Sparks. 2015. Soil and human security in the 21st century. Science 348: 1261071.
dc.identifier.citedreferenceAmundson, R., and L. Biardeau. 2018. Opinion: Soil carbon sequestration is an elusive climate mitigation tool. Proceedings of the National Academy of Sciences USA 115: 11652 - 11656.
dc.identifier.citedreferenceAnderson, J. P. E., and K. H. Domsch. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry 10: 215 - 221.
dc.identifier.citedreferenceArnold, C., T. A. Ghezzehei, and A. A. Berhe. 2015. Decomposition of distinct organic matter pools is regulated by moisture status in structured wetland soils. Soil Biology and Biochemistry 81: 28 - 37.
dc.identifier.citedreferenceBaatz, R., et al. 2018. Steering operational synergies in terrestrial observation networks: Opportunity for advancing Earth system dynamics modelling. Earth System Dynamics 9: 593 - 609.
dc.identifier.citedreferenceBailey, V. L., J. L. Smith, and H. Bolton. 2002. Fungal- to- bacterial ratios in soils investigated for enhanced C sequestration. Soil Biology and Biochemistry 34: 997 - 1007.
dc.identifier.citedreferenceBaldock, J. A., C. A. Masiello, Y. Gelinas, and J. I. Hedges. 2004. Cycling and composition of organic matter in terrestrial and marine ecosystems. Marine Chemistry 92: 39 - 64.
dc.identifier.citedreferenceBao, R., A. P. McNichol, J. D. Hemingway, M. C. Lardie Gaylor, and T. I. Eglinton. 2018. Influence of different acid treatments on the radiocarbon content spectrum of sedimentary organic matter determined by RPO/accelerator mass spectrometry. Radiocarbon 61: 395 - 413.
dc.identifier.citedreferenceBatjes, N. H., E. Ribeiro, and A. van Oostrum. 2020. Standardized soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth System Science Data 12: 299 - 320.
dc.identifier.citedreferenceBennett, E. M., S. R. Carpenter, and M. K. Clayton. 2005. Soil phosphorus variability: scale- dependence in an urbanizing agricultural landscape. Landscape Ecology 20: 389 - 400.
dc.identifier.citedreferenceBhattacharyya, T., et al. 2015. Walkley- Black recovery factor to reassess soil organic matter: Indo- Gangetic Plains and Black Soil Region of India case studies. Communications in Soil Science and Plant Analysis 46: 2628 - 2648.
dc.identifier.citedreferenceBillings, S. A. 2006. Soil organic matter dynamics and land use change at a grassland/forest ecotone. Soil Biology and Biochemistry 38: 2934 - 2943.
dc.identifier.citedreferenceBoone, R. D., D. F. Grigal, P. Sollins, R. J. Ahrens, and D. E. Armstrong. 1999. Soil sampling, preparation, archiving, and quality control. Pages 462 in G. Robertson, D. C. Coleman, C. S. Bledsoe, and P. Sollins, editors. Standard soil methods for long- term ecological research. Oxford University Press, New York, New York, USA.
dc.identifier.citedreferenceBradford, M. A., A. D. Keiser, C. A. Davies, C. A. Mersmann, and M. S. Strickland. 2013. Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry 113: 271 - 281.
dc.identifier.citedreferenceBrady, N. C. 1990. The nature and properties of soils. MacMillan Press, New York, New York, USA.
dc.identifier.citedreferenceBrantley, S. L., et al. 2011. Twelve testable hypotheses on the geobiology of weathering. Geobiology 9: 140 - 165.
dc.identifier.citedreferenceBrantley, S. L., M. B. Goldhaber, and K. V. Ragnarsdottir. 2007. Crossing disciplines and scales to understand the Critical Zone. Elements 3: 307 - 314.
dc.identifier.citedreferenceBremer, E., H. H. Janzen, and A. M. Johnston. 1994. Sensitivity of total, light fraction and mineralizable organic matter to management. Canadian Journal of Soil Science 74: 131 - 138.
dc.identifier.citedreferenceBronick, C. J., and R. Lal. 2005. Soil structure and management: a review. Geoderma 124: 3 - 22.
dc.identifier.citedreferenceBrooks, P. C., A. Landman, G. Pruden, and D. S. Jenkinson. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry 17: 837 - 842.
dc.identifier.citedreferenceBuol, S. W., F. D. Hole, and R. J. McCracken. 1989. Soil genesis and classification. Iowa State University Press, Ames, Iowa, USA.
dc.identifier.citedreferenceBuyer, J. S., and M. Sasser. 2012. High throughput phospholipid fatty acid analysis of soils. Applied Soil Ecology 61: 127 - 130.
dc.identifier.citedreferenceCairns, M. A., S. Brown, and G. A. Baumgardner. 1997. Root biomass allocation in the world’s upland forests. Oecologia 111: 1 - 11.
dc.identifier.citedreferenceCalabrese, S., D. D. Richter, and A. Porporato. 2018. The formation of clay- enriched horizons by lessivage. Geophysical Research Letters 45: 7588 - 7595.
dc.identifier.citedreferenceCambardella, C. A., and E. T. Elliott. 1992. Particulate soil organic- matter changes across a grassland cultivation sequence. Soil Science Society of America Journal 56: 777 - 783.
dc.identifier.citedreferenceCertano, A. K., C. W. Fernandez, K. A. Heckman, and P. G. Kennedy. 2018. The afterlife effects of fungal morphology: contrasting decomposition rates between diffuse and rhizomorphic necromass. Soil Biology and Biochemistry 126: 76 - 81.
dc.identifier.citedreferenceChen, S., et al. 2018. Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences USA 115: 4027 - 4032.
dc.identifier.citedreferenceCheng, C., J. Lehmann, J. Thies, S. Burton, and M. Engelhard. 2006. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry 37: 1477 - 1488.
dc.identifier.citedreferenceCollier, N., F. M. Hoffman, D. M. Lawrence, G. Keppel- Aleks, C. D. Koven, W. J. Riley, M. Mu, and J. T. Randerson. 2018. The International Land Model Benchmarking (ILAMB) System: Design, theory, and implementation. Journal of Advances in Modeling Earth Systems 10: 2731 - 2754.
dc.identifier.citedreferenceCompton, J. E., and R. D. Boone. 2000. Long- term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81: 2314 - 2330.
dc.identifier.citedreferenceCotrufo, M. F., J. L. Soong, A. J. Horton, E. E. Campbell, M. L. Haddix, D. H. Wall, and W. J. Parton. 2015. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience 8: 776 - 779.
dc.identifier.citedreferenceCotrufo, M. F., M. D. Wallenstein, C. Boot, K. Denef, and E. Paul. 2013. The Microbial Efficiency- Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology 19: 988 - 995.
dc.identifier.citedreferenceCoward, E. K., A. T. Thompson, and A. F. Plante. 2017. Iron- mediated mineralogical control of organic matter accumulation in tropical soils. Geoderma 306: 206 - 216.
dc.identifier.citedreferenceCrow, S. E., and C. A. Sierra. 2018. Dynamic, intermediate soil carbon pools may drive future responsiveness to environmental change. Journal of Environmental Quality 47: 607 - 616.
dc.identifier.citedreferenceDangal, S. R., J. Sanderman, S. Wills, and L. Ramirez- Lopez. 2019. Accurate and precise prediction of soil properties from a large mid- infrared spectral library. Soil Systems 3: 11.
dc.identifier.citedreferenceDavidson, E. A., and I. A. Janssens. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165 - 173.
dc.identifier.citedreferenceDoetterl, S., A. A. Berhe, E. Nadeu, Z. Wang, M. Sommer, and P. Fiener. 2016. Erosion, deposition and soil carbon: a review of process- level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth- Science Reviews 154: 102 - 122.
dc.identifier.citedreferenceDoran, J. W., M. Sarrantonio, and M. A. Liebig. 1996. Soil health and sustainability. Advances in Agronomy 56: 1 - 54.
dc.identifier.citedreferenceDwivedi, D., J. Tang, N. Bouskill, K. Georgiou, S. S. Chacon, and W. J. Riley. 2019. Abiotic and biotic controls on soil organo- mineral interactions: developing model structures to analyze why soil organic matter persists. Reviews in Mineralogy and Geochemistry 85: 329 - 348.
dc.identifier.citedreferenceEllerbrock, R. H., H. H. Gerke, J. Bachmann, and M.- O. Goebel. 2005. Composition of organic matter fractions for explaining wettability of three forest soils. Soil Science Society of America Journal 69: 57 - 66.
dc.identifier.citedreferenceEllerbrock, R. H., A. Höhn, and H. H. Gerke. 1999. Characterization of soil organic matter from a sandy soil in relation to management practice using FT- IR spectroscopy. Plant and Soil 213: 55 - 61.
dc.identifier.citedreferenceEllert, B. H., H. H. Janzen, and T. Entz. 2002. Assessment of a method to measure temporal change in soil carbon storage. Soil Science Society of America Journal 66: 1687 - 1695.
dc.identifier.citedreferenceEllis, S. E., and J. T. Leek. 2018. How to share data for collaboration. American Statistician 72: 53 - 57.
dc.identifier.citedreferenceEntwistle, E. M., D. R. Zak, and W. A. Argiroff. 2018. Anthropogenic N deposition increases soil C storage by reducing the relative abundance of lignolytic fungi. Ecological Monographs 88: 225 - 244.
dc.identifier.citedreferenceFan, Y., et al. 2019. Hillslope hydrology in global change research and Earth system modeling. Water Resources Research 55: 1737 - 1772. https://doi.org/10.1029/2018WR023903
dc.identifier.citedreferenceFierer, N., and R. B. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences USA 103: 626 - 631.
dc.identifier.citedreferenceFierer, N., J. A. Jackson, R. Vilgalys, and R. B. Jackson. 2005. Assessment of soil microbial community structure by use of taxon- specific quantitative PCR assays. Applied Environmental Microbiology 71: 4117 - 4120.
dc.identifier.citedreferenceFood and Agriculture Organization of the United Nations. 2018. World reference base for soil resources 2014: International soil classification system for naming soils and creating legends for soil maps- update 2015. Food and Agriculture Organization, Rome, Italy.
dc.identifier.citedreferenceFornara, D. A., and D. Tilman. 2008. Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology 96: 314 - 322.
dc.identifier.citedreferenceFraterrigo, J. M., and J. A. Rusak. 2008. Disturbance- driven changes in the variability of ecological patterns and processes. Ecology Letters 11: 756 - 770.
dc.identifier.citedreferenceFraterrigo, J. M., M. G. Turner, S. M. Pearson, and P. Dixon. 2005. Effects of past land use on spatial heterogeneity of soil nutrients in southern Appalachian forests. Ecological Monographs 75: 215 - 230.
dc.identifier.citedreferenceGee, G. W., and D. Or. 2002. Particle- size analysis. Pages 255 - 293 in J. H. Dane and G. C. Topp, editors. Methods of soil analysis: Part 4 physical methods. Book Series No. 5. Soil Science Society of America, Madison, Wisconsin, USA.
dc.identifier.citedreferenceGhezzehei, T. A., B. Sulman, C. L. Arnold, N. A. Bogie, and A. A. Berhe. 2019. On the role of soil water retention characteristic on aerobic microbial respiration. Biogeosciences 16: 1187 - 1209.
dc.identifier.citedreferenceGrandy, A. S., and J. C. Neff. 2008. Molecular soil C dynamics downstream: the biochemical decomposition sequence and its effects on soil organic matter structure and function. Science of the Total Environment 404: 297 - 307.
dc.identifier.citedreferenceGrandy, A. S., J. C. Neff, and M. N. Weintraub. 2007. Carbon structure and enzyme activities in alpine and forest ecosystems. Soil Biology and Biochemistry 39: 2701 - 2711.
dc.identifier.citedreferenceGrandy, A. S., and G. P. Robertson. 2006. Cultivation of a temperate- region soil at maximum carbon equilibrium immediately accelerates aggregate turnover and CO 2 and N 2 O emissions. Global Change Biology 12: 1507 - 1520.
dc.identifier.citedreferenceGrandy, A. S., and G. P. Robertson. 2007. Land- use intensity effects on soil organic carbon accumulation rates and mechanisms. Ecosystems 10: 59 - 74.
dc.identifier.citedreferenceGriscom, B. W., J. Adams, P. W. Ellis, R. A. Houghton, G. Lomax, D. A. Miteva, W. H. Schlesinger, D. Shoch, J. V. Siikamäki, and P. Smith. 2017. Natural climate solutions. Proceedings of the National Academy of Sciences USA 114: 11645 - 11650.
dc.identifier.citedreferenceHalbritter, A. H., et al. 2019. The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods in Ecology and Evolution 11: 22 - 37. https://doi.org/10.1111/2041- 210X.13331
dc.identifier.citedreferenceHall, S. J., A. A. Berhe, and A. Thompson. 2018. Order from disorder: do soil organic matter composition and turnover co- vary with iron phase crystallinity? Biogeochemistry 140: 93 - 110.
dc.identifier.citedreferenceHall, S. H., and W. L. Silver. 2015. Synergisms among reactive minerals and reducing conditions explain spatial patterns of soil carbon in humid tropical forest soils. Biogeochemistry 125: 149 - 165.
dc.identifier.citedreferenceHampton, S. E., C. A. Strasser, J. J. Tewksbury, W. K. Gram, A. E. Budden, A. L. Batcheller, C. S. Duke, and J. H. Porter. 2013. Big data and the future of ecology. Frontiers in Ecology and the Environment 11: 156 - 162.
dc.identifier.citedreferenceHarden, J. W., et al. 2017. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter. Global Change Biology 24: e705 - e715. https://doi.org/10.1111/gcb.13896
dc.identifier.citedreferenceHarris, D., W. R. Horwath, and C. van Kessel. 2001. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon- 13 isotopic analysis. Soil Science Society of America Journal 65: 1853 - 1856.
dc.identifier.citedreferenceHe, H., C. Zhang, X. Zhao, F. Fousseni, J. Wang, H. Dai, S. Yang, and Q. Zuo. 2018. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PLoS ONE 13: e0186226.
dc.identifier.citedreferenceHeckman, K., A. S. Grandy, X. Gao, M. Keiluweit, K. Wickings, K. Carpenter, J. Chorover, and C. Rasmussen. 2013. Sorptive fractionation of organic matter and formation of organo- hydroxy- aluminum complexes during litter biodegradation in the presence of gibbsite. Geochimica et Cosmochimica Acta 121: 667 - 683.
dc.identifier.citedreferenceHeckman, K., C. R. Lawrence, and J. W. Harden. 2018. A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases. Geoderma 312: 24 - 35.
dc.identifier.citedreferenceHengl, T., et al. 2017. SoiGrids250m: Global gridded soil information based on machine learning. PLoS ONE. https://doi.org/10.1371/journal.pone.0169748
dc.identifier.citedreferenceHernández, Z., G. Almendros, P. Carral, A. à lvarez, H. Knicker, and J. P. Pérez- Trujillo. 2012. Influence of non- crystalline minerals in the total amount, resilience and molecular composition of the organic matter in volcanic ash soils (Tenerife Island, Spain). European Journal of Soil Science 63: 603 - 615.
dc.identifier.citedreferenceHicks Pries, C. E., C. Castanha, R. C. Porras, and M. S. Torn. 2017. The whole- soil carbon flux in response to warming. Science 355: 1420 - 1423.
dc.identifier.citedreferenceHirmas, D. R., D. Gimenez, A. Nemes, R. Kerry, N. A. Brunsell, and C. J. Wilson. 2018. Climate- induced changes in continental- scale soil macroporosity may intensify water cycle. Nature 561: 100 - 103.
dc.identifier.citedreferenceHugelius, G., C. Tarnocai, G. Broll, J. G. Canadell, P. Kuhry, and D. K. Swanson. 2013. The northern circumpolar soil carbon database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth System Science Data 5: 3 - 13.
dc.identifier.citedreferenceJackson, R. B., K. Lajtha, S. E. Crow, G. Hugelius, M. G. Kramer, and G. Piñeiro. 2017. The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics 48: 419 - 445.
dc.identifier.citedreferenceJanzen, H. H. 2006. The soil carbon dilemma: Shall we hoard it or use it? Soil Biology and Biochemistry 38: 419 - 424.
dc.identifier.citedreferenceJanzen, H. H. 2009. Long- term ecological sites: musings on the future, as seen (dimly) from the past. Global Change Biology 15: 2770 - 2778.
dc.identifier.citedreferenceJiang, W., A. Saxena, B. Song, B. B. Ward, T. J. Beveridge, and S. C. Myneni. 2004. Elucidation of functional groups on gram- positive and gram- negative bacterial surfaces using infrared spectroscopy. Langmuir 20: 11433 - 11442.
dc.identifier.citedreferenceJobbagy, E. G., and R. B. Jackson. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10: 423 - 436.
dc.identifier.citedreferenceKaiser, M., and R. H. Ellerbrock. 2005. Functional characterization of soil organic matter fractions different in solubility originating from a long- term field experiment. Geoderma 127: 196 - 206.
dc.identifier.citedreferenceKaiser, K., and G. Guggenberger. 2000. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry 31: 711 - 725.
dc.identifier.citedreferenceKaiser, K., and G. Guggenberger. 2001. Sorption- desorption of dissolved organic matter in forest soils. Eleventh Annual V. M. Goldshmidt Conference, University of Bayreuth, Bayreuth, Germany.
dc.identifier.citedreferenceKaiser, M., M. Kleber, T. Ghezzehei, D. Myrold, and A. A. Berhe. 2014. Calcium carbonate and charcoal applications promote storage and stabilization of organic matter associated with silt- sized aggregates. Soil Science Society America Journal 78: 1624 - 1631.
dc.identifier.citedreferenceKaiser, E., T. Mueller, R. Joergensen, H. Insam, and O. Heinemeyer. 1992. Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biology and Biochemistry 24: 675 - 683.
dc.identifier.citedreferenceKallenbach, C. M., S. D. Frey, and A. S. Grandy. 2016. Direct evidence for microbial- derived soil organic matter formation and its ecophysiological controls. Nature Communications 7: 13630.
dc.identifier.citedreferenceKallenbach, C. M., A. S. Grandy, S. D. Frey, and A. F. Diefendorf. 2015. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biology and Biochemistry 9: 279 - 290.
dc.identifier.citedreferenceKallenbach, C. M., M. D. Wallenstein, M. E. Schipanski, and A. S. Grandy. 2019. Managing agroecosystems for optimal soil microbial carbon use efficiency. Frontiers in Microbiology 10: 1146.
dc.identifier.citedreferenceKasting, J. F., and J. L. Siefert. 2002. Life and the evolution of Earth’s atmosphere. Science 296: 100 - 106.
dc.identifier.citedreferenceKeiluweit, M., K. Gee, A. Denney, and S. Fendorf. 2017. Anoxic microsites in upland soils dominantly controlled by clay content. Soil Biology and Biochemistry 118: 42 - 50.
dc.identifier.citedreferenceKeiluweit, M., P. Nico, M. Johnson, and M. Kleber. 2010. Dynamic molecular structure of plant biomass- derived black carbon (biochar). Environmental Science and Technology 44: 1247 - 1253.
dc.identifier.citedreferenceKleber, M., P. Sollins, and R. Sutton. 2007. A conceptual model of organo- mineral interactions in soils: self- assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85: 9 - 24.
dc.identifier.citedreferenceKleinman, P. J. A., et al. 2018. Advancing the sustainability of U.S. agriculture through long- term research. Journal of Environmental Quality 47: 1412 - 1425.
dc.identifier.citedreferenceKohl, L., M. Philben, K. A. Edwards, F. A. Podrebarac, J. Warren, and S. E. Ziegler. 2017. The origin of soil organic matter controls its composition and bioreactivity across a mesic boreal forest latitudinal gradient. Global Change Biology 24: e458 - e473.
dc.identifier.citedreferenceKramer, M. G., K. Lajtha, and A. K. Aufdenkampe. 2017. Depth trends of soil organic matter C: N and 15N natural abundance controlled by association with minerals. Biogeochemistry 136: 237 - 248.
dc.identifier.citedreferenceKroetsch, D., and C. Wang. 2008. Particle size distribution. Pages 713 - 725 in M. R. Carter and E. G. Gregorich, editors. Soil sampling and methods of analysis. Second edition. CRC Press, Boca Raton, Florida, USA.
dc.identifier.citedreferenceKump, L. R. 2008. The rise of atmospheric oxygen. Nature 451: 277 - 278.
dc.identifier.citedreferenceLajtha, K., K. Townsend, M. Kramer, C. Swanston, R. Bowden, and K. Nadelhoffer. 2014. Changes to particulate versus mineral- associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems. Biogeochemistry 119: 341 - 360.
dc.identifier.citedreferenceLal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623 - 1627.
dc.identifier.citedreferenceLal, R., and J. M. Kimble. 2001. Importance of soil bulk density and methods of its importance. Pages 31 - 44 in R. Lal, J. M. Kimble, R. F. Follett, and B. A. Stewart, editors. Assessment methods for soil carbon. Lewis Publishers, New York, New York, USA.
dc.identifier.citedreferenceLal, R., J. M. Kimble, R. F. Follett, and B. A. Stewart. 2001. Assessment methods for soil carbon. Advances in soil science series. Lewis Publishers, Madison, Wisconsin, USA.
dc.identifier.citedreferenceLange, M., et al. 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications 6: 6707.
dc.identifier.citedreferenceLangenheder, S., E. S. Lindstrom, and L. J. Tranvik. 2006. Structure and function of bacterial communities emerging from different sources under identical conditions. Applied Environmental Microbiology 72: 212 - 220.
dc.identifier.citedreferenceLavallee, J. M., J. L. Soong, and M. F. Cotrufo. 2020. Conceptualizing soil organic matter into particulate and mineral- associated forms to address global change in the 21st century. Global Change Biology. https://doi.org/10.1111/gcb14859
dc.identifier.citedreferenceLee, J. W., M. Kidder, B. R. Evans, S. Paik, A. C. Buchanan III, C. T. Garten, and R. C. Brown. 2010. Characterization of biochars produced from cornstovers for soil amendment. Environmental Science and Technology 44: 7970 - 7974.
dc.identifier.citedreferenceLehmann, J., J. Kinyangi, and D. Solomon. 2007. Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry 85: 45 - 57.
dc.identifier.citedreferenceLeue, M., R. H. Ellerbrock, and H. H. Gerke. 2010. DRIFT mapping of organic matter composition at intact soil aggregate surfaces. Vadose Zone Journal 9: 317 - 324.
dc.identifier.citedreferenceLi, K., J. Rollins, and E. Yan. 2018. Web of Science use in published research and review papers 1997- 2017: a selective, dynamic, cross- domain, content- based analysis. Scientometrics 115: 1. https://doi- org.ezproxy1.lib.asu.edu/10.1007/s11192- 017- 2622- 5
dc.identifier.citedreferenceLiang, C., W. Amelung, J. Lehmann, and M. Kastner. 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology 25: 3578 - 3590.
dc.identifier.citedreferenceLin, H. 2012. Hydropedology. Academic Press, Cambridge, Massachusetts, USA.
dc.identifier.citedreferenceLuo, Y. Q., et al. 2016. Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles 30: 40 - 56.
dc.identifier.citedreferenceLupwavi, M. A., M. A. Arshad, W. A. Rice, and G. W. Clayton. 2001. Bacterial diversity in water- stable aggregates of soils under conventional and zero tillage management. Applied Soil Ecology 16: 251 - 261.
dc.identifier.citedreferenceMalhotra, A., et al. 2019. The landscape of soil carbon data: Emerging questions, synergies and databases. Progress in Physical Geography: Earth and Environment 43: 707 - 719.
dc.identifier.citedreferenceMalik, A. A., S. Chowdhury, V. Schlager, A. Oliver, J. Puissant, P. G. M. Vazquez, N. Jehmlich, M. von Bergen, R. I. Griffiths, and G. Gleixner. 2016. Soil fungi:bacteria ratios are linked to altered carbon cycling. Frontiers in Microbiology 7: 1247.
dc.identifier.citedreferenceMalik, A. A., J. B. H. Martiny, E. L. Brodie, A. C. Martiny, K. K. Treseder, and S. D. Allison. 2020. Defining trait- based microbial strategies with consequences for soil carbon cycling under climate change. ISME Journal 14: 1 - 9.
dc.identifier.citedreferenceMartin, P. A., A. D. Newton, and J. M. Bullock. 2013. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proceedings of the Royal Society B 280: 20132236.
dc.identifier.citedreferenceMarwick, B., C. Boettiger, and L. Mullen. 2018. Packaging data analytical work reproducibly using R (and friends). American Statistician 72: 80 - 88.
dc.identifier.citedreferenceMarzaioli, F., C. Lubritto, I. D. Galdo, A. D’Onofrio, M. F. Cotrufo, and F. Terrasi. 2010. Comparison of different soil organic matter fractionation methodologies: evidences from ultrasensitive 14 C measurements. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268: 1062 - 1066.
dc.identifier.citedreferenceMasiello, C. A., O. A. Chadwick, J. R. Southon, M. S. Torn, and J. W. Harden. 2004. Weathering controls on mechanisms of carbon storage in grassland soils. Global Biogeochemical Cycles 18: GB4023.
dc.identifier.citedreferenceMayer, A., Z. Hausfather, A. D. Jones, and W. L. Silver. 2018. The potential of agricultural land management to contribute to lower global surface temperatures. Sciences Advances 4: eaaq0932.
dc.identifier.citedreferenceMcLauchlan, K. K., S. E. Hobbie, and W. M. Post. 2006. Conversion from agriculture to grassland builds soil organic matter on decadal timescales. Ecological Applications 16: 143 - 153.
dc.identifier.citedreferenceMcLean, E. O. 1982. Soil pH and lime requirement. Pages 199 - 224 in A. L. Page, R. H. Miller, and D. R. Keney, editors. Methods of soil analysis part 2: Chemical and microbiological properties. Second edition. ASA- SSSA, Madison, Wisconsin, USA.
dc.identifier.citedreferenceMelillo, J. M., S. D. Frey, K. M. DeAngelis, W. J. Werner, M. J. Bernard, F. P. Bowles, G. Pold, M. A. Knorr, and A. S. Grandy. 2017. Long- term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358: 101 - 105.
dc.identifier.citedreferenceMidwood, A. J., and T. W. Boutton. 1998. Soil carbonate decomposition by acid has little effect on δ 13 C of organic matter. Soil Biology and Biochemistry 30: 1301 - 1307.
dc.identifier.citedreferenceMikutta, R., C. Mikutta, K. Kalbitz, T. Scheel, K. Kaiser, and R. Jahn. 2007. Microbial mineralization of organic matter bound to minerals via different binding mechanisms. Geochimica et Cosmochimica Acta 71: 2569 - 2590.
dc.identifier.citedreferenceMin, K., C. A. Lehmeier, F. Ballantyne IV, and S. A. Billings. 2016. Carbon availability modifies temperature responses of heterotrophic microbial respiration, carbon uptake affinity, and stable carbon isotope discrimination. Frontiers in Microbiology 25: 1793 - 1807. https://doi.org/10.3389/fmicb.2016.02083
dc.identifier.citedreferenceMin, K., C. A. Lehmeier, F. Ballantyne, A. Tatarko, and S. A. Billings. 2014. Differential effects of pH on temperature sensitivity of organic carbon and nitrogen decay. Soil Biology and Biochemistry 76: 193 - 200.
dc.identifier.citedreferenceMinasny, B., et al. 2017. Soil carbon 4 per mille. Geoderma 292: 59 - 86.
dc.identifier.citedreferenceMinasny, B., A. B. McBratney, D. M. Brough, and D. Jacquier. 2011. Models relating soil pH measurements in water and calcium chloride that incorporate electrolyte concentration. European Journal of Soil Science 62: 728 - 732.
dc.identifier.citedreferenceMobley, M. L., Y. Yang, R. D. Yanai, K. A. Nelson, A. R. Bacon, P. R. Heine, and D. D. Richter. 2019. How to estimate statistically detectable trends in a time series: a study of soil carbon and nutrient concentrations at the Calhoun LTSE. Soil Science Society America Journal 83: S133 - S140.
dc.identifier.citedreferenceMoni, C., D. Derrien, P.- J. Hatton, B. Zeller, and M. Kleber. 2012. Density fractions versus size separates: does physical fractionation isolate functional soil compartments? Biogeosciences 9: 5181 - 5197.
dc.identifier.citedreferenceMuhammed, S. E., et al. 2018. Impact of two centuries of intensive agriculture on soil carbon, nitrogen, and phosphorus cycling in the UK. Science of the Total Environment 634: 1486 - 1504. https://doi.org/10.1016/j.scitotenv.2018.03.378
dc.identifier.citedreferenceNave, L. E., G. M. Domke, K. L. Hofmeister, U. Mishra, C. H. Perry, B. F. Walters, and C. W. Swanston. 2018. Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proceedings of the National Academy of Sciences USA 115: 2776 - 2781.
dc.identifier.citedreferenceNepstad, D. C., C. R. de Carvalho, E. A. Davidson, P. H. Jipp, P. A. Lefebvre, G. H. Negreiros, E. D. da Silva, T. A. Stone, S. E. Trumbore, and S. Vieira. 1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372: 666 - 669.
dc.identifier.citedreferenceNimmo, J. R., and K. S. Perkins. 2002. Aggregate stability and size distribution. Pages 317 - 328 in J. H. Dane and G. C. Topp, editors. Methods of soil analysis, Part 4- Physical methods. Soil Science Society of America, Madison, Wisconsin, USA.
dc.identifier.citedreferenceOades, J. M., and A. G. Waters. 1991. Aggregate hierarchy in soils. Soil Research 29: 815 - 828.
dc.identifier.citedreferencePage- Dumroese, D. S., M. F. Jurgensen, and G. D. Mroz. 1999. Comparison of methods for determining bulk densities of rocky forest soils. Soil Science Society of America Journal 63: 379 - 383.
dc.identifier.citedreferencePaustian, K., H. P. Collins, and E. A. Paul. 1997. Management controls on soil carbon. Pages 15 - 49 in E. A. Paul, K. Paustian, E. T. Elliot, and C. V. Cole, editors. Soil organic matter in temperate agroecosystems. CRC Press, Boca Raton, Florida, USA.
dc.identifier.citedreferencePercival, H. J., R. L. Parfitt, and N. A. Scott. 2000. Factors controlling soil carbon levels in New Zealand grasses: Is clay content important? Soil Society Science America Journal 64: 1623 - 1630.
dc.identifier.citedreferencePlugge, D., D. Kübler, P. R. Neupane, K. Olschofsky, and L. Prill. 2016. Measurement, reporting, and verifications systems in forest assessment. Pages 839 - 882 in L. Pancel and M. Köhl, editors. Tropical forestry handbook. Springer Berlin Heidelberg, Berlin, Heidelberg, Germany.
dc.identifier.citedreferencePoeplau, C., et al. 2018. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils- A comprehensive method comparison. Soil Biology and Biochemistry 125: 10 - 26.
dc.identifier.citedreferencePoeplau, C., T. Kätterer, M. A. Bolinder, G. Börjesson, A. Berti, and E. Lugato. 2015. Low stabilization of aboveground crop residue carbon in sandy soils of Swedish long- term experiments. Geoderma 237- 238: 246 - 255.
dc.identifier.citedreferencePoisot, T., R. Mounce, and D. Gravel. 2013. Moving toward a sustainable ecological science: Don’t let data go to waste! Ideas in Ecology and Evolution 6: 11 - 19. https://doi.org/10.4033/iee.2013.6b.14.f
dc.identifier.citedreferenceRaczka, B., M. C. Dietze, S. P. Serbin, and K. J. Davis. 2018. What limits predictive certainty of long- term carbon uptake? Journal of Geophysical Research: Biogeosciences 123: 3570 - 3588.
dc.identifier.citedreferenceRamnarine, R., R. P. Voroney, C. Wagner- Riddle, and K. E. Dunfield. 2011. Carbonate removal by acid fumigation for measuring the δ 13 C of soil organic carbon. Canadian Journal of Soil Science 91: 247 - 250.
dc.identifier.citedreferenceRasmussen, C. K., et al. 2018a. Beyond clay: Towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137: 297 - 306.
dc.identifier.citedreferenceRasmussen, C., H. Throckmorton, G. Liles, K. Heckman, S. Meding, and W. R. Horwath. 2018b. Controls on soil organic carbon partitioning and stabilization in the California Sierra Nevada. Soil Systems 2: 41.
dc.identifier.citedreferenceRasmussen, C., M. S. Torn, and R. J. Southard. 2005. Mineral assemblage and aggregates control carbon dynamics in a California conifer forest. Soil Science Society of America Journal 69: 1711 - 1721.
dc.identifier.citedreferenceRichter, D. D., et al. 2018. Ideas and perspectives: Strengthening the biogeosciences in environmental research networks. Biogeosciences 15: 4815 - 4832.
dc.identifier.citedreferenceRichter, D. B., M. Hofmockel, M. A. Callaham, D. S. Powlson, and P. Smith. 2007. Long- term soil experiments: Keys to managing Earth’s rapidly changing ecosystems. Soil Science Society of America Journal 71: 266 - 279.
dc.identifier.citedreferenceRichter, D. D., and D. Markewitz. 1995. How deep is soil? BioScience 45: 600 - 609.
dc.identifier.citedreferenceRichter, D. D., D. Markewitz, S. E. Trumbore, and C. G. Wells. 1999. Rapid accumulation and turnover of soil carbon in a re- establishing forest. Nature 400: 56 - 58.
dc.identifier.citedreferenceRobertson, G. P., D. C. Coleman, C. S. Bledsoe, and P. Sollins. 1999. Standard soil methods for long- term ecological research. Oxford University Press, New York, New York, USA.
dc.identifier.citedreferenceRobertson, G. P., J. R. Crum, and B. G. Ellis. 1993. The spatial variability of soil resources following long- term disturbance. Oecologia 96: 451 - 456.
dc.identifier.citedreferenceFrey, S. D., J. Lee, J. M. Melillo, and J. Six. 2013. The temperature response of soil microbial efficiency and its feedback to climate. Nature Climate Change 3: 395 - 398.
dc.identifier.citedreferenceRyals, R., M. Kaiser, M. S. Torn, A. A. Berhe, and W. L. Silver. 2014. Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils. Soil Biology and Biochemistry 68: 52 - 61.
dc.identifier.citedreferenceSanderman, J., T. Hengl, and G. J. Fiske. 2017. Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences USA 114: 9575 - 9580.
dc.identifier.citedreferenceSanderman, J., T. Maddern, and J. Baldock. 2014. Similar composition but differential stability of mineral retained organic matter across four classes of clay minerals. Biogeochemistry 121: 409 - 424.
dc.identifier.citedreferenceScharlemann, J. P. W., E. V. J. Tanner, R. Hiederer, and V. Kapos. 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management 5: 81 - 91.
dc.identifier.citedreferenceSchimel, J., and O. Chadwick. 2013. What’s in a name? The importance of soil taxonomy for ecology and biogeochemistry. Frontiers in Ecology and the Environment 11: 405 - 406.
dc.identifier.citedreferenceSchlesinger, W. H., and E. W. Bernhardt. 2013. Biogeochemistry: an analysis of global change. Academic Press, New York, New York, USA.
dc.identifier.citedreferenceSchrumpf, M., K. Kaiser, G. Guggenberger, T. Persson, I. Kögel- Knabner, and E.- D. Schulze. 2013. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10: 1675 - 1691.
dc.identifier.citedreferenceShade, A., et al. 2012. Fundamentals of microbial community resistance and resilience. Frontiers in Microbiology 3: 417.
dc.identifier.citedreferenceSix, J., E. T. Elliott, and K. Paustian. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no- tillage agriculture. Soil Biology and Biochemistry 32: 2099 - 2103.
dc.identifier.citedreferenceSix, J., S. D. Frey, R. K. Thiet, and K. M. Batten. 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal 70: 555 - 569.
dc.identifier.citedreferenceSmeaton, C., N. L. M. Barlow, and W. E. N. Austin. 2020. Coring and compaction: best practice in blue carbon stock and burial estimations. Geoderma 364: 114180.
dc.identifier.citedreferenceSmith, P., et al. 2019. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology 26: 219 - 241. https://doi.org/10.1111/gcb.14815
dc.identifier.citedreferenceSmith, A. P. B., B. W. Bond- Lamberty, M. M. Benscoter, C. R. Tfaily, C. L. Hinkle, and V. L. Bailey. 2017. Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought. Nature Communications 8: 1335.
dc.identifier.citedreferenceSohi, S. P., N. Mahieu, J. R. M. Arah, D. S. Powlson, B. Madari, and J. L. Gaunt. 2001. Procedure for isolating soil organic matter fractions suitable for modeling. Soil Science Society of America Journal 65: 1121 - 1128.
dc.identifier.citedreferenceSoil Survey Staff. 1999. Keys to soil taxonomy. U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, Nebraska, USA.
dc.identifier.citedreferenceSollins, P., M. G. Kramer, C. Swanston, K. Lajtha, T. Filley, A. K. Aufdenkampe, R. Wagai, and R. D. Bowden. 2009. Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral- controlled soil organic matter stabilization. Biogeochemistry 96: 209 - 231.
dc.identifier.citedreferenceSollins, P., C. Swanston, M. Kleber, T. Filley, M. Kramer, S. Crow, B. Caldwell, K. Lajtha, and R. Bowden. 2006. Organic C and N stabilization in a forest soil: evidence from sequential density fractionation. Soil Biology and Biochemistry 38: 3313 - 3324.
dc.identifier.citedreferenceSpencer, S., S. M. Ogle, F. J. Breidt, J. J. Goebel, and K. Paustian. 2011. Designing a national soil carbon monitoring network to support climate change policy: a case example for US agricultural lands. Greenhouse Gas Measurement and Management 1 ( 3- 4 ): 167 - 178.
dc.identifier.citedreferenceStrickland, T. C., and P. Sollins. 1987. Improved method for separating light- fraction and heavy- fraction organic material from soil. Soil Science Society of America Journal 51: 1390 - 1393.
dc.identifier.citedreferenceSullivan, P. L., M. W. Stops, G. L. Macpherson, L. Li, D. R. Hirmas, and W. K. Dodds. 2019. How landscape heterogeneity governs stream water concentration discharge behavior in carbonate terrains (Konza Prairie, USA). Chemical Geology 527: 118989. https://doi.org/10.1016/j.chemgeo.2018.12.002
dc.identifier.citedreferenceSulman, B. N., R. P. Phillips, A. C. Oishi, E. Shevliakova, and S. W. Pacala. 2014. Microbe- driven turnover offsets mineral- mediated storage of soil carbon under elevated CO 2. Nature Climate Change 4: 1099 - 1102.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.