Show simple item record

Turning Trash into Treasure: MXene with Intrinsic LiF Solid Electrolyte Interfaces Performs Better and Better during Battery Cycling

dc.contributor.authorXu, Hao
dc.contributor.authorZhu, Wen
dc.contributor.authorSun, Fengzhan
dc.contributor.authorQi, Hu
dc.contributor.authorZou, Jianxin
dc.contributor.authorLaine, Richard
dc.contributor.authorDing, Wenjiang
dc.date.accessioned2021-04-06T02:12:19Z
dc.date.available2022-04-05 22:12:17en
dc.date.available2021-04-06T02:12:19Z
dc.date.issued2021-03
dc.identifier.citationXu, Hao; Zhu, Wen; Sun, Fengzhan; Qi, Hu; Zou, Jianxin; Laine, Richard; Ding, Wenjiang (2021). "Turning Trash into Treasure: MXene with Intrinsic LiF Solid Electrolyte Interfaces Performs Better and Better during Battery Cycling." Advanced Materials Technologies 6(3): n/a-n/a.
dc.identifier.issn2365-709X
dc.identifier.issn2365-709X
dc.identifier.urihttps://hdl.handle.net/2027.42/167076
dc.description.abstractCommercialization of lithium ion batteries has accelerated dramatically over the last few decades. Single‐layered Ti3C2 (s‐Ti3C2) is effectively prepared by etching Ti3AlC2 via simple treatment with HCl and LiF, producing inevitably sediments always discarded after etching. This study explores the effect of LiF doping of multilayered Ti3C2 to form m‐Ti3C2/LiF consisting essentially of the sediments. Simple half‐cells assembled with m‐Ti3C2/LiF sediments suggest that LiF suppresses electrode volume expansion and surface cracking during cycling promoting Li+ intercalation/deintercalation. The data also suggest that LiF promotes formation of stable artificial solid electrolyte interfaces to prevent electrolyte and electrode degradation. The capacity of m‐Ti3C2/LiF sediments derived cells maintains 136 mAh g−1 after 1500 cycles at 300 mA g−1 while s‐Ti3C2 from supernatants physically mixed with 20 wt% LiF shows a capacity of 335 mAh g−1 (100th cycle) at 100 mA g−1 with an initial coulombic efficiency of 83%. Half‐cell anodes made of Ti3C2 etched by HF, commercial TiO2, and Sn powder mixed physically with 20 wt% LiF exhibit improved performance with cycling. These results indicate that the always discarded sediments can be directly used in LIBs and simple doping with LiF obviously improves the electrochemical performance of materials.Etching Ti3AlC2 using HCl and LiF results in the supernatants containing single‐layered Ti3C2 and multilayered Ti3C2/LiF sediments [m‐Ti3C2/LiF(S1)] always discarded as “debris”, further to be investigated in lithium ion batteries. The m‐Ti3C2/LiF(S1) shows negative capacity fading with capacity increasing to 198 mAh g−1 after 600 cycles at 30 mA g−1. LiF takes a significant role in electrochemical performance enhancing.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherTi3C2
dc.subject.otherlithium ion batteries
dc.subject.otherMXene
dc.subject.othercapacity increasing
dc.subject.otherLiF
dc.titleTurning Trash into Treasure: MXene with Intrinsic LiF Solid Electrolyte Interfaces Performs Better and Better during Battery Cycling
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167076/1/admt202000882_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167076/2/admt202000882-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167076/3/admt202000882.pdf
dc.identifier.doi10.1002/admt.202000882
dc.identifier.sourceAdvanced Materials Technologies
dc.identifier.citedreferenceX. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Adv. Mater. 2017, 29, 1607017.
dc.identifier.citedreferenceZ. Sun, H.‐R. Wang, J. Wang, T. Zhang, Energy Storage Mater. 2019, 23, 670.
dc.identifier.citedreferenceX. Shen, Y. Li, T. Qian, J. Liu, J. Zhou, C. Yan, J. B. Goodenough, Nat. Commun. 2019, 10, 900.
dc.identifier.citedreferenceZ. Zhu, Y. Tang, Z. Lv, J. Wei, Y. Zhang, R. Wang, W. Zhang, H. Xia, M. Ge, X. Chen, Angew. Chem., Int. Ed. 2018, 57, 3656.
dc.identifier.citedreferenceM. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Chem. Mater. 2017, 29, 7633.
dc.identifier.citedreferenceJ. Pang, R. G. Mendes, A. Bachmatiuk, L. Zhao, H. Q. Ta, T. Gemming, H. Liu, Z. Liu, M. H. Rummeli, Chem. Soc. Rev. 2019, 48, 72.
dc.identifier.citedreferenceX. Liang, A. Garsuch, L. F. Nazar, Angew. Chem., Int. Ed. 2015, 54, 3907.
dc.identifier.citedreferenceY. Dall’Agnese, M. R. Lukatskaya, K. M. Cook, P.‐L. Taberna, Y. Gogotsi, P. Simon, Electrochem. Commun. 2014, 48, 118.
dc.identifier.citedreferenceC. Peng, X. Yang, Y. Li, H. Yu, H. Wang, F. Peng, ACS Appl. Mater. Interfaces 2016, 8, 6051.
dc.identifier.citedreferenceY. T. Liu, P. Zhang, N. Sun, B. Anasori, Q. Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Adv. Mater. 2018, 30, 1707334.
dc.identifier.citedreferenceR. B. Rakhi, B. Ahmed, M. N. Hedhili, D. H. Anjum, H. N. Alshareef, Chem. Mater. 2015, 27, 5314.
dc.identifier.citedreferenceX. Zhang, Y. Liu, S. Dong, Z. Ye, Y. Guo, Ceram. Int. 2017, 43, 11065.
dc.identifier.citedreferenceN. Sun, B.‐y. Yang, J.‐c. Zheng, Z.‐j. He, H. Tong, L.‐b. Tang, C.‐s. An, B. Xiao, Ceram. Int. 2018, 44, 16214.
dc.identifier.citedreferenceZ. Yang, D. Choi, S. Kerisit, K. M. Rosso, D. Wang, J. Zhang, G. Graff, J. Liu, J. Power Sources 2009, 192, 588.
dc.identifier.citedreferenceC. Li, Z. Xue, J. Qin, M. Sawangphruk, P. Yu, X. Zhang, R. Liu, J. Alloys Compd. 2020, 842, 155812.
dc.identifier.citedreferenceY. Z. Fang, R. Hu, K. Zhu, K. Ye, J. Yan, G. Wang, D. Cao, Adv. Funct. Mater. 2020, 30, 2005663.
dc.identifier.citedreferenceM. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang, Nat. Chem. 2013, 5, 263.
dc.identifier.citedreferenceM. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248.
dc.identifier.citedreferenceM. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, W Michel, ACS Nano 2012, 6, 1322.
dc.identifier.citedreferenceC. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng, W. Lan, A. Pakdel, J. Heier, F. Nüesch, Energy Environ. Mater. 2020, 3, 29.
dc.identifier.citedreferenceM. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. Gogotsi, M. W. Barsoum, Nature 2014, 516, 78.
dc.identifier.citedreferenceW. Bao, L. Liu, C. Wang, S. Choi, D. Wang, G. Wang, Adv. Energy Mater. 2018, 8, 1702485.
dc.identifier.citedreferenceZ. Ma, X. Zhou, W. Deng, D. Lei, Z. Liu, ACS Appl. Mater. Interfaces 2018, 10, 3634.
dc.identifier.citedreferenceM. Q. Zhao, X. Xie, C. E. Ren, T. Makaryan, B. Anasori, G. Wang, Y. Gogotsi, Adv. Mater. 2017, 29, 1702410.
dc.identifier.citedreferenceE. Balci, U. O. Akkus, S. Berber, ACS Appl. Mater. Interfaces 2019, 11, 3609.
dc.identifier.citedreferenceA. Iqbal, P. Sambyal, C. M. Koo, Adv. Funct. Mater. 2020, 30, 2000883.
dc.identifier.citedreferenceQ. Hu, D. Sun, Q. Wu, H. Wang, L. Wang, B. Liu, A. Zhou, J. He, J. Phys. Chem. A 2013, 117, 14253.
dc.identifier.citedreferenceZ. Xu, Y. Sun, Y. Zhuang, W. Jing, H. Ye, Z. Cui, J. Membr. Sci. 2018, 564, 35.
dc.identifier.citedreferenceQ. Tang, Z. Zhou, P. Shen, J. Am. Chem. Soc. 2012, 134, 16909.
dc.identifier.citedreferenceD. Sun, M. Wang, Z. Li, G. Fan, L.‐Z. Fan, A. Zhou, Electrochem. Commun. 2014, 47, 80.
dc.identifier.citedreferenceC. Zhang, M. Liang, S.‐H. Park, Z. Lin, A. Seral‐Ascaso, L. Wang, A. Pakdel, C. Ó. Coileáin, J. Boland, O. Ronan, N. McEvoy, B. Lu, Y. Wang, Y. Xia, J. N. Coleman, V. Nicolosi, Energy Environ. Sci. 2020, 13, 2124.
dc.identifier.citedreferenceT. Yuan, Y. Jiang, W. Sun, B. Xiang, Y. Li, M. Yan, B. Xu, S. Dou, Adv. Funct. Mater. 2016, 26, 2198.
dc.identifier.citedreferenceL. B. Tang, B. Zhang, C. S. An, H. Li, B. Xiao, J. H. Li, Z. J. He, J. C. Zheng, Inorg. Chem. 2019, 58, 8169.
dc.identifier.citedreferenceM. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre, K. Nechev, R. J. Staniewicz, J. Power Sources 2005, 146, 90.
dc.identifier.citedreferenceI. W. D. Aurbach, A. Zaban, O. Chusid, Electrochim. Acta 1994, 39, 51.
dc.identifier.citedreferenceT. Li, X.‐Q. Zhang, P. Shi, Q. Zhang, Joule 2019, 3, 2647.
dc.identifier.citedreferenceW. Huang, H. Wang, D. T. Boyle, Y. Li, Y. Cui, ACS Energy Lett. 2020, 5, 1128.
dc.identifier.citedreferenceP. Sun, J. Davis, L. Cao, Z. Jiang, J. B. Cook, H. Ning, J. Liu, S. Kim, F. Fan, R. G. Nuzzo, P. V. Braun, Energy Storage Mater. 2019, 17, 151.
dc.identifier.citedreferenceH. Li, Z. Wang, L. Chen, X. Huang, Adv. Mater. 2009, 21, 4593.
dc.identifier.citedreferenceJ. S. Chen, Z. Wang, X. C. Dong, P. Chen, X. W. Lou, Nanoscale 2011, 3, 2158.
dc.identifier.citedreferenceY. Li, J. Shen, J. Li, S. Liu, D. Yu, R. Xu, W.‐F. Fu, X.‐J. Lv, J. Mater. Chem. A 2017, 5, 7055.
dc.identifier.citedreferenceJ.‐Y. Shin, D. Samuelis, J. Maier, Adv. Funct. Mater. 2011, 21, 3464.
dc.identifier.citedreferenceC. Yang, Y. Liu, X. Sun, Y. Zhang, L. Hou, Q. Zhang, C. Yuan, Electrochim. Acta 2018, 271, 165.
dc.identifier.citedreferenceC. Zhang, L. Cui, S. Abdolhosseinzadeh, J. Heier, InfoMat 2020, 2, 613.
dc.identifier.citedreferenceD.‐c. Zuo, S.‐c. Song, C.‐s. An, L.‐b. Tang, Z.‐j. He, J.‐c. Zheng, Nano Energy 2019, 62, 401.
dc.identifier.citedreferenceX. Hui, R. Zhao, P. Zhang, C. Li, C. Wang, L. Yin, Adv. Energy Mater. 2019, 9, 1901065.
dc.identifier.citedreferenceZ. Peng, N. Zhao, Z. Zhang, H. Wan, H. Lin, M. Liu, C. Shen, H. He, X. Guo, J.‐G. Zhang, D. Wang, Nano Energy 2017, 39, 662.
dc.identifier.citedreferenceS. Abdolhosseinzadeh, R. Schneider, A. Verma, J. Heier, F. Nüesch, C. J. Zhang, Adv. Mater. 2020, 32, 2000716.
dc.identifier.citedreferenceG. E. Peled, G. Ardel, J. Electrochem. Soc. 1997, 144, L208.
dc.identifier.citedreferenceS. K. Heiskanen, J. Kim, B. L. Lucht, Joule 2019, 3, 2322.
dc.identifier.citedreferenceC. E. Ren, M.‐Q. Zhao, T. Makaryan, J. Halim, M. Boota, S. Kota, B. Anasori, M. W. Barsoum, Y. Gogotsi, ChemElectroChem 2016, 3, 689.
dc.identifier.citedreferenceJ. Jiang, Q. Fan, S. Chou, Z. Guo, K. Konstantinov, H. Liu, J. Wang, Small 2019, 1903934.
dc.identifier.citedreferenceJ. B. Goodenough, K. S. Park, J. Am. Chem. Soc. 2013, 135, 1167.
dc.identifier.citedreferenceS. Choi, G. Wang, Adv. Mater. Technol. 2018, 3, 1700376.
dc.identifier.citedreferenceK. Zhao, Y. Yang, X. Liu, Z. L. Wang, Adv. Energy Mater. 2017, 7, 1700103.
dc.identifier.citedreferenceY. Dong, H. Shi, Z. S. Wu, Adv. Funct. Mater. 2020, 30, 2000706.
dc.identifier.citedreferenceY. Cheng, Z. Yi, C. Wang, Y. Wu, L. Wang, Chem. Eng. J. 2017, 330, 1035.
dc.identifier.citedreferenceB. Scrosati, J. Hassoun, Y.‐K. Sun, Energy Environ. Sci. 2011, 4, 3287.
dc.identifier.citedreferenceK. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
dc.identifier.citedreferenceM. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 2013, 113, 3766.
dc.identifier.citedreferenceP. K. Sahoo, S. Memaran, Y. Xin, L. Balicas, H. R. Gutierrez, Nature 2018, 553, 63.
dc.identifier.citedreferenceB. J. Kooi, B. Noheda, Science 2016, 353, 221.
dc.identifier.citedreferenceL. M. Xie, Nanoscale 2015, 7, 18392.
dc.identifier.citedreferenceD. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. C. Tang, C. Y. Zhi, ACS Nano 2010, 4, 2979.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.