Show simple item record

Tree seedling trait optimization and growth in response to local‐scale soil and light variability

dc.contributor.authorUmaña, María Natalia
dc.contributor.authorArellano, Gabriel
dc.contributor.authorSwenson, Nathan G.
dc.contributor.authorZambrano, Jenny
dc.date.accessioned2021-04-06T02:12:54Z
dc.date.available2022-05-05 22:12:51en
dc.date.available2021-04-06T02:12:54Z
dc.date.issued2021-04
dc.identifier.citationUmaña, María Natalia ; Arellano, Gabriel; Swenson, Nathan G.; Zambrano, Jenny (2021). "Tree seedling trait optimization and growth in response to local‐scale soil and light variability." Ecology 102(4): n/a-n/a.
dc.identifier.issn0012-9658
dc.identifier.issn1939-9170
dc.identifier.urihttps://hdl.handle.net/2027.42/167087
dc.description.abstractAt local scales, it has been suggested that high levels of resources lead to increased tree growth via trait optimization (highly peaked trait distribution). However, this contrasts with (1) theories that suggest that trait optimization and high growth occur in the most common resource level and (2) empirical evidence showing that high trait optimization can be also found at low resource levels. This raises the question of how are traits and growth optimized in highly diverse plant communities. Here, we propose a series of hypotheses about how traits and growth are expected to be maximized under different resource levels (low, the most common, and high) in tree seedling communities from a subtropical forest in Puerto Rico, USA. We studied the variation in the distribution of biomass allocation and leaf traits and seedlings growth rate along four resource gradients: light availability (canopy openness) and soil K, Mg, and N content. Our analyses consisted of comparing trait kurtosis (a measurement of trait optimization), community trait means, and relative growth rates at three resource levels (low, common, and high). Trait optimization varied across the three resource levels depending on the type of resource and trait, with leaf traits being optimized under high N and in the most common K and Mg conditions, but not at any of the light levels. Also, seedling growth increased at high‐light conditions and high N and K but was not related to trait kurtosis. Our results indicate that local‐scale variability of soil fertility and understory light conditions result in shifts in species ecological strategies that increase growth despite a weak trait optimization, suggesting the existence of alternative phenotypes that achieve similar high performance. Uncovering the links between abiotic factors, functional trait diversity and performance is necessary to better predict tree responses to future changes in abiotic conditions.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPuerto Rico
dc.subject.othersoil nutrients
dc.subject.otherleaf area
dc.subject.otherbiomass allocation traits
dc.subject.othercanopy openness
dc.subject.otherkurtosis
dc.subject.otherspecific leaf area
dc.titleTree seedling trait optimization and growth in response to local‐scale soil and light variability
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167087/1/ecy3252-sup-0002-AppendixS2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167087/2/ecy3252_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167087/3/ecy3252-sup-0003-AppendixS3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167087/4/ecy3252-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167087/5/ecy3252.pdf
dc.identifier.doi10.1002/ecy.3252
dc.identifier.sourceEcology
dc.identifier.citedreferenceR Development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.R‐project.org
dc.identifier.citedreferencePinho, B. X., F. P. L. de Melo, V. Arroyo‐Rodríguez, S. Pierce, M. Lohbeck, and M. Tabarelli. 2018. Soil‐mediated filtering organizes tree assemblages in regenerating tropical forests. Journal of Ecology 106: 137 – 147.
dc.identifier.citedreferencePistón, N., F. de Bello, A. T. C. Dias, L. Götzenberger, B. H. P. Rosado, E. A. de Mattos, R. Salguero‐Gómez, and C. P. Carmona. 2019. Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. Journal of Ecology 107 ( 5 ): 2317 – 2328.
dc.identifier.citedreferencePoorter, H., K. J. Niklas, P. B. Reich, J. Oleksyn, P. Poot, and L. Mommer. 2012. Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control. New Phytologist 193: 30 – 50.
dc.identifier.citedreferencePoorter, L., and D. M. A. Rozendaal. 2008. Leaf size and leaf display of thirty‐eight tropical tree species. Oecologia 158: 35 – 46.
dc.identifier.citedreferenceBates, D., M. Maechler, B. M. Bolker, and S. Walker. 2015. lme4: Linear mixed‐effects models using Eigen and S4. Version 1.1‐12. https://github.com/lme4/lme4/
dc.identifier.citedreferenceReich, P. B., M. B. Walters, and D. S. Ellsworth. 1997. From tropics to tundra: Global convergence in plant functioning. Ecology 94: 13730 – 13734.
dc.identifier.citedreferenceRozendaal, D. M. A., V. H. Hurtado, and L. Poorter. 2006. Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology 20: 207 – 216.
dc.identifier.citedreferenceSakschewski, B., W. Von Bloh, A. Boit, L. Poorter, M. Peña‐Claros, J. Heinke, J. Joshi, and K. Thonicke. 2016. Resilience of Amazon forests emerges from plant trait diversity. Nature Climate Change 6: 1032 – 1036.
dc.identifier.citedreferenceSantiago, L. S., S. J. Wright, K. E. Harms, J. B. Yavitt, C. Korine, M. N. Garcia, and B. L. Turner. 2012. Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition. Journal of Ecology 100: 309 – 316.
dc.identifier.citedreferenceŠímová, I., et al. 2015. Shifts in trait means and variances in North American tree assemblages: Species richness patterns are loosely related to the functional space. Ecography 38: 649 – 658.
dc.identifier.citedreferenceSouthwood, T. R. E. 1977. Habitat the Templet for Ecological Strategies? Journal of Animal Ecology 46: 336 – 365.
dc.identifier.citedreferenceSwenson, N. G., P. Anglada‐Cordero, and J. A. Barone. 2011. Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society B 278: 877 – 884.
dc.identifier.citedreferenceTripler, C. E., S. S. Kaushal, G. E. Likens, and M. Todd Walter. 2006. Patterns in potassium dynamics in forest ecosystems. Ecology Letters 9: 451 – 466.
dc.identifier.citedreferenceUmaña, M. N., G. Arellano, N. Swenson, and J. Zambrano. 2021. Tree seedling trait optimization and growth in response to local‐scale soil and light variability. Dryad. https://doi.org/10.5061/dryad.sqv9s4n29.
dc.identifier.citedreferenceUmaña, M. N., J. Forero‐Montaña, R. Muscarella, C. J. C. J. Nytch, J. Thompson, M. Uriarte, J. K. Zimmerman, and N. G. Swenson. 2016. Interspecific functional convergence and divergence and intraspecific negative density dependence underlie the seed‐to‐seedling transition in tropical trees. American Naturalist 187: 99 – 109.
dc.identifier.citedreferenceUmaña, M. N., C. Zhang, M. Cao, L. Lin, and N. G. Swenson. 2015. Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings. Ecology Letters 18: 1329 – 1337.
dc.identifier.citedreferenceUmaña, M. N., C. Zhang, M. Cao, L. Lin, and N. G. Swenson. 2018. Quantifying the role of intra‐specific trait variation for allocation and organ‐level traits in tropical seedling communities. Journal of Vegetation Science 29: 276 – 284.
dc.identifier.citedreferenceUriarte, M., R. Muscarella, and J. K. Zimmerman. 2018. Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration. Global Change Biology 24: e692 – e704.
dc.identifier.citedreferenceVermeesch, P. 2020. Package ‘provenance’: statistical Toolbox for Sedimentary Provenance Analysis. http://provenance.london‐geochron.com
dc.identifier.citedreferenceViolle, C., M.‐L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, and E. Garnier. 2007. Let the concept of trait be functional!. Oikos 116: 882 – 892.
dc.identifier.citedreferenceVitousek, P. M., and R. L. Sanford. 1986. Nutrient Cycling in Moist Tropical Forest. Annual Review of Ecology and Systematics 17: 137 – 167.
dc.identifier.citedreferenceWeiher, E., G. D. P. Clarke, and P. A. Keddy. 1998. Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81: 309.
dc.identifier.citedreferenceWorthy, S. J., D. C. Laughlin, J. Zambrano, M. N. Umaña, C. Zhang, L. Lin, M. Cao, and N. G. Swenson. 2020. Alternative designs and tropical tree seedling growth performance landscapes. Ecology 101: e03007.
dc.identifier.citedreferenceWright, I. J., et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821 – 827.
dc.identifier.citedreferenceWright, S. J., et al. 2011. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92: 1616 – 1625.
dc.identifier.citedreferenceWright, S. J. 2019. Plant responses to nutrient addition experiments conducted in tropical forests. Ecological Monographs 89: 1 – 18.
dc.identifier.citedreferenceAustin, M. P. 1986. The theoretical basis of vegetation science. Trends in Ecology and Evolution 1: 161 – 164.
dc.identifier.citedreferenceAbrams, P. A. 1995. Monotonic or unimodal diversity‐productivity gradients: What does competition theory predict? Ecology 76: 2019 – 2027.
dc.identifier.citedreferenceArellano, G., N. G. Medina, S. Tan, M. Mohamad, and S. J. Davies. 2019. Crown damage and the mortality of tropical trees. New Phytologist 221: 169 – 179.
dc.identifier.citedreferenceBernard‐Verdier, M., M. L. Navas, M. Vellend, C. Violle, A. Fayolle, and E. Garnier. 2012. Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology 100: 1422 – 1433.
dc.identifier.citedreferenceBlonder, B., R. E. Kapas, R. M. Dalton, B. J. Graae, J. M. Heiling, and Ø. H. Opedal. 2018. Microenvironment and functional‐trait context dependence predict alpine plant community dynamics. Journal of Ecology 106: 1323 – 1337.
dc.identifier.citedreferenceBloom, A. J., F. S. Chapin, and H. A. Mooney. 1985. resource limitation in plants‐an economic analogy. Annual Review of Ecology and Systematics 16: 363 – 392.
dc.identifier.citedreferenceBotev, Z. I., J. F. Grotowski, and D. P. Kroese. 2010. Kernel density estimation via diffusion. Annals of Statistics 38: 2916 – 2957.
dc.identifier.citedreferenceBrigatti, E., J. S. Sá Martins, and I. Roditi. 2007. Evolution of biodiversity and sympatric speciation through competition in a unimodal distribution of resources. Physica A: Statistical Mechanics and its Applications 376: 378 – 386.
dc.identifier.citedreferenceBruelheide, H., et al. 2018. Global trait–environment relationships of plant communities. Nature Ecology & Evolution 2: 1906 – 1917.
dc.identifier.citedreferenceChapin, F. S. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233 – 260.
dc.identifier.citedreferenceChazdon, R. L., and N. Fetcher. 1984. Light environments of tropical forests. Pages 27 – 36 in E. Medina, H. A. Mooney, and C. Vázquez‐Yánes, editors. Physiological ecology of plants of the wet tropics. Springer, Dordrecht, The Netherlands.
dc.identifier.citedreferenceComita, L. S., M. Uriarte, J. Thompson, I. Jonckheere, C. D. Canham, and J. K. Zimmerman. 2009. Abiotic and biotic drivers of seedling survival in a hurricane‐impacted tropical forest. Journal of Ecology 97: 1346 – 1359.
dc.identifier.citedreferenceCornwell, W. K., and D. D. Ackerly. 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79: 109 – 126.
dc.identifier.citedreferenceCraine, J. M., J. Froehle, D. G. Tilman, D. A. Wedin, and F. S. Chapin. 2001. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93: 274 – 285.
dc.identifier.citedreferencede Bello, F., W. Thuiller, J. Leps, P. Choler, J.‐C. Clément, P. Macek, M.‐T. Sebastià, and S. Lavorel. 2009. Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. Journal of Vegetation Science 20: 475 – 486.
dc.identifier.citedreferenceEnquist, B. J., J. Norberg, S. P. Bonser, C. Violle, C. T. Webb, A. Henderson, L. L. Sloat, and V. M. Savage. 2015. Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait‐based and metabolic scaling theories. Advances in Ecological Research 52: 249 – 318.
dc.identifier.citedreferenceEstrada, A., I. Morales‐Castilla, P. Caplat, and R. Early. 2016. Usefulness of species traits in predicting range shifts. Trends in Ecology and Evolution 31: 190 – 203.
dc.identifier.citedreferenceEwel, J. J., and J. L. Whitmore. 1973. The ecological life zones of Puerto Rico and the U.S.Virgin Islands. USDA Forest Service Research, Institute for Tropical Forestry, Rio Piedras, Puerto Rico, USA.
dc.identifier.citedreferenceFrazer, G. W., C. D. Canham, and K. P. Lertzman. 2000. Gap Light Analyzer (GLA), version 2.0. Page Technological Tools. https://www.caryinstitute.org/science/our‐scientists/dr‐charles‐d‐canham/gap‐light‐analyzer‐gla
dc.identifier.citedreferenceGarnier, E. 1991. Resource capture, biomass allocation and growth in herbaceous plants. Trends in Ecology and Evolution 6: 126 – 131.
dc.identifier.citedreferenceGlatthorn, J., and P. Beckschäfer. 2014. Standardizing the protocol for hemispherical photographs: Accuracy assessment of binarization algorithms. PLoS ONE 9: 1 – 19.
dc.identifier.citedreferenceGraefe, S., D. Hertel, and C. Leuschner. 2010. N, P and K limitation of fine root growth along an elevation transect in tropical mountain forests. Acta Oecologica 36: 537 – 542.
dc.identifier.citedreferenceGrime, J. P. 1979. Primary strategies in plants. Transactions of the Botanical Society of Edinburgh 43: 151 – 160.
dc.identifier.citedreferenceHedin, L. O., E. N. J. Brookshire, D. N. L. Menge, and A. R. Barron. 2009. The nitrogen paradox in tropical forest ecosystems. Annual Review of Ecology, Evolution, and Systematics 40: 613 – 635.
dc.identifier.citedreferenceHirose, T., and M. J. A. Werger. 1995. Canopy structure and photon flux partitioning among species in a herbaceous plant community. Ecology 76: 466 – 474.
dc.identifier.citedreferenceHubbell, S. P. 2005. Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology 19: 166 – 172.
dc.identifier.citedreferenceKeddy, P. A. 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Sciences 3: 157 – 164.
dc.identifier.citedreferenceKraft, N. J. B., and D. D. Ackerly. 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs 80: 401 – 422.
dc.identifier.citedreferenceLambers, H., and H. Poorter. 1992. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Advances in Ecological Research 23: 187 – 261.
dc.identifier.citedreferenceLe Bagousse‐Pinguet, Y., N. Gross, F. T. Maestre, V. Maire, F. de Bello, C. R. Fonseca, J. Kattge, E. Valencia, J. Leps, and P. Liancourt. 2017. Testing the environmental filtering concept in global drylands. Journal of Ecology 105: 1058 – 1069.
dc.identifier.citedreferenceLeBauer, D. S., and K. Treseder. 2008. Nitrogen limitation of net primary productivity. Ecology 89: 371 – 379.
dc.identifier.citedreferenceLüdecke, D. 2020. Package “performance”: Assessment of regression models performance. https://easystats.github.io/performance/
dc.identifier.citedreferenceMaathuis, F. J. 2009. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology 12: 250 – 258.
dc.identifier.citedreferenceMarks, C. O., and M. J. Lechowicz. 2006. Alternative designs and the evolution of functional diversity. American Naturalist 167: 55 – 66.
dc.identifier.citedreferenceMarschner, H., E. A. Kirkby, and I. Cakmak. 1996. Effect of mineral nutritional status on shoot‐root partitioning of photoassimilates and cycling of mineral nutrients. Journal of Experimental Botany 47: 1255 – 1263.
dc.identifier.citedreferenceMcGill, B. J., B. J. Enquist, E. Weiher, and M. Westoby. 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178 – 185.
dc.identifier.citedreferenceMirmanto, E., J. Proctor, J. Green, L. Nagy, and E. M. Suriantata. 1999. Effects of nitrogen and phosphorus fertilizations in a lowland evergreen rainforest. Journal of the Philippine Medical Association 354: 1825 – 1829.
dc.identifier.citedreferenceMooney, H. A. 1972. The carbon balance of plants. Annual Review of Ecology and Systematics 3: 315 – 346.
dc.identifier.citedreferenceMuscarella, R., and M. Uriarte. 2016. Do community‐weighted mean functional traits reflect optimal strategies? Proceedings of the Royal Society B 283 ( 1827 ): 20152434.
dc.identifier.citedreferenceNakagawa, S., and H. Schielzeth. 2013. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods in Ecology and Evolution 4: 133 – 142.
dc.identifier.citedreferenceOksanen, L., S. D. Fretwell, J. Arruda, and P. Niemela. 1981. Exploitation ecosystems in gradients of primary productivity. American Naturalist 118: 240 – 261.
dc.identifier.citedreferenceOrdoñez, J. C., P. M. Van Bodegom, J. P. M. Witte, I. J. Wright, P. B. Reich, and R. Aerts. 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography 18: 137 – 149.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.