Show simple item record

Hydrophilic titanium surface modulates early stages of osseointegration in osteoporosis

dc.contributor.authorSiqueira, Rafael
dc.contributor.authorFerreira, Jessica Afonso
dc.contributor.authorRizzante, Fábio Antônio Piola
dc.contributor.authorMoura, Guilherme Faria
dc.contributor.authorMendonça, Daniela Baccelli Silveira
dc.contributor.authorDe Magalhães, Denildo
dc.contributor.authorCimões, Renata
dc.contributor.authorMendonça, Gustavo
dc.date.accessioned2021-04-06T02:13:42Z
dc.date.available2022-05-05 22:13:40en
dc.date.available2021-04-06T02:13:42Z
dc.date.issued2021-04
dc.identifier.citationSiqueira, Rafael; Ferreira, Jessica Afonso; Rizzante, Fábio Antônio Piola ; Moura, Guilherme Faria; Mendonça, Daniela Baccelli Silveira ; De Magalhães, Denildo ; Cimões, Renata ; Mendonça, Gustavo (2021). "Hydrophilic titanium surface modulates early stages of osseointegration in osteoporosis." Journal of Periodontal Research (2): 351-362.
dc.identifier.issn0022-3484
dc.identifier.issn1600-0765
dc.identifier.urihttps://hdl.handle.net/2027.42/167101
dc.description.abstractObjectiveUsing a mouse osteoporotic model, this study aimed to determine the influence of hydrophilic titanium surfaces on gene expression and bone formation during the osseointegration process.BackgroundBased on the previous evidence, it is plausible to assume that osteoporotic bone has a different potential of bone healing. Therefore, implant surface modification study that aims at enhancing bone formation to further improve short‐ and long‐term clinical outcomes in osteoporosis is necessary.Material and MethodsFifty female, 3‐month‐old mice were included in this study. Osteoporosis was induced by ovariectomy (OVX, test group) in 25 mice. The further 25 mice had ovaries exposed but not removed (SHAM, control group). Seven weeks following the ovariectomy procedures, one customized implant (0.7 × 8 mm) of each surface was placed in each femur for both groups. Implants had either a hydrophobic surface (SAE) or a hydrophilic treatment surface (SAE‐HD). Calcium (Ca) and phosphorus (P) content was measured by energy‐dispersive X‐ray spectroscopy (EDS) after 7 days. The femurs were analyzed for bone‐to‐implant contact (BIC) and bone volume fraction (BV) by nano‐computed tomography (nano‐CT) after 14 and 28 days. Same specimens were further submitted to histological analysis. Additionally, after 3 and 7 days, implants were removed and cells were collected around the implant to access gene expression profile of key osteogenic (Runx2, Alp, Sp7, Bsp, Sost, Ocn) and inflammatory genes (IL‐1β, IL‐10, Tnf‐α, and Nos2) by qRT‐PCR assay. Statistical analysis was performed by ANOVA and paired t test with significance at P < .05.ResultsThe amount of Ca and P deposited on the surface due to the mineralization process was higher for SAE‐HD compared to SAE on the intra‐group analysis. Nano‐CT and histology revealed more BV and BIC for SAE‐HD in SHAM and OVX groups compared to SAE. Analysis in OVX group showed that most genes (ie, ALP, Runx2) involved in the bone morphogenetic protein (BMP) signaling were significantly activated in the hydrophilic treatment.ConclusionBoth surfaces were able to modulate bone responses toward osteoblast differentiation. SAE‐HD presented a faster response in terms of bone formation and osteogenic gene expression compared to SAE. Hydrophilic surface in situations of osteoporosis seems to provide additional benefits in the early stages of osseointegration.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdental implant
dc.subject.othergene expression
dc.subject.otherosseointegration
dc.subject.otherosteoporosis
dc.subject.othersurface treatment
dc.titleHydrophilic titanium surface modulates early stages of osseointegration in osteoporosis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167101/1/jre12827_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167101/2/jre12827.pdf
dc.identifier.doi10.1111/jre.12827
dc.identifier.sourceJournal of Periodontal Research
dc.identifier.citedreferenceJiang P, Liang J, Song R, et al. Effect of octacalcium‐phosphate‐modified micro/nanostructured Titania surfaces on osteoblast response. ACS Appl Mater Interfaces. 2015; 7 ( 26 ): 14384 ‐ 14396.
dc.identifier.citedreferenceLang NP, Salvi GE, Huynh‐Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011; 22 ( 4 ): 349 ‐ 356.
dc.identifier.citedreferenceWang Z, Goh J, De SD, et al. Efficacy of bone marrow‐derived stem cells in strengthening osteoporotic bone in a rabbit model. Tissue Eng. 2006; 12 ( 7 ): 1753 ‐ 1761.
dc.identifier.citedreferenceSanghani‐Kerai A, Osagie‐Clouard L, Blunn G, Coathup M. The influence of age and osteoporosis on bone marrow stem cells from rats. Bone Joint Res. 2018; 7 ( 4 ): 289 ‐ 297.
dc.identifier.citedreferenceChen Q, Shou P, Zheng C, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 2016; 23 ( 7 ): 1128 ‐ 1139.
dc.identifier.citedreferencePino AM, Rosen CJ, Rodriguez JP. In osteoporosis, differentiation of mesenchymal stem cells (MSCs) improves bone marrow adipogenesis. Biol Res. 2012; 45 ( 3 ): 279 ‐ 287.
dc.identifier.citedreferenceYuan JS, Reed A, Chen F, Stewart CN Jr. Statistical analysis of real‐time PCR data. BMC Bioinformatics. 2006; 7: 85.
dc.identifier.citedreferenceWescott DC, Pinkerton MN, Gaffey BJ, Beggs KT, Milne TJ, Meikle MC. Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res. 2007; 86 ( 12 ): 1212 ‐ 1216.
dc.identifier.citedreferenceZhao G, Raines AL, Wieland M, Schwartz Z, Boyan BD. Requirement for both micron‐ and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials. 2007; 28 ( 18 ): 2821 ‐ 2829.
dc.identifier.citedreferenceGittens RA, Olivares‐Navarrete R, Schwartz Z, Boyan BD. Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta Biomater. 2014; 10 ( 8 ): 3363 ‐ 3371.
dc.identifier.citedreferenceMendonca DB, Miguez PA, Mendonca G, Yamauchi M, Aragao FJ, Cooper LF. Titanium surface topography affects collagen biosynthesis of adherent cells. Bone. 2011; 49 ( 3 ): 463 ‐ 472.
dc.identifier.citedreferenceMendonca G, Mendonca DB, Aragao FJ, Cooper LF. Advancing dental implant surface technology–from micron‐ to nanotopography. Biomaterials. 2008; 29 ( 28 ): 3822 ‐ 3835.
dc.identifier.citedreferenceWall I, Donos N, Carlqvist K, Jones F, Brett P. Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells in vitro. Bone. 2009; 45 ( 1 ): 17 ‐ 26.
dc.identifier.citedreferenceKhan MR, Donos N, Salih V, Brett PM. The enhanced modulation of key bone matrix components by modified Titanium implant surfaces. Bone. 2012; 50 ( 1 ): 1 ‐ 8.
dc.identifier.citedreferenceCalciolari E, Hamlet S, Ivanovski S, Donos N. Pro‐osteogenic properties of hydrophilic and hydrophobic titanium surfaces: crosstalk between signalling pathways in in vivo models. J Periodontal Res. 2018; 53 ( 4 ): 598 ‐ 609.
dc.identifier.citedreferenceWennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009; 20 ( Suppl 4 ): 172 ‐ 184.
dc.identifier.citedreferenceSartoretto SC, Alves AT, Resende RF, Calasans‐Maia J, Granjeiro JM, Calasans‐Maia MD. Early osseointegration driven by the surface chemistry and wettability of dental implants. J Appl Oral Sci. 2015; 23 ( 3 ): 279 ‐ 287.
dc.identifier.citedreferenceMardas N, Busetti J, de Figueiredo JA, Mezzomo LA, Scarparo RK, Donos N. Guided bone regeneration in osteoporotic conditions following treatment with zoledronic acid. Clin Oral Implants Res. 2017; 28 ( 3 ): 362 ‐ 371.
dc.identifier.citedreferenceArioka M, Zhang X, Li Z, et al. Osteoporotic changes in the periodontium impair alveolar bone healing. J Dent Res. 2019; 98 ( 4 ): 450 ‐ 458.
dc.identifier.citedreferenceChai YC, Carlier A, Bolander J, et al. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater. 2012; 8 ( 11 ): 3876 ‐ 3887.
dc.identifier.citedreferenceBarradas AM, Fernandes HA, Groen N, et al. A calcium‐induced signaling cascade leading to osteogenic differentiation of human bone marrow‐derived mesenchymal stromal cells. Biomaterials. 2012; 33 ( 11 ): 3205 ‐ 3215.
dc.identifier.citedreferenceCochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid‐etched surface: a histometric study in the canine mandible. J Biomed Mater Res. 1998; 40 ( 1 ): 1 ‐ 11.
dc.identifier.citedreferenceKokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006; 27 ( 15 ): 2907 ‐ 2915.
dc.identifier.citedreferencePeng F, Yu X, Wei M. In vitro cell performance on hydroxyapatite particles/poly(L‐lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation. Acta Biomater. 2011; 7 ( 6 ): 2585 ‐ 2592.
dc.identifier.citedreferenceGardin C, Ferroni L, Bressan E, et al. Adult stem cells properties in terms of commitment, aging and biological safety of grit‐blasted and Acid‐etched ti dental implants surfaces. Int J Mol Cell Med. 2014; 3 ( 4 ): 225 ‐ 236.
dc.identifier.citedreferenceLeung KS, Fung KP, Sher AH, Li CK, Lee KM. Plasma bone‐specific alkaline phosphatase as an indicator of osteoblastic activity. J Bone Joint Surg Br. 1993; 75 ( 2 ): 288 ‐ 292.
dc.identifier.citedreferenceMavrogenis AF, Dimitriou R, Parvizi J, Babis GC. Biology of implant osseointegration. J Musculoskelet Neuronal Interact. 2009; 9 ( 2 ): 61 ‐ 71.
dc.identifier.citedreferenceBosshardt DD, Salvi GE, Huynh‐Ba G, Ivanovski S, Donos N, Lang NP. The role of bone debris in early healing adjacent to hydrophilic and hydrophobic implant surfaces in man. Clin Oral Implants Res. 2011; 22 ( 4 ): 357 ‐ 364.
dc.identifier.citedreferenceDu D, Zhou Z, Zhu L, et al. TNF‐alpha suppresses osteogenic differentiation of MSCs by accelerating P2Y2 receptor in estrogen‐deficiency induced osteoporosis. Bone. 2018; 117: 161 ‐ 170.
dc.identifier.citedreferenceBuser D, Broggini N, Wieland M, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. 2004; 83 ( 7 ): 529 ‐ 533.
dc.identifier.citedreferenceBornstein MM, Valderrama P, Jones AA, Wilson TG, Seibl R, Cochran DL. Bone apposition around two different sandblasted and acid‐etched titanium implant surfaces: a histomorphometric study in canine mandibles. Clin Oral Implants Res. 2008; 19 ( 3 ): 233 ‐ 241.
dc.identifier.citedreferenceSartoretto SC, Alves A, Zarranz L, Jorge MZ, Granjeiro JM, Calasans‐Maia MD. Hydrophilic surface of Ti6Al4V‐ELI alloy improves the early bone apposition of sheep tibia. Clin Oral Implants Res. 2017; 28 ( 8 ): 893 ‐ 901.
dc.identifier.citedreferenceFeng JQ, Ward LM, Liu S, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006; 38 ( 11 ): 1310 ‐ 1315.
dc.identifier.citedreferenceLiu T, Wang J, Xie X, et al. DMP1 ablation in the rabbit results in mineralization defects and abnormalities in haversian canal/osteon microarchitecture. J Bone Miner Res. 2019; 34 ( 6 ): 1115 ‐ 1128.
dc.identifier.citedreferenceCalciolari E, Donos N, Mardas N. Osteoporotic animal models of bone healing: advantages and pitfalls. J Invest Surg. 2017; 30 ( 5 ): 342 ‐ 350.
dc.identifier.citedreferenceGaetti‐Jardim EC, Santiago‐Junior JF, Goiato MC, Pellizer EP, Magro‐Filho O, Jardim Junior EG. Dental implants in patients with osteoporosis: a clinical reality? J Craniofac Surg. 2011; 22 ( 3 ): 1111 ‐ 1113.
dc.identifier.citedreferenceGiro G, Chambrone L, Goldstein A, et al. Impact of osteoporosis in dental implants: a systematic review. World J Orthop. 2015; 6 ( 2 ): 311 ‐ 315.
dc.identifier.citedreferenceWagner F, Schuder K, Hof M, Heuberer S, Seemann R, Dvorak G. Does osteoporosis influence the marginal peri‐implant bone level in female patients? A cross‐sectional study in a matched collective. Clin Implant Dent Relat Res. 2017; 19 ( 4 ): 616 ‐ 623.
dc.identifier.citedreferencede Medeiros F, Kudo GAH, Leme BG, et al. Dental implants in patients with osteoporosis: a systematic review with meta‐analysis. Int J Oral Maxillofac Surg. 2018; 47 ( 4 ): 480 ‐ 491.
dc.identifier.citedreferenceTemmerman A, Rasmusson L, Kubler A, Thor A, Quirynen M. An open, prospective, non‐randomized, controlled, multicentre study to evaluate the clinical outcome of implant treatment in women over 60 years of age with osteoporosis/osteopenia: 1‐year results. Clin Oral Implants Res. 2017; 28 ( 1 ): 95 ‐ 102.
dc.identifier.citedreferenceWright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014; 29 ( 11 ): 2520 ‐ 2526.
dc.identifier.citedreferenceRachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011; 377 ( 9773 ): 1276 ‐ 1287.
dc.identifier.citedreferenceSanfilippo F, Bianchi AE. Osteoporosis: the effect on maxillary bone resorption and therapeutic possibilities by means of implant prostheses–a literature review and clinical considerations. Int J Periodontics Restorative Dent. 2003; 23 ( 5 ): 447 ‐ 457.
dc.identifier.citedreferenceFini M, Giavaresi G, Greggi T, et al. Biological assessment of the bone‐screw interface after insertion of uncoated and hydroxyapatite‐coated pedicular screws in the osteopenic sheep. J Biomed Mater Res A. 2003; 66 ( 1 ): 176 ‐ 183.
dc.identifier.citedreferenceErdogan O, Shafer DM, Taxel P, Freilich MA. A review of the association between osteoporosis and alveolar ridge augmentation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007; 104 ( 6 ): 738.e731 ‐ e713.
dc.identifier.citedreferenceTsolaki IN, Madianos PN, Vrotsos JA. Outcomes of dental implants in osteoporotic patients. A literature review. J Prosthodont. 2009; 18 ( 4 ): 309 ‐ 323.
dc.identifier.citedreferenceNamkung‐Matthai H, Appleyard R, Jansen J, et al. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone. 2001; 28 ( 1 ): 80 ‐ 86.
dc.identifier.citedreferenceKim SY, Kim SG, Lim SC, Bae CS. Effects on bone formation in ovariectomized rats after implantation of tooth ash and plaster of Paris mixture. J Oral Maxillofac Surg. 2004; 62 ( 7 ): 852 ‐ 857.
dc.identifier.citedreferenceShimizu M, Furuya R, Kawawa T, Sasaki T. Bone wound healing after maxillary molar extraction in ovariectomized aged rats: quantitative backscattered electron image analysis. Anat Rec. 2000; 259 ( 1 ): 76 ‐ 85.
dc.identifier.citedreferenceTeofilo JM, Brentegani LG, Lamano‐Carvalho TL. Bone healing in osteoporotic female rats following intra‐alveolar grafting of bioactive glass. Arch Oral Biol. 2004; 49 ( 9 ): 755 ‐ 762.
dc.identifier.citedreferenceChen C‐H, Wang L, Serdar Tulu U, et al. An osteopenic/osteoporotic phenotype delays alveolar bone repair. Bone. 2018; 112: 212 ‐ 219.
dc.identifier.citedreferenceSalvi GE, Bosshardt DD, Lang NP, et al. Temporal sequence of hard and soft tissue healing around titanium dental implants. Periodontol 2000. 2015; 68 ( 1 ): 135 ‐ 152.
dc.identifier.citedreferenceAgarwal R, Garcia AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev. 2015; 94: 53 ‐ 62.
dc.identifier.citedreferenceGao Y, Zou S, Liu X, Bao C, Hu J. The effect of surface immobilized bisphosphonates on the fixation of hydroxyapatite‐coated titanium implants in ovariectomized rats. Biomaterials. 2009; 30 ( 9 ): 1790 ‐ 1796.
dc.identifier.citedreferenceVidigal GM Jr, Groisman M, Gregorio LH, Soares GA. Osseointegration of titanium alloy and HA‐coated implants in healthy and ovariectomized animals: a histomorphometric study. Clin Oral Implants Res. 2009; 20 ( 11 ): 1272 ‐ 1277.
dc.identifier.citedreferenceMardas N, Schwarz F, Petrie A, Hakimi AR, Donos N. The effect of SLActive surface in guided bone formation in osteoporotic‐like conditions. Clin Oral Implants Res. 2011; 22 ( 4 ): 406 ‐ 415.
dc.identifier.citedreferenceQi M, Hu J, Li J, et al. Effect of zoledronate acid treatment on osseointegration and fixation of implants in autologous iliac bone grafts in ovariectomized rabbits. Bone. 2012; 50 ( 1 ): 119 ‐ 127.
dc.identifier.citedreferenceYang G, Song L, Guo C, Zhao S, Liu L, He F. Bone responses to simvastatin‐loaded porous implant surfaces in an ovariectomized model. Int J Oral Maxillofac Implants. 2012; 27 ( 2 ): 369 ‐ 374.
dc.identifier.citedreferenceAlghamdi HS, Bosco R, van den Beucken JJ, Walboomers XF, Jansen JA. Osteogenicity of titanium implants coated with calcium phosphate or collagen type‐I in osteoporotic rats. Biomaterials. 2013; 34 ( 15 ): 3747 ‐ 3757.
dc.identifier.citedreferenceFraser D, Mendonca G, Sartori E, Funkenbusch P, Ercoli C, Meirelles L. Bone response to porous tantalum implants in a gap‐healing model. Clin Oral Implants Res. 2019; 30 ( 2 ): 156 ‐ 168.
dc.identifier.citedreferenceCochran DL, Nummikoski PV, Higginbottom FL, Hermann JS, Makins SR, Buser D. Evaluation of an endosseous titanium implant with a sandblasted and acid‐etched surface in the canine mandible: radiographic results. Clin Oral Implants Res. 1996; 7 ( 3 ): 240 ‐ 252.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.