Show simple item record

Statistical properties of kinetic- scale magnetic holes in terrestrial space

dc.contributor.authorYao, ShuTao
dc.contributor.authorYue, ZongShun
dc.contributor.authorShi, QuanQi
dc.contributor.authorDegeling, Alexander William
dc.contributor.authorFu, HuiShan
dc.contributor.authorTian, AnMin
dc.contributor.authorZhang, Hui
dc.contributor.authorVu, Andrew
dc.contributor.authorGuo, RuiLong
dc.contributor.authorYao, ZhongHua
dc.contributor.authorLiu, Ji
dc.contributor.authorZong, Qiu‐gang
dc.contributor.authorZhou, XuZhi
dc.contributor.authorLi, JingHuan
dc.contributor.authorLi, WenYa
dc.contributor.authorHu, HongQiao
dc.contributor.authorLiu, YangYang
dc.contributor.authorSun, WeiJie
dc.date.accessioned2021-04-06T02:14:38Z
dc.date.available2022-02-05 22:14:37en
dc.date.available2021-04-06T02:14:38Z
dc.date.issued2021-01
dc.identifier.citationYao, ShuTao; Yue, ZongShun; Shi, QuanQi; Degeling, Alexander William; Fu, HuiShan; Tian, AnMin; Zhang, Hui; Vu, Andrew; Guo, RuiLong; Yao, ZhongHua; Liu, Ji; Zong, Qiu‐gang ; Zhou, XuZhi; Li, JingHuan; Li, WenYa; Hu, HongQiao; Liu, YangYang; Sun, WeiJie (2021). "Statistical properties of kinetic- scale magnetic holes in terrestrial space." Earth and Planetary Physics 5(1): 63-72.
dc.identifier.issn2096-3955
dc.identifier.issn2096-3955
dc.identifier.urihttps://hdl.handle.net/2027.42/167119
dc.description.abstractKinetic- scale magnetic holes (KSMHs) are structures characterized by a significant magnetic depression with a length scale on the order of the proton gyroradius. These structures have been investigated in recent studies in near- Earth space, and found to be closely related to energy conversion and particle acceleration, wave- particle interactions, magnetic reconnection, and turbulence at the kinetic- scale. However, there are still several major issues of the KSMHs that need further study - including (a) the source of these structures (locally generated in near- Earth space, or carried by the solar wind), (b) the environmental conditions leading to their generation, and (c) their spatio- temporal characteristics. In this study, KSMHs in near- Earth space are investigated statistically using data from the Magnetospheric Multiscale mission. Approximately 200,000 events were observed from September 2015 to March 2020. Occurrence rates of such structures in the solar wind, magnetosheath, and magnetotail were obtained. We find that KSMHs occur in the magnetosheath at rates far above their occurrence in the solar wind. This indicates that most of the structures are generated locally in the magnetosheath, rather than advected with the solar wind. Moreover, KSMHs occur in the downstream region of the quasi- parallel shock at rates significantly higher than in the downstream region of the quasi- perpendicular shock, indicating a relationship with the turbulent plasma environment. Close to the magnetopause, we find that the depths of KSMHs decrease as their temporal- scale increases. We also find that the spatial- scales of the KSMHs near the subsolar magnetosheath are smaller than those in the flanks. Furthermore, their global distribution shows a significant dawn- dusk asymmetry (duskside dominating) in the magnetotail.Key PointsMost KSMHs are locally generated in the magnetosheath, rather than advected with the solar wind.KSMHs are more likely to be generated downstream of the quasi- parallel shock, indicating the importance of turbulence in their generation.The scale- size of KSMHs is smaller near the subsolar magnetosheath than along the flanks, indicating they may be affected by the magnetosheath pressure environment.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherelectron vortex
dc.subject.otherturbulence
dc.subject.otherkinetic scale
dc.subject.othermagnetic hole
dc.subject.othermagnetic dip
dc.titleStatistical properties of kinetic- scale magnetic holes in terrestrial space
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167119/1/epp320195.pdf
dc.identifier.doi10.26464/epp2021011
dc.identifier.sourceEarth and Planetary Physics
dc.identifier.citedreferenceSun, W. J., Shi, Q. Q., Fu, S. Y., Pu, Z. Y., Dunlop, M. W., Walsh, A. P., Zong, Q.- G., Xiao, T., Tang, C. L., - ¦ Fazakerley, A. ( 2012 ). Cluster and TC-1 observation of magnetic holes in the plasma sheet. Ann. Geophys., 30 ( 3 ), 583 - 595. https://doi.org/10.5194/angeo-30-583-2012
dc.identifier.citedreferenceShi, Q. Q., Shen, C., Dunlop, M. W., Pu, Z. Y., Zong, Q.- G., Liu, Z. X., Lucek, E., and Balogh, A. ( 2006 ). Motion of observed structures calculated from multi- point magnetic field measurements: application to cluster. Geophys. Res. Lett., 33 ( 8 ), L08109. https://doi.org/10.1029/2005GL025073
dc.identifier.citedreferenceShi, Q. Q., Pu, Z. Y., Soucek, J., Zong, Q.- G., Fu, S. Y., Xie, L., Chen, Y., Zhang, H., Li, L., - ¦ Reme, H. ( 2009 ). Spatial structures of magnetic depression in the Earth’s high- altitude cusp: cluster multipoint observations. J. Geophys. Res., 114 ( A10 ), A10202. https://doi.org/10.1029/2009JA014283
dc.identifier.citedreferenceShi, Q. Q., Tian, A. M., Bai, S. C., Hasegawa, H., Degeling, A. W., Pu, Z. Y., Dunlop, M., Guo, R. L., Yao, S. T., - ¦ Liu, Z. Q. ( 2019 ). Dimensionality, coordinate system and reference frame for analysis of in- situ space plasma and field data. Space Sci. Rev., 215 ( 4 ), 35. https://doi.org/10.1007/s11214-019-0601-2
dc.identifier.citedreferenceShustov, P. I., Zhang, X. J., Pritchett, P. L., Artemyev, A. V., Angelopoulos, V., Yushkov, E. V., and Petrukovich, A. A. ( 2019 ). Statistical properties of sub- ion magnetic holes in the dipolarized magnetotail: formation, structure, and dynamics. J. Geophys. Res., 124 ( 1 ), 342 - 359. https://doi.org/10.1029/2018JA025852
dc.identifier.citedreferenceSlavin, J. A., Owen, C. J., Kuznetsova, M. M., and Hesse, M. ( 1995 ). ISEE 3 observations of plasmoids with flux rope magnectic topologies. Geophys. Res. Lett., 22 ( 15 ), 2061 - 2064. https://doi.org/10.1029/95GL01977
dc.identifier.citedreferenceSong, P., Russell, C. T., and Thomsen, M. F. ( 1992 ). Slow mode transition in the frontside magnetosheath. J. Geophys. Res., 97 ( A6 ), 8295 - 8305. https://doi.org/10.1029/92JA00381
dc.identifier.citedreferenceSong, P., Russell, C. T., and Gary, S. P. ( 1994 ). Identification of low- frequency fluctuations in the terrestrial magnetosheath. J. Geophys. Res., 99 ( A4 ), 6011 - 6025. https://doi.org/10.1029/93JA03300
dc.identifier.citedreferenceStasiewicz, K. ( 2004 ). Theory and observations of slow- mode solitons in space plasmas. Phys. Rev. Lett., 93 ( 12 ), 125004. https://doi.org/10.1103/PhysRevLett.93.125004
dc.identifier.citedreferenceStawarz, J. E., Eastwood, J. P., Genestreti, K. J., Nakamura, R., Ergun, R. E., Burgess, D., Burch, J. L., Fuselier, S. A., Gershman, D. J., - ¦ Torbert, R. B. ( 2018 ). Intense electric fields and electron- scale substructure within magnetotail flux ropes as revealed by the Magnetospheric Multiscale mission. Geophys. Res. Lett., 45 ( 17 ), 8783 - 8792. https://doi.org/10.1029/2018GL079095
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Tian, A. M., Bai, S. C., Poh, G. K., Akhavan- Tafti, M., Lu, S., Yao, S. T., Le, G., - ¦ Burch, J. L. ( 2019 ). MMS study of the structure of ion- scale flux ropes in the Earth’s cross- tail current sheet. Geophys. Res. Lett., 46 ( 12 ), 6168 - 6177. https://doi.org/10.1029/2019GL083301
dc.identifier.citedreferenceSundberg, T., Burgess, D., and Haynes, C. T. ( 2015 ). Properties and origin of subproton- scale magnetic holes in the terrestrial plasma sheet. J. Geophys. Res., 120 ( 4 ), 2600 - 2615. https://doi.org/10.1002/2014JA020856
dc.identifier.citedreferenceTian, A. M., Shi, Q. Q., Degeling, A. W., Bai, S. C., Yao, S. T., and Zhang, S. ( 2018 ). Analytical model test of methods to find the geometry and velocity of magnetic structures. Sci. China Technol. Sci., 62 ( 6 ), 1003 - 1014. https://doi.org/10.1007/s11431-018-9350-1
dc.identifier.citedreferenceTian, A. M., Xiao, K., Degeling, A. W., Shi, Q. Q., Park, J. S., Nowada, M., and Pitkänen, T. ( 2020 ). Reconstruction of plasma structure with anisotropic pressure: application to Pc5 compressional wave. Astrophys. J., 889 ( 1 ), 35. https://doi.org/10.3847/1538-4357/ab6296
dc.identifier.citedreferenceTreumann, R. A., and Baumjohann, W. ( 2019 ). Electron pairing in mirror modes: surpassing the quasi- linear limit. Ann. Geophys., 37 ( 4 ), 971 - 988. https://doi.org/10.5194/angeo-37-971-2019
dc.identifier.citedreferenceTsurutani, B. T., Lakhina, G. S., Verkhoglyadova, O. P., Echer, E., Guarnieri, F. L., Narita, Y., and Constantinescu, D. O. ( 2011 ). Magnetosheath and heliosheath mirror mode structures, interplanetary magnetic decreases, and linear magnetic decreases: differences and distinguishing features. J. Geophys. Res., 116 ( A2 ), A02103. https://doi.org/10.1029/2010JA015913
dc.identifier.citedreferenceTurner, J. M., Burlaga, L. F., Ness, N. F., and Lemaire, J. F. ( 1977 ). Magnetic holes in the solar wind. J. Geophys. Res., 82 ( 13 ), 1921 - 1924. https://doi.org/10.1029/JA082i013p01921
dc.identifier.citedreferenceWang, G. Q., Zhang, T. L., Wu, M. Y., Schmid, D., Hao, Y. F., and Volwerk, M. ( 2020a ). Roles of electrons and ions in formation of the current in mirror- mode structures in the terrestrial plasma sheet: Magnetospheric Multiscale observations. Ann. Geophys., 38 ( 2 ), 309 - 318. https://doi.org/10.5194/angeo-38-309-2020
dc.identifier.citedreferenceWang, G. Q., Zhang, T. L., Wu, M. Y., Hao, Y. F., Xiao, S. D., Wang, G., et al. ( 2020b ). Study of the electron velocity inside sub- ion- scale magnetic holes in the solar wind by MMS observations. J. Geophys. Res., 125, e2020JA028386. https://doi.org/10.1029/2020JA028386
dc.identifier.citedreferenceWang, G. Q., Zhang, T. L., Xiao, S. D., Wu, M. Y., Wang, G., Liu, L. J., et al. ( 2020c ). Statistical properties of sub- ion magnetic holes in the solar wind at 1 AU. J. Geophys. Res., 125, e2020JA028320. https://doi.org/10.1029/2020JA028320
dc.identifier.citedreferenceWang, G. Q., Volwerk, M., Xiao, S. D., Wu, M. Y., Hao, Y. F., Liu, L. J., Wang, G., Chen, Y. Q., and Zhang, T. L. ( 2020d ). Three- dimensional Geometry of the Electron- scale Magnetic Hole in the Solar Wind. Astrophys. J. Lett., 904, L11. https://doi.org/10.3847/2041-8213/abc553
dc.identifier.citedreferenceWang, M. M., Yao, S. T., Shi, Q. Q., Zhang, H., Tian, A. M., Degeling, A. W., Zhang, S., Guo, R. L., Sun, W. J., - ¦ Pu, Z. Y. ( 2020 ). Propagation properties of foreshock cavitons: cluster observations. Sci. China Technol. Sci., 63 ( 1 ), 173 - 182. https://doi.org/10.1007/s11431-018-9450-3
dc.identifier.citedreferenceWang, S. M., Wang, R. S., Yao, S. T., Lu, Q. M., Russell, C. T., and Wang, S. ( 2019 ). Anisotropic electron distributions and whistler waves in a series of the flux transfer events at the magnetopause. J. Geophys. Res., 124 ( 3 ), 1753 - 1769. https://doi.org/10.1029/2018JA026417
dc.identifier.citedreferenceXiao, T., Zhang, H., Shi, Q. Q., Zong, Q.- G., Fu, S. Y., Tian, A. M., Sun, W. J., Wang, S., Parks, G. K., - ¦ Dandouras, I. ( 2015 ). Propagation characteristics of young hot flow anomalies near the bow shock: cluster observations. J. Geophys. Res., 120 ( 6 ), 4142 - 4154. https://doi.org/10.1002/2015JA021013
dc.identifier.citedreferenceYao, S. T., Shi, Q. Q., Li, Z. Y., Wang, X. G., Tian, A. M., Sun, W. J., Hamrin, M., Wang, M. M., Pitkänen, T., - ¦ Rème, H. ( 2016 ). Propagation of small size magnetic holes in the magnetospheric plasma sheet. J. Geophys. Res., 121 ( 6 ), 5510 - 5519. https://doi.org/10.1002/2016JA022741
dc.identifier.citedreferenceYao, S. T., Wang, X. G., Shi, Q. Q., Pitkänen, T., Hamrin, M., Yao, Z. H., Li, Z. Y., Ji, X. F., De Spiegeleer, A., - ¦ Liu, J. ( 2017 ). Observations of kinetic- size magnetic holes in the magnetosheath. J. Geophys. Res., 122 ( 2 ), 1999 - 2000. https://doi.org/10.1002/2016JA023858
dc.identifier.citedreferenceYao, S. T., Shi, Q. Q., Guo, R. L., Yao, Z. H., Tian, A. M., Degeling, A. W., Sun, W. J., Liu, J., Wang, X. G., - ¦ Liu, H. ( 2018a ). Magnetospheric Multiscale observations of electron scale magnetic peak. Geophys. Res. Lett., 45 ( 2 ), 527 - 537. https://doi.org/10.1002/2017GL075711
dc.identifier.citedreferenceYao, S. T., Shi, Q. Q., Liu, J., Yao, Z. H., Guo, R. L., Ahmadi, N., Degeling, A. W., Zong, Q.- G., Wang, X. G., - ¦ Giles, B. L. ( 2018b ). Electron dynamics in magnetosheath mirror- mode structures. J. Geophys. Res., 123 ( 7 ), 5561 - 5570. https://doi.org/10.1029/2018JA025607
dc.identifier.citedreferenceYao, S. T., Shi, Q. Q., Yao, Z. H., Li, J. X., Yue, C., Tao, X., Degeling, A. W., Zong, Q.- G., Wang, X. G., - ¦ Giles, B. L. ( 2019a ). Waves in kinetic- scale magnetic dips: MMS observations in the magnetosheath. Geophys. Res. Lett., 46 ( 2 ), 523 - 533. https://doi.org/10.1029/2018GL080696
dc.identifier.citedreferenceYao, S. T., Shi, Q. Q., Yao, Z. H., Guo, R. L., Zong, Q.- G., Wang, X. G., Degeling, A. W., Rae, I. J., Russell, C. T., and Tian, A. M. ( 2019b ). Electron mirror- mode structure: magnetospheric multiscale observations. Astrophys. J. Lett., 881 ( 2 ), L31. https://doi.org/10.3847/2041-8213/ab3398
dc.identifier.citedreferenceYao, S. T., Hamrin, M., Shi, Q. Q., Yao, Z. H., Degeling, A. W., Zong, Q.- G., Liu, H., Tian, A. M., Liu, J., - ¦ Giles, B. L. ( 2020a ). Propagating and dynamic properties of magnetic dips in the dayside magnetosheath: MMS observations. J. Geophys. Res., 124 ( 6 ), e2019JA026736. https://doi.org/10.1029/2019JA026736
dc.identifier.citedreferenceYao, S. T., Shi, Q. Q., Guo, R. L., Yao, Z. H., Fu, H. S., Degeling, A. W., Zong, Q.- G., Wang, X. G., Russell, C. T., - ¦ Giles, B. L. ( 2020b ). Kinetic- scale flux rope in the magnetosheath boundary layer. Astrophys. J., 897 ( 2 ), 137. https://doi.org/10.3847/1538-4357/ab9620
dc.identifier.citedreferenceZhang, L., He, J. S., Zhao, J. S., Yao, S., and Feng, X. S. ( 2018 ). Nature of magnetic holes above ion scales: a mixture of stable slow magnetosonic and unstable mirror modes in a double- polytropic scenario?. Astrophys. J., 864 ( 1 ), 35. https://doi.org/10.3847/1538-4357/aad4aa
dc.identifier.citedreferenceZhang, T. L., Russell, C. T., Baumjohann, W., Jian, L. K., Balikhin, M. A., Cao, J. B., Wang, C., Blanco- Cano, X., Glassmeier, K. H., - ¦ Vörös, Z. ( 2008 ). Characteristic size and shape of the mirror mode structures in the solar wind at 0.72 AU. Geophys. Res. Lett., 35 ( 10 ), L10106. https://doi.org/10.1029/2008GL033793
dc.identifier.citedreferenceZhang, X. J., Artemyev, A., Angelopoulos, V., and Horne, R. B. ( 2017 ). Kinetics of sub- ion scale magnetic holes in the near- Earth plasma sheet. J. Geophys. Res., 122 ( 10 ), 10304 - 10317. https://doi.org/10.1002/2017JA024197
dc.identifier.citedreferenceZhong, Z. H., Zhou, M., Huang, S. Y., Tang, R. X., Deng, X. H., Pang, Y., and Chen, H. T. ( 2019 ). Observations of a kinetic- scale magnetic hole in a reconnection diffusion region. Geophys. Res. Lett., 46 ( 12 ), 6248 - 6257. https://doi.org/10.1029/2019GL082637
dc.identifier.citedreferenceZong, Q.- G., Fritz, T. A., Spence, H., Oksavik, K., Pu, Z. Y., Korth, A., and Daly, P. W. ( 2004 ). Energetic particle sounding of the magnetopause: a contribution by Cluster/RAPID. J. Geophys. Res, 109 ( A4 ), A04207. https://doi.org/10.1029/2003JA009929
dc.identifier.citedreferenceHaynes, C. T., Burgess, D., Camporeale, E., and Sundberg, T. ( 2015 ). Electron vortex magnetic holes: A nonlinear coherent plasma structure. Phys. Plasmas, 22 ( 1 ), 012309. https://doi.org/10.1063/1.4906356
dc.identifier.citedreferenceHellinger, P., and Štverák, Š. ( 2018 ). Electron mirror instability: particle- in- cell simulations. J. Plasma Phys., 84 ( 4 ), 905840402. https://doi.org/10.1017/S0022377818000703
dc.identifier.citedreferenceBalikhin, M. A., Sagdeev, R. Z., Walker, S. N., Pokhotelov, O. A., Sibeck, D. G., Beloff, N., and Dudnikova, G. ( 2009 ). THEMIS observations of mirror structures: magnetic holes and instability threshold. Geophys. Res. Lett., 36 ( 3 ), L03105. https://doi.org/10.1029/2008GL036923
dc.identifier.citedreferenceBalikhin, M. A., Sibeck, D. G., Runov, A., and Walker, S. N. ( 2012 ). Magnetic holes in the vicinity of dipolarization fronts: mirror or tearing structures?. J. Geophys. Res., 117 ( A8 ), A08229. https://doi.org/10.1029/2012JA017552
dc.identifier.citedreferenceBaumgärtel, K. ( 1999 ). Soliton approach to magnetic holes. J. Geophys. Res., 104 ( A12 ), 28295 - 28308. https://doi.org/10.1029/1999JA900393
dc.identifier.citedreferenceBüchner, J., and Zelenyi, L. M. ( 1989 ). Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion. J. Geophys. Res., 94 ( A9 ), 11821 - 11842. https://doi.org/10.1029/JA094iA09p11821
dc.identifier.citedreferenceBurch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L. ( 2016 ). Magnetospheric multiscale overview and science objectives. Space Sci. Rev., 199 ( 1 ), 5 - 21. https://doi.org/10.1007/s11214-015-0164-9
dc.identifier.citedreferenceCattaneo, M. B. B., Basile, C., Moreno, G., and Richardson, J. D. ( 1998 ). Evolution of mirror structures in the magnetosheath of Saturn from the bow shock to the magnetopause. J. Geophys. Res., 103 ( A6 ), 11961 - 11972. https://doi.org/10.1029/97JA03683
dc.identifier.citedreferenceFreund, Y., and Schapire, R. E. ( 1997 ). A decision- theoretic generalization of on- line learning and an application to boosting. J. Comput. Syst. Sci., 55 ( 1 ), 119 - 139. https://doi.org/10.1006/jcss.1997.1504
dc.identifier.citedreferenceFuselier, S. A., Lewis, W. S., Schiff, C., Ergun, R., Burch, J. L., Petrinec, S. M., and Trattner, K. J. ( 2016 ). Magnetospheric multiscale science mission profile and operations. Space Sci. Rev., 199 ( 1- 4 ), 77 - 103. https://doi.org/10.1007/s11214-014-0087-x
dc.identifier.citedreferenceGe, Y. S., McFadden, J. P., Raeder, J., Angelopoulos, V., Larson, D., and Constantinescu, O. D. ( 2011 ). Case studies of mirror- mode structures observed by THEMIS in the near- Earth tail during substorms. J. Geophys. Res., 116 ( A1 ), A01209. https://doi.org/10.1029/2010JA015546
dc.identifier.citedreferenceGershman, D. J., Dorelli, J. C., Viñas, A. F., Avanov, L. A., Gliese, U., Barrie, A. C., Coffey, V., Chandler, M., Dickson, C., - ¦ Burch, J. L. ( 2016 ). Electron dynamics in a subproton- gyroscale magnetic hole. Geophys. Res. Lett., 43 ( 9 ), 4112 - 4118. https://doi.org/10.1002/2016GL068545
dc.identifier.citedreferenceGoodrich, K. A., Ergun, R. E., Wilder, F. D., Burch, J., Torbert, R., Khotyaintsev, Y., Lindqvist, P. A., Russell, C., Strangeway, R., - ¦ Malaspina, D. M. ( 2016 ). MMS multipoint electric field observations of small- scale magnetic holes. Geophys. Res. Lett., 43 ( 12 ), 5953 - 5959. https://doi.org/10.1002/2016GL069157
dc.identifier.citedreferenceHuang, J., Zhou, M., Li, H. M., Deng, X. H., Liu, J., and Huang, S. Y. ( 2019 ). Small- scale dipolarization fronts in the Earth’smagnetotail. Earth Planet. Phys., 3 ( 4 ), 358 - 364. https://doi.org/10.26464/epp2019036
dc.identifier.citedreferenceHoilijoki, S., Ergun, R. E., Schwartz, S. J., Eriksson, S., Wilder, F. D., Webster, J. M., Ahmadi, N., Le Contel, O., Burch, J. L., - ¦ Giles, B. L. ( 2019 ). Electron- scale magnetic structure observed adjacent to an electron diffusion region at the dayside magnetopause. J. Geophys. Res., 124 ( 12 ), 10153 - 10169. https://doi.org/10.1029/2019JA027192
dc.identifier.citedreferenceHorbury, T. S., Lucek, E. A., Balogh, A., Dandouras, I., and Rème, H. ( 2004 ). Motion and orientation of magnetic field dips and peaks in the terrestrial magnetosheath. J. Geophys. Res., 109 ( A9 ), A09209. https://doi.org/10.1029/2003JA010237
dc.identifier.citedreferenceHuang, S. Y., Sahraoui, F., Retino, A., Le Contel, O., Yuan, Z. G., Chasapis, A., Aunai, N., Breuillard, H., Deng, X. H., - ¦ Burch, J. L. ( 2016 ). MMS observations of ion- scale magnetic island in the magnetosheath turbulent plasma. Geophys. Res. Lett., 43 ( 15 ), 7850 - 7858. https://doi.org/10.1002/2016GL070033
dc.identifier.citedreferenceHuang, S. Y., Du, J. W., Sahraoui, F., Yuan, Z. G., He, J. S., Zhao, J. S., Le Contel, O., Breuillard, H., Wang, D. D., - ¦ Burch, J. L. ( 2017a ). A statistical study of kinetic- size magnetic holes in turbulent magnetosheath: MMS observations. J. Geophys. Res., 122 ( 8 ), 8577 - 8588. https://doi.org/10.1002/2017JA024415
dc.identifier.citedreferenceHuang, S. Y., Sahraoui, F., Yuan, Z. G., He, J. S., Zhao, J. S., Le Contel, O., Deng, X. H., Zhou, M., Fu, H. S., - ¦ Burch, J. L. ( 2017b ). Magnetospheric multiscale observations of electron vortex magnetic hole in the turbulent magnetosheath plasma. Astrophys. J. Lett., 836 ( 2 ), L27. https://doi.org/10.3847/2041-8213/aa5f50
dc.identifier.citedreferenceHuang, S. Y., Sahraoui, F., Yuan, Z. G., Le Contel, O., Breuillard, H., He, J. S., Zhao, J. S., Fu, H. S., Zhou, M., - ¦ Burch, J. L. ( 2018 ). Observations of whistler waves correlated with electron- scale coherent structures in the magnetosheath turbulent plasma. Astrophys. J., 861 ( 1 ), 29. https://doi.org/10.3847/1538-4357/aac831
dc.identifier.citedreferenceHuang, S. Y., He, L. H., Yuan, Z. G., Sahraoui, F., Le Contel, O., Deng, X. H., Zhou, M., Fu, H. S., Jiang, K., - ¦ Burch, J. L. ( 2019 ). MMS observations of kinetic- size magnetic holes in the terrestrial magnetotail plasma sheet. Astrophys. J., 875 ( 2 ), 113. https://doi.org/10.3847/1538-4357/ab0f2f
dc.identifier.citedreferenceJasinski, J. M., Arridge, C. S., Coates, A. J., Jones, G. H., Sergis, N., Thomsen, M. F., and Krupp, N. ( 2017 ). Diamagnetic depression observations at Saturn’s magnetospheric cusp by the Cassini Spacecraft. J. Geophys. Res., 122 ( 6 ), 6283 - 6303. https://doi.org/10.1002/2016JA023738
dc.identifier.citedreferenceJi, X. F., Wang, X. G., Sun, W. J., Xiao, C. J., Shi, Q. Q., Liu, J., and Pu, Z. Y. ( 2014 ). EMHD theory and observations of electron solitary waves in magnetotail plasmas. J. Geophys. Res., 119 ( 6 ), 4281 - 4289. https://doi.org/10.1002/2014JA019924
dc.identifier.citedreferenceKarimabadi, H., Roytershteyn, V., Vu, H. X., Omelchenko, Y. A., Scudder, J., Daughton, W., Dimmock, A., Nykyri, K., Wan, M., - ¦ Geveci, B. ( 2014 ). The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas. Phys. Plasmas, 21 ( 6 ), 062308. https://doi.org/10.1063/1.4882875
dc.identifier.citedreferenceKitamura, N., Omura, Y., Nakamura, S., Amano, T., Boardsen, S. A., Ahmadi, N., Le Contel, O., Lindqvist, P. A., Ergun, R. E., - ¦ Burch, J. L. ( 2020 ). Observations of the source region of whistler mode waves in magnetosheath mirror structures. J. Geophys. Res., 125 ( 5 ), e2019JA027488. https://doi.org/10.1029/2019JA027488
dc.identifier.citedreferenceLi, J. H., Yang, F., Zhou, X. Z., Zong, Q.- G., Artemyev, A. V., Rankin, R., Shi, Q. Q., Yao, S. T., Liu, H., - ¦ Burch, J. B. ( 2020a ). Self- consistent kinetic model of nested electron- and ion- scale magnetic cavities in space plasmas. Nat Commun 11, 5616. https://doi.org/10.1038/s41467-020-19442-0
dc.identifier.citedreferenceLi, J. H., Zhou, X. Z., Zong, Q.- G., Yang, F., Fu, S. Y., Yao, S. T., Liu, J., Shi, Q. Q. ( 2020b ). On the origin of donut- shaped electron distributions within magnetic cavities. Geophysical Research Letters, 47 ( e2020GL091613 ). https://doi.org/10.1029/2020GL091613
dc.identifier.citedreferenceLi, Z., Lu, Q. M., Wang, R. S., Gao, X. L., and Chen, H. Y. ( 2019 ). In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection. Earth Planet. Phys., 3 ( 6 ), 467 - 473. https://doi.org/10.26464/epp2019048
dc.identifier.citedreferenceLi, Z. Y., Sun, W. J., Wang, X. G., Shi, Q. Q., Xiao, C. J., Pu, Z. Y., Ji, X. F., Yao, S. T., and Fu, S. Y. ( 2016 ). An EMHD soliton model for small- scale magnetic holes in magnetospheric plasmas. J. Geophys. Res., 121 ( 5 ), 4180 - 4190. https://doi.org/10.1002/2016JA022424
dc.identifier.citedreferenceLiu, H., Zong, Q.- G., Zhang, H., Xiao, C. J., Shi, Q. Q., Yao, S. T., He, J. S., Zhou, X. Z., Pollock, C., - ¦ Rankin, R. ( 2019a ). MMS observations of electron scale magnetic cavity embedded in proton scale magnetic cavity. Nat. Commun., 10 ( 1 ), 1040. https://doi.org/10.1038/s41467-019-08971-y
dc.identifier.citedreferenceLiu, H., Zong, Q.- G., Zhang, H., Sun, W. J., Zhou, X. Z., Gershman, D. J., Shi, C., Zhang, K., Le, G., and Pollock, C. ( 2019b ). The geometry of an electron scale magnetic cavity in the plasma sheet. Geophys. Res. Lett., 46 ( 16 ), 9308 - 9317. https://doi.org/10.1029/2019GL083569
dc.identifier.citedreferenceLiu, Y. Y., Fu, H. S., Olshevsky, V., Pontin, D. I., Liu, C. M., Wang, Z., Chen, G., Dai, L., and Retino, A. ( 2019 ). SOTE: A nonlinear method for magnetic topology reconstruction in space plasmas. Astrophys. J. Suppl. Ser., 244 ( 2 ), 31. https://doi.org/10.3847/1538-4365/ab391a
dc.identifier.citedreferenceLiu, Y. Y., Fu, H. S., Zong, Q.- G., Wang, Z., Liu, C. M., Huang, S. Y., Chen, Z. Z., Xu, Y., Shi, Q. Q., and Yao, S. T. ( 2020 ). First topology of electron- scale magnetic hole. Geophys. Res. Lett., 47 ( 18 ), e2020GL088374. https://doi.org/10.1029/2020GL088374
dc.identifier.citedreferenceLu, S., Artemyev, A. V., Angelopoulos, V., Lin, Y., Zhang, X. J., Liu, J., Avanov, L. A., Giles, B. L., Russell, C. T., and Strangeway, R. J. ( 2019 ). The Hall electric field in Earth’s magnetotail thin current sheet. J. Geophys. Res., 124 ( 2 ), 1052 - 1062. https://doi.org/10.1029/2018JA026202
dc.identifier.citedreferenceLucek, E. A., Dunlop, M. W., Balogh, A., Cargill, P., Baumjohann, W., Georgescu, E., Haerendel, G., and Fornacon, K. H. ( 1999 ). Mirror mode structures observed in the dawn- side magnetosheath by Equator- S. Geophys. Res. Lett., 26 ( 14 ), 2159 - 2162. https://doi.org/10.1029/1999GL900490
dc.identifier.citedreferenceLucek, E. A., Constantinescu, D., Goldstein, M. L., Pickett, J., Pinçon, J. L., Sahraoui, F., Treumann, R. A, and Walker, S. N. ( 2005 ). The magnetosheath. Space Sci. Rev., 118 ( 1- 4 ), 95 - 152. https://doi.org/10.1007/s11214-005-3825-2
dc.identifier.citedreferenceLui, A. T. Y. ( 1996 ). Current disruption in the Earth’s magnetosphere: observations and models. J. Geophys. Res., 101 ( A6 ), 13067 - 13088. https://doi.org/10.1029/96JA00079
dc.identifier.citedreferenceMatsui, H., Farrugia, C. J., Goldstein, J., Torbert, R. B., Argall, M. R., Vaith, H., Russell, C. T., Strangeway, R. J., Giles, B. L., - ¦ Hosokawa, K. ( 2019 ). Velocity rotation events in the outer magnetosphere near the magnetopause. J. Geophys. Res., 124 ( 6 ), 4137 - 4156. https://doi.org/10.1029/2019JA026548
dc.identifier.citedreferenceà ieroset, M., Phan, T. D., Fujimoto, M., Lin, R. P., and Lepping, R. P. ( 2001 ). In situ detection of collisionless reconnection in the Earth’s magnetotail. Nature, 412 ( 6845 ), 414 - 417. https://doi.org/10.1038/35086520
dc.identifier.citedreferencePlaschke, F., Karlsson, T., Götz, C., Möstl, C., Richter, I., Volwerk, M., Eriksson, A., Behar, E., and Goldstein, R. ( 2018 ). First observations of magnetic holes deep within the coma of a comet. Astron. Astrophys., 618, A114. https://doi.org/10.1051/0004-6361/201833300
dc.identifier.citedreferencePollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., Omoto, T., Avanov, L., Barrie, A., - ¦ Zeuch, M. ( 2016 ). Fast plasma investigation for magnetospheric multiscale. Space Sci. Rev., 199 ( 1- 4 ), 331 - 406. https://doi.org/10.1007/s11214-016-0245-4
dc.identifier.citedreferenceRezeau, L., Belmont, G., Manuzzo, R., Aunai, N., and Dargent, J. ( 2018 ). Analyzing the magnetopause internal structure: New possibilities offered by MMS tested in a case study. J. Geophys. Res., 123 ( 1 ), 227 - 241. https://doi.org/10.1002/2017JA024526
dc.identifier.citedreferenceRong, Z. J., Wan, W. X., Shen, C., Li, X., Dunlop, M. W., Petrukovich, A. A., Zhang, T. L., and Lucek, E. ( 2011 ). Statistical survey on the magnetic structure in magnetotail current sheets. J. Geophys. Res., 116 ( A9 ), A09218. https://doi.org/10.1029/2011JA016489
dc.identifier.citedreferenceRoytershteyn, V., Karimabadi, H., and Roberts, A. ( 2015 ). Generation of magnetic holes in fully kinetic simulations of collisionless turbulence. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci., 373 ( 2041 ), 20140151. https://doi.org/10.1098/rsta.2014.0151
dc.identifier.citedreferenceRussell, C. T., Riedler, W., Schwingenschuh, K., and Yeroshenko, Y. ( 1987 ). Mirror instability in the magnetosphere of comet Halley. Geophys. Res. Lett., 14 ( 6 ), 644 - 647. https://doi.org/10.1029/GL014i006p00644
dc.identifier.citedreferenceRussell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., Le, G., Leinweber, H. K., Leneman, D., - ¦ Richter, I. ( 2016 ). The magnetospheric multiscale magnetometers. Space Sci. Rev., 199 ( 1- 4 ), 189 - 256. https://doi.org/10.1007/s11214-014-0057-3
dc.identifier.citedreferenceSahraoui, F., Hadid, L., and Huang, S. Y. ( 2020 ). Magnetohydrodynamic and kinetic scale turbulence in the near- earth space plasmas: a (short) biased review. Rev. Mod. Plasma Phys., 4 ( 1 ), 4. https://doi.org/10.1007/s41614-020-0040-2
dc.identifier.citedreferenceShi, Q. Q., Shen, C., Pu, Z. Y., Dunlop, M. W., Zong, Q.- G., Zhang, H., Xiao, C. J., Liu, Z. X., and Balogh, A. ( 2005 ). Dimensional analysis of observed structures using multipoint magnetic field measurements: application to Cluster. Geophys. Res. Lett., 32 ( 12 ), L12105. https://doi.org/10.1029/2005GL022454
dc.identifier.citedreferenceShang, W. S., Tang, B. B., Shi, Q. Q., Tian, A. M., Zhou, X. Y., Yao, Z. H., Degeling, A. W., Rae, I. J., Fu, S. Y., - ¦ Wang, M. ( 2020 ). Unusual location of the geotail magnetopause near lunar orbit: a case study. J. Geophys. Res., 125 ( 4 ), e2019JA027401. https://doi.org/10.1029/2019JA027401
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.