Show simple item record

Clumped‐Isotope Geothermometry and Carbonate U–Pb Geochronology of the Alta Stock Metamorphic Aureole, Utah, USA: Insights on the Kinetics of Metamorphism in Carbonates

dc.contributor.authorBrenner, Dana C.
dc.contributor.authorPassey, Benjamin H.
dc.contributor.authorHolder, Robert M.
dc.contributor.authorViete, Daniel R.
dc.date.accessioned2021-04-06T02:15:12Z
dc.date.available2022-05-05 22:15:03en
dc.date.available2021-04-06T02:15:12Z
dc.date.issued2021-04
dc.identifier.citationBrenner, Dana C.; Passey, Benjamin H.; Holder, Robert M.; Viete, Daniel R. (2021). "Clumped‐Isotope Geothermometry and Carbonate U–Pb Geochronology of the Alta Stock Metamorphic Aureole, Utah, USA: Insights on the Kinetics of Metamorphism in Carbonates." Geochemistry, Geophysics, Geosystems 22(4): n/a-n/a.
dc.identifier.issn1525-2027
dc.identifier.issn1525-2027
dc.identifier.urihttps://hdl.handle.net/2027.42/167127
dc.description.abstractTo assess thermal and kinetic influences on atomic mobility and mineral (neo)crystallization, clumped‐isotope abundances of calcite and dolomite were measured alongside dolomite cation ordering and U–Pb dates, across metamorphic grade within the c. 35–30 Ma Alta stock contact metamorphic aureole, Utah, USA. Average Δ47 values of dolomite inside the metamorphic aureole reflect the blocking temperature of dolomite (300°C–350°C) during cooling from peak temperatures. Dolomite Δ47 values outside the metamorphic aureole record a temperature of ∼160°C. At the talc isograd, dolomite Δ47 values abruptly change, corresponding to a decrease of ∼180°C over <50 m in the down‐temperature direction. This observed step in dolomite Δ47 values does not correlate with cation ordering in dolomite or U–Pb dates, neither of which correlate well with metamorphic grade. The short distance over which dolomite Δ47 values change indicates strong temperature sensitivity in the kinetics of dolomite clumped‐isotope reordering, and is consistent with a wide range of clumped‐isotope reequilibration modeling results. We hypothesize that clumped‐isotope reordering in dolomite precedes more extensive recrystallization or metamorphic reaction, such as the formation of talc. Dolomite U–Pb analyses from inside and outside the metamorphic aureole populate a single discordia ∼60 Myr younger than depositional age (Mississippian), recording resetting in response to some older postdepositional, but premetamorphic process.Key Points:Dolomite clumped isotopes record an abrupt ∼180°C decrease, over <50 m, at the talc isograd of the Alta contact metamorphic aureoleThis step feature suggests strong thermal sensitivity in clumped‐isotope reordering that precedes talc neocrystallizationClumped‐isotope geothermometry may provide new insights into processes controlling metamorphism and reaction kinetics in carbonates
dc.publisherUnited States Geological Survey
dc.publisherWiley Periodicals, Inc.
dc.subject.othercontact metamorphism
dc.subject.otherkinetics
dc.subject.otherclumped‐isotope geothermometry
dc.subject.othercarbonate U–Pb geochronology
dc.subject.othercarbonate
dc.titleClumped‐Isotope Geothermometry and Carbonate U–Pb Geochronology of the Alta Stock Metamorphic Aureole, Utah, USA: Insights on the Kinetics of Metamorphism in Carbonates
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167127/1/ggge22474.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167127/2/2020GC009238-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167127/3/ggge22474_am.pdf
dc.identifier.doi10.1029/2020GC009238
dc.identifier.sourceGeochemistry, Geophysics, Geosystems
dc.identifier.citedreferenceTennant, C. B., & Berger, R. W. ( 1957 ). X‐ray determination of dolomite‐calcite ratio of a carbonate rock. American Mineralogist, 42, 23 – 29.
dc.identifier.citedreferenceWernick, B., & Axen, G. J. ( 1988 ). On the role of isostasy in the evolution of normal fault systems. Geology, 16 ( 9 ), 848 – 851. https://doi.org/10.1130/0091-7613(1988)016<0848:OTROII>2.3.CO;2
dc.identifier.citedreferenceWilson, J. W. ( 1961 ). Geology of the Alta stock (Doctoral dissertation). Pasadena, CA: California Institute of Technology. Retrieved from Caltech THESIS. https://resolver.caltech.edu/CaltechTHESIS:04112011-153508154
dc.identifier.citedreferenceWoodford, D. T. ( 1995 ). Boron metasomatism in the Alta stock thermal aureole, Alta, Utah (Master’s thesis). Houston, TX: Rice University. Retrieved from Rice University Electronic Theses and Dissertations. https://hdl.handle.net/1911/14009
dc.identifier.citedreferenceWoodford, D. T., Sisson, V. B., & Leeman, W. P. ( 2001 ). Boron metasomatism of the Alta stock contact aureole, Utah: Evidence from borates, mineral chemistry, and geochemistry. American Mineralogist, 86, 513 – 533. https://doi.org/10.2138/am-2001-0415
dc.identifier.citedreferenceYork, D., Evensen, N. M., Martı́nez, M. L., & De Basabe Delgado, J. ( 2004 ). Unified equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics, 72 ( 3 ), 367 – 375. https://doi.org/10.1119/1.1632486
dc.identifier.citedreferenceZucchini, A., Comodi, P., Katerinopoulou, A., Balic‐Zunic, T., McCammon, C., & Frondini, F. ( 2012 ). Order‐disorder‐reorder process in thermally treated dolomite samples: A combined powder and single‐crystal X‐ray diffraction study. Physics and Chemistry of Minerals, 39 ( 4 ), 319 – 328. https://doi.org/10.1007/s00269-012-0489-9
dc.identifier.citedreferenceBeyssac, O., Pattison, D. R. M., & Bourdelle, F. ( 2018 ). Contrasting degrees of recrystallization of carbonaceous material in the Nelson aureole, British Columbia and Ballachulish aureole, Scotland, with implications for thermometry based on Raman spectroscopy of carbonaceous material. Journal of Metamorphic Geology, 37, 71 – 95. https://doi.org/10.1111/jmg.12449
dc.identifier.citedreferenceCarslaw, H. S., & Jaeger, J. C. ( 1959 ). Conduction of heat in solids ( 2nd ed. ). Oxford, UK: Oxford University Press.
dc.identifier.citedreferenceCui, X., Nabelek, P. I., & Liu, M. ( 2001 ). Heat and fluid flow in contact metamorphic aureoles with layered and transient permeability, with application to the Notch Peak aureole, Utah. Journal of Geophysical Research, 106 ( B4 ), 6477 – 6491. https://doi.org/10.1029/2000jb900418
dc.identifier.citedreferenceCui, X., Nabelek, P. I., & Liu, M. ( 2003 ). Reactive flow of mixed CO 2 ‐H 2 O fluid and progress of calc‐silicate reactions in contact metamorphic aureoles: Insights from two‐dimensional numerical modeling. Journal of Metamorphic Geology, 21 ( 7 ), 663 – 684. https://doi.org/10.1046/j.1525-1314.2003.00475.x
dc.identifier.citedreferenceFurlong, K. P., Hanson, R. B., & Bowers, J. R. ( 1991 ). Modeling thermal regimes. In D. M. Kerrick (Ed.), Contact metamorphism (Vol. 26, (pp. 437 – 505 ). Chantilly, VA: Mineralogical Society of America.
dc.identifier.citedreferenceHasterok, D., & Webb, J. ( 2017 ). On the radiogenic heat production of igneous rocks. Geoscience Frontiers, 8, 919 – 940. https://doi.org/10.1016/j.gsf.2017.03.006
dc.identifier.citedreferenceHemingway, J. D. ( 2020 ). Isotopylog: Open‐source tools for clumped isotope kinetic data analysis. Retrieved from http://pypi.python.org/pypi/isotopylog
dc.identifier.citedreferenceHemingway, J. D., & Henkes, G. A. ( 2020 ). A distributed activation energy model for clumped isotope bond reordering in carbonates. Earth and Space Science Open Archive. https://doi.org/10.1002/essoar.10504096.1
dc.identifier.citedreferenceJohn, D. A. ( 1991 ). Evolution of hydrothermal fluids in the Alta tock, Central Wasatch Mountains, Utah (U.S. Geol. Surv. Bull. 1977). Denver, CO: U.S. G.P.O.; For sale by the Books and Open‐File Reports Section, U.S. Geological Survey. https://doi.org/10.3133/b1977
dc.identifier.citedreferenceLange, R. A. ( 2003 ). The fusion curve of albite revisited and the compressibility of NaAlSi3O8liquid with pressure. American Mineralogist, 88 ( 1 ), 109 – 120. https://doi.org/10.2138/am-2003-0114
dc.identifier.citedreferenceLemmon, E. W., McLinden, M. O., & Friend, D. G. Thermophysical properties of fluid systems. In P. J. Linstrom, & W. G. Mallard (Eds.), NIST Chemistry WebBook, NIST standard reference Database number 69. Gaithersburg, MD: National Institute of Standards and Technology. https://doi.org/10.18434/T4D303
dc.identifier.citedreferenceLloyd, M. K. ( 2020 ). ClumpyCool. Open Science Framework. https://doi.org/10.17605/OSF.IO/JYHSW
dc.identifier.citedreferenceNabelek, P. I., Hofmeister, A. M., & Whittington, A. G. ( 2012 ). The influence of temperature‐dependent thermal diffusivity on the conductive cooling rates of plutons and temperature‐time paths in contact aureoles. Earth and Planetary Science Letters, 317–318 ( 318 ), 157 – 164. https://doi.org/10.1016/j.epsl.2011.11.009
dc.identifier.citedreferenceNorton, D., & Cathles, L. M. ( 1979 ). Thermal aspects of ore deposition. In Geochemistry of hydrothermal ore deposits (Vol. 2, pp. 611 – 631 ). New York, NY: Wiley.
dc.identifier.citedreferenceTenner, T. J., Lange, R. A., & Downs, R. T. ( 2007 ). The albite fusion curve re‐examined: New experiments and the high‐pressure density and compressibility of high albite and NaAlSi3O8 liquid. American Mineralogist, 92, 1573 – 1585. https://doi.org/10.2138/am.2007.2464
dc.identifier.citedreferenceVilà, M., Fernández, M., & Jiménez‐Munt, I. ( 2010 ). Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics, 490 ( 3–4 ), 152 – 164. https://doi.org/10.1016/j.tecto.2010.05.003
dc.identifier.citedreferenceWatson, E. B., & Harrison, T. M. ( 1983 ). Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64 ( 2 ), 295 – 304. https://doi.org/10.1016/0012-821x(83)90211-x
dc.identifier.citedreferenceWhittington, A. G., Hofmeister, A. M., & Nabelek, P. I. ( 2009 ). Temperature‐dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature, 458 ( 7236 ), 319 – 321. https://doi.org/10.1038/nature07818
dc.identifier.citedreferenceAffek, H. P., & Eiler, J. M. ( 2006 ). Abundance of mass 47 CO 2 in urban air, car exhaust, and human breath. Geochimica et Cosmochimica Acta, 70 ( 1 ), 1 – 12. https://doi.org/10.1016/j.gca.2005.08.021
dc.identifier.citedreferenceAgue, J. J., & Carlson, W. D. ( 2013 ). Metamorphism as garnet sees it: The kinetics of nucleation and growth, equilibration, and diffusional relaxation. Elements, 9, 439 – 445. https://doi.org/10.2113/gselements.9.6.439
dc.identifier.citedreferenceArmstrong, P. A., Ehlers, T. A., Chapman, D. S., Farley, K. A., & Kamp, P. J. J. ( 2003 ). Exhumation of the central Wasatch Mountains, Utah: 1. Patterns and timing of exhumation deduced from low‐temperature thermochronology data. Journal of Geophysical Research, 108 ( B3 ), 2172. https://doi.org/10.1029/2001JB001708
dc.identifier.citedreferenceBaker, A. A., Calkins, F. C., Crittenden, M. D., & Bromfield, C. S. ( 1966 ). Geologic map of Brighton quadrangle, Utah 7’5” (map GQ‐534). Reston, VA: United States Geological Survey.
dc.identifier.citedreferenceBeno, C. J., Bowman, J. R., Loury, P. C., Papanila, L. M., & Fernandez, D. P. ( 2020 ). Evidence for dendritic crystallization of forsterite olivine during contact metamorphism of siliceous dolostones, Alta stock aureole, Utah. Contributions to Mineralogy and Petrology, 175 ( 93 ), 1 – 26. https://doi.org/10.1007/s00410-020-01734-9
dc.identifier.citedreferenceBonifacie, M., Calmels, D., Eiler, J. M., Horita, J., Chaduteau, C., Vasconcelos, C., et al. ( 2017 ). Calibration of the dolomite clumped isotope thermometer from 25 to 350 °C, and implications for a universal calibration for all (Ca, Mg, Fe)CO3 carbonates. Geochimica et Cosmochimica Acta, 200, 255 – 279. https://doi.org/10.1016/j.gca.2016.11.028
dc.identifier.citedreferenceBowman, J. R., Valley, J. W., & Kita, N. T. ( 2009 ). Mechanisms of oxygen isotopic exchange and isotopic evolution of 18O/16O‐depleted periclase zone marbles in the Alta aureole, Utah: Insights from ion microprobe analysis of calcite. Contributions to Mineralogy and Petrology, 157, 77 – 93. https://doi.org/10.1007/s00410-008-0321-1
dc.identifier.citedreferenceBowman, J. R., Willett, S. D., & Cook, S. J. ( 1994 ). Oxygen isotopic transport and exchange during fluid flow; one‐dimensional models and applications. American Journal of Science, 294, 1 – 55.
dc.identifier.citedreferenceBrand, W. A., Assonov, S. S., & Coplen, T. B. ( 2010 ). Correction for the 17 O interference in δ( 13 C) measurements when analyzing CO 2 with stable isotope mass spectrometry (IUPAC Technical Report). Pure and Applied Chemistry, 82, 1719 – 1733. https://doi.org/10.1351/PAC-REP-09-01-05
dc.identifier.citedreferenceBrenner, D. C., Passey, B. H., & Stolper, D. A. ( 2018 ). Influence of water on clumped‐isotope bond reordering kinetics in calcite. Geochimica et Cosmochimica Acta, 224, 42 – 63. https://doi.org/10.1016/j.gca.2017.12.026
dc.identifier.citedreferenceBryant, B. ( 1992 ). Geologic and structure maps of the Salt lake City 1° × 2° quadrangle, Utah and Wyoming (map I‐1997). Reston, VA: United States Geological Survey.
dc.identifier.citedreferenceBryant, B., & Nichols, D. J. ( 1990 ). Geologic map of the Salt lake City 30’ × 60’ quadrangle, North‐central Utah, and Uinta County, Wyoming (map I‐1944). Reston, VA: United States Geological Survey.
dc.identifier.citedreferenceBurnham, C. W. ( 1959 ). Contact metamorphism of magnesian limestones at Crestmore, California. Geological Society of America Bulletin, 70, 879 – 920. https://doi.org/10.1130/0016-7606(1959)70[879:CMOMLA]2.0.CO;2
dc.identifier.citedreferenceCarlson, W. D. ( 2002 ). Scales of disequilibrium and rates of equilibration during metamorphism. American Mineralogist, 87 ( 2–3 ), 185 – 204. https://doi.org/10.2138/am-2002-2-301
dc.identifier.citedreferenceCarlson, W. D. ( 2006 ). Rates of Fe, Mg, Mn, and Ca diffusion in garnet. American Mineralogist, 91 ( 1 ), 1 – 11. https://doi.org/10.2138/am.2006.2043
dc.identifier.citedreferenceCarlson, W. D. ( 2011 ). Porphyroblast crystallization: Linking processes, kinetics, and microstructures. International Geology Review, 53 ( 3–4 ), 406 – 445. https://doi.org/10.1080/00206814.2010.496184
dc.identifier.citedreferenceChen, S., Ryb, U., Piasecki, A. M., Lloyd, M. K., Baker, M. B., & Eiler, J. M. ( 2019 ). Mechanism of solid‐state clumped isotope reordering in carbonate minerals from aragonite heating experiments. Geochimica et Cosmochimica Acta, 258, 156 – 173. https://doi.org/10.1016/j.gca.2019.05.018
dc.identifier.citedreferenceCherniak, D. J. ( 1997 ). An experimental study of strontium and lead diffusion in calcite, and implications for carbonate diagenesis and metamorphism. Geochimica et Cosmochimica Acta, 61 ( 19 ), 4773 – 4179. https://doi.org/10.1016/S0016-7037(97)00236-6
dc.identifier.citedreferenceConstenius, K. N. ( 1998 ). Extensional tectonics of the Cordilleran foreland fold and thrust belt and the Jurassic‐Cretaceous Great Valley forearc basin (Doctoral dissertation). Tuscon, TZ: University of Arizona. Retrieved from University of Arizona Campus Repository http://hdl.handle.net/10150/282601
dc.identifier.citedreferenceCook, S. J., & Bowman, J. R. ( 1994 ). Contact metamorphism surrounding the Alta stock: Thermal constraints and evidence of advective heat transport from calcite + dolomite geothermometry. American Mineralogist, 79, 513 – 525.
dc.identifier.citedreferenceCook, S. J., & Bowman, J. R. ( 2000 ). Mineralogical evidence for fluid‐rock interaction accompanying prograde contact metamorphism of siliceous dolomites: Alta stock aureole, Utah, USA. Journal of Petrology, 41 ( 6 ), 793 – 757. https://doi.org/10.1093/petrology/41.6.739
dc.identifier.citedreferenceCook, S. J., Bowman, J. R., & Forster, C. B. ( 1997 ). Contact metamorphism surrounding the Alta Stock; finite element model simulation of heat‐ and 18 O/16 O mass‐transport during prograde metamorphism. American Journal of Science, 297 ( 1 ), 1 – 55. https://doi.org/10.2475/ajs.297.1.1
dc.identifier.citedreferenceCrittenden, M. D. ( 1965 ). Geology of the Dromedary Peak quadrangle, Utah (map GQ‐378). Reston, VA: United States Geological Survey.
dc.identifier.citedreferenceDaëron, M., Blamart, D., Peral, M., & Affek, H. P. ( 2016 ). Absolute isotopic abundance ratios and the accuracy of Δ47 measurements. Chemical Geology, 442, 83 – 96. https://doi.org/10.1016/j.chemgeo.2016.08.014
dc.identifier.citedreferenceDefliese, W. F., Hren, M. T., & Lohmann, K. C. ( 2015 ). Compositional and temperature effects of phosphoric acid fractionation on Δ47 analysis and implications for discrepant calibrations. Chemical Geology, 396, 51 – 60. https://doi.org/10.1016/j.chemgeo.2014.12.018
dc.identifier.citedreferenceDennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., & Eiler, J. M. ( 2011 ). Defining an absolute reference frame for “clumped” isotope studies of CO 2. Geochimica et Cosmochimica Acta, 75, 7117 – 7131. https://doi.org/10.1016/j.gca.2011.09.025
dc.identifier.citedreferenceDennis, K. J., & Schrag, D. P. ( 2010 ). Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochimica et Cosmochimica Acta, 74, 4110 – 4122. https://doi.org/10.1016/j.gca.2010.04.005
dc.identifier.citedreferenceDodson, M. H. ( 1973 ). Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40, 259 – 274. https://doi.org/10.1007/bf00373790
dc.identifier.citedreferenceEhlers, T. A., Willett, S. D., Armstrong, P. A., & Chapman, D. S. ( 2003 ). Exhumation of the central Wasatch mountains, Utah: 2. Thermokinematic model of exhumation, erosion, and thermochronometer interpretation. Journal of Geophysical Research, 108 ( B3 ), 2173. https://doi.org/10.1029/2001JB001723
dc.identifier.citedreferenceEiler, J. M. ( 2011 ). Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews, 30 ( 25–26 ), 3575 – 3588. https://doi.org/10.1016/j.quascirev.2011.09.001
dc.identifier.citedreferenceEiler, J. M., & Schauble, E. ( 2004 ). 18O13C16O in Earth’s atmosphere. Geochimica et Cosmochimica Acta, 68 ( 23 ), 4767 – 4777. https://doi.org/10.1016/j.gca.2004.05.035
dc.identifier.citedreferenceFernandez, A., Müller, I. A., Rodríguez‐Sanz, L., van Dijk, J., Looser, N., & Bernasconi, S. M. ( 2017 ). A reassessment of the precision of carbonate clumped isotope measurements: Implications for calibrations and paleoclimate reconstructions. Geochemistry, Geophysics, Geosystems, 18, 4375 – 4386. https://doi.org/10.1002/2017GC007106
dc.identifier.citedreferenceFerry, J. M. ( 1986 ). Reaction progress: A monitor of fluid‐rock interaction during metamorphic and hydrothermal events. In J. V. Walther, & B. J. Wood (Eds.), Fluid‐rock interactions during metamorphism. Advances in physical geochemistry (pp. 60 – 88 ). New York: Springer.
dc.identifier.citedreferenceFerry, J. M. ( 1994 ). Role of fluid flow in the contact metamorphism of siliceous dolomitic limestone. American Mineralogist, 79, 719 – 736.
dc.identifier.citedreferenceFerry, J. M. ( 1996a ). Prograde and retrograde fluid flow during contact metamorphism of siliceous carbonate rocks from the Ballachulish aureole, Scotland. Contributions to Mineralogy and Petrology, 124 ( 3–4 ), 235 – 254. https://doi.org/10.1007/s004100050189
dc.identifier.citedreferenceFerry, J. M. ( 1996b ). Three novel isograds in metamorphosed siliceous dolomites from the Ballachulish aureole, Scotland. American Mineralogist, 81 ( 3–4 ), 485 – 494. https://doi.org/10.2138/am-1996-3-422
dc.identifier.citedreferenceFerry, J. M., Passey, B. H., Vasconcelos, C., & Eiler, J. M. ( 2011 ). Formation of dolomite at 40–80°C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology, 39 ( 6 ), 571 – 574. https://doi.org/10.1130/g31845.1
dc.identifier.citedreferenceFriedrich, A. M., Wernicke, B. P., Niemi, N. A., Bennett, R. A., & Davis, J. L. ( 2003 ). Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. Journal of Geophysical Research, 108 ( B4 ), 2199. https://doi.org/10.1029/2001JB000682
dc.identifier.citedreferenceGeorge, F. R., & Gaidies, F. ( 2020 ). Simultaneous operation of opposing reaction mechanisms: The influence of matrix heterogeneity on post‐kinematic garnet crystallization in an inverted metamorphic sequence. Journal of Metamorphic Geology, 38 ( 7 ), 743 – 769. https://doi.org/10.1111/jmg.12539
dc.identifier.citedreferenceGhosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., et al. ( 2006 ). 13 C‐ 18 O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70 ( 6 ), 1439 – 1456. https://doi.org/10.1016/j.gca.2005.11.014
dc.identifier.citedreferenceGoldschmidt, V. M. ( 1911 ). Die contact metamorphose im Kristianigebiet. In Skrifter (Norske videnskaps‐akademi. I‐Mat.‐Naturv.) (No. 1). Oslo Norway: Kristiania.
dc.identifier.citedreferenceGoldsmith, J. R., & Graf, D. L. ( 1958 ). Structural and compositional variations in some natural dolomites. The Journal of Geology, 66 ( 6 ), 678 – 693. https://doi.org/10.1086/626547
dc.identifier.citedreferenceHammouda, T., Andrault, D., Koga, K., Katsura, T., & Martin, A. M. ( 2011 ). Ordering in double carbonates and implications for processes at subduction zones. Contributions to Mineralogy and Petrology, 161 ( 3 ), 439 – 450. https://doi.org/10.1007/s00410-010-0541-z
dc.identifier.citedreferenceHenkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Pérez‐Huerta, A., & Yancey, T. E. ( 2014 ). Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochimica et Cosmochimica Acta, 139, 362 – 382. https://doi.org/10.1016/j.gca.2014.04.040
dc.identifier.citedreferenceHill, C. A., Polyak, V. J., Asmerom, Y., & P. Provencio, P. ( 2016 ). Constraints on a Late Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern Colorado Plateau, USA, from U‐Pb dating of lacustrine limestone. Tectonics, 35, 896 – 906. https://doi.org/10.1002/2016TC004166
dc.identifier.citedreferenceHorita, J. ( 2014 ). Oxygen and carbon isotope fractionation in the system dolomite‐water‐CO 2 to elevated temperatures. Geochimica et Cosmochimica Acta, 129, 111 – 124. https://doi.org/10.1016/j.gca.2013.12.027
dc.identifier.citedreferenceHorstwood, M. S. A., Košler, J., Gehrels, G., Jackson, S. E., McLean, N. M., Paton, C., et al. ( 2016 ). Community‐derived standards for LA‐ICP‐MS U‐(Th‐)Pb Geochronology—Uncertainty propagation, age interpretation and data reporting. Geostandards and Geoanalytical Research, 40 ( 3 ), 311 – 332. https://doi.org/10.1111/j.1751-908X.2016.00379.x
dc.identifier.citedreferenceJohn, D. A. ( 1989 ). Geologic setting, depths of emplacement, and regional distribution of fluid inclusions in intrusions of the central Wasatch Mountains, Utah. Economic Geology, 84, 386 – 409. https://doi.org/10.2113/gsecongeo.84.2.386
dc.identifier.citedreferenceKaczmarek, S. E., & Sibley, D. F. ( 2007 ). A comparison of nanometer‐scale growth and dissolution features on natural and synthetic dolomite crystals: Implications for the origin of dolomite. Journal of Sediment Research, 77 ( 5 ), 242 – 432. https://doi.org/10.2110/jsr.2007.035
dc.identifier.citedreferenceKerrick, D. M. ( 1974 ). Review of metamorphic mixed‐volatile (H 2 O–CO 2 ) equilibria. American Mineralogist, 59, 729 – 762.
dc.identifier.citedreferenceKluge, T., John, C. M., Jourdan, A.‐L., Davis, S., & Crawshaw, J. ( 2015 ). Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25‐250 °C temperature range. Geochimica et Cosmochimica Acta, 157, 213 – 227. https://doi.org/10.1016/j.gca.2015.02.028
dc.identifier.citedreferenceKohler, J. F. ( 1979 ). Geology, characteristics, and resource potential of the low‐temperature geothermal system near Midway. All U.S. Government Documents (Utah Regional Despository). Paper 54.
dc.identifier.citedreferenceLacroix, B., & Niemi, N. A. ( 2019 ). Investigating the effect of burial histories on the clumped isotope thermometer: An example from the Green River and Washakie Basins, Wyoming. Geochimica et Cosmochimica Acta, 247, 40 – 58. https://doi.org/10.1016/j.gca.2018.12.016
dc.identifier.citedreferenceLloyd, M. K., Eiler, J. M., & Nabelek, P. I. ( 2017 ). Clumped isotope thermometry of calcite and dolomite in a contact metamorphic environment. Geochimica et Cosmochimica Acta, 197, 323 – 344. https://doi.org/10.1016/j.gca.2016.10.037
dc.identifier.citedreferenceLloyd, M. K., Ryb, U., & Eiler, J. M. ( 2018 ). Experimental calibration of clumped isotope reordering in dolomite. Geochimica et Cosmochimica Acta, 242, 1 – 20. https://doi.org/10.1016/j.gca.2018.08.036
dc.identifier.citedreferenceMasch, L., & Heuss‐Aßbichler, S. ( 1991 ). Equilibrium and kinetics in contact metamorphism: The Ballachulish igneous complex and its aureole. Berlin: Springer‐Verlag.
dc.identifier.citedreferenceMayo, A. L., & Loucks, M. D. ( 1995 ). Solute and isotopic geochemistry and ground water flow in the central Wasatch Range, Utah. Journal of Hydrology, 172 ( 1–4 ), 31 – 59. https://doi.org/10.1016/0022-1694(95)02748-e
dc.identifier.citedreferenceMoore, C. H. ( 1989 ). Carbonate diagenesis and porosity. In Developments in sedimentology (Vol. 46). Amsterdam, The Netherlands: Elsevier Science.
dc.identifier.citedreferenceMoore, J. N., & Kerrick, D. M. ( 1976 ). Equilibria in siliceous dolomites of the Alta aureole, Utah. American Journal of Science, 276 ( 4 ), 502 – 524. https://doi.org/10.2475/ajs.276.4.502
dc.identifier.citedreferenceMorse, J. W. ( 1983 ). The kinetics of calcium carbonate dissolution and precipitation. In R. J. Reeder (Ed.), Carbonates: Mineralogy and chemistry (Vol. 26 (pp. 227 – 264 ). Washington, DC: Mineralogical Society of America
dc.identifier.citedreferenceNabelek, P. I. ( 2007 ). Fluid evolution and kinetics of metamorphic reactions in calc‐silicate contact aureoles‐from H 2 O to CO 2 and back. Geology, 35 ( 10 ), 927 – 930. https://doi.org/10.1130/g24051a.1
dc.identifier.citedreferenceNabelek, P. I. ( 2009 ). Numerical simulation of kinetically‐controlled calc‐silicate reactions and fluid flow with transient permeability around crystallizing plutons. American Journal of Science, 309 ( 7 ), 517 – 548. https://doi.org/10.2475/07.2009.01
dc.identifier.citedreferenceParry, W. T., & Bruhn, R. L. ( 1986 ). Pore fluid and seismogenic characteristics of fault rock at depth on the Wasatch fault, Utah. Journal of Geophysical Research, 91 ( B1 ), 730 – 744. https://doi.org/10.1029/jb091ib01p00730
dc.identifier.citedreferencePassey, B. H., & Henkes, G. A. ( 2012 ). Carbonate clumped isotope bond reordering and geospeedometry. Earth and Planetary Science Letters, 351–352 ( 352 ), 223 – 236. https://doi.org/10.1016/j.epsl.2012.07.021
dc.identifier.citedreferencePassey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H., & Eiler, J. M. ( 2010 ). High‐temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proceedings of the National Academy of Sciences of the United States of America, 107 ( 25 ), 11245 – 11249. https://doi.org/10.1073/pnas.1001824107
dc.identifier.citedreferencePattison, D. R. M., de Capitani, C., & Gaidies, F. ( 2011 ). Petrological consequences of variations in metamorphic reaction affinity. Journal of Metamorphic Geology, 29 ( 9 ), 953 – 977. https://doi.org/10.1111/j.1525-1314.2011.00950.x
dc.identifier.citedreferencePattison, D. R. M., & Tinkham, D. K. ( 2009 ). Interplay between equilibrium and kinetics in prograde metamorphism of pelites: An example from the Nelson aureole, British Columbia. Journal of Metamorphic Geology, 27 ( 4 ), 249 – 279. https://doi.org/10.1111/j.1525-1314.2009.00816.x
dc.identifier.citedreferenceReeder, R. J., & Wenk, H. ‐R. ( 1983 ). Structure refinements of some thermally disordered dolomites. American Mineralogist, 68, 769 – 776.
dc.identifier.citedreferenceRoberts, N. M. W., Drost, K., Horstwood, M. S. A., Condon, D. J., Chew, D., Drake, H., et al. ( 2020 ). Laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) U‐Pb carbonate geochronology: Strategies, progress, and limitations. Geochronology, 2, 33 – 61. https://doi.org/10.5194/gchron-2-33-2020
dc.identifier.citedreferenceRoberts, N. M. W., Rasbury, E. T., Parrish, R. R., Smith, C. J., Horstwood, M. S. A., & Condon, D. J. ( 2017 ). A calcite reference material for LA‐ICP‐MS U‐Pb geochronology. Geochemistry, Geophysics, Geosystems, 18, 2807 – 2814. https://doi.org/10.1002/2016GC006784
dc.identifier.citedreferenceRyb, U., Lloyd, M. K., Stolper, D. A., & Eiler, J. M. ( 2017 ). The clumped‐isotope geochemistry of exhumed marbles from Naxos, Greece. Earth and Planetary Science Letters, 470, 1 – 12. https://doi.org/10.1016/j.epsl.2017.04.026
dc.identifier.citedreferenceSchauble, E. A., Ghosh, P., & Eiler, J. M. ( 2006 ). Preferential formation of 13 C‐ 18 O bonds in carbonate minerals, estimated using first‐principles lattice dynamics. Geochimica et Cosmochimica Acta, 70 ( 10 ), 2510 – 2529. https://doi.org/10.1016/j.gca.2006.02.011
dc.identifier.citedreferenceSchultz‐Güttler, R. ( 1986 ). The influence of disordered, non‐equilibrium dolomites on the Mg‐solubility in calcite in the system CaCO 3 ‐MgCO 3. Contributions to Mineralogy and Petrology, 93 ( 3 ), 395 – 398. https://doi.org/10.1007/bf00389397
dc.identifier.citedreferenceSpear, F. S., & Pattison, D. R. M. ( 2017 ). The implications of overstepping for metamorphic assemblage diagrams (MADs). Chemical Geology, 457, 38 – 46. https://doi.org/10.1016/j.chemgeo.2017.03.011
dc.identifier.citedreferenceSpear, F. S., Thomas, J. B., & Hallett, B. W. ( 2014 ). Overstepping the garnet isograd: A comparison of QuiG barometry and thermodynamic modeling. Contributions to Mineralogy and Petrology, 168 ( 3 ), 1059. https://doi.org/10.1007/s00410-014-1059-6
dc.identifier.citedreferenceStaudigel, P. T., & Swart, P. K. ( 2016 ). Isotopic behavior during the aragonite‐calcite transition: Implications for sample preparation and proxy interpretation. Chemical Geology, 442, 130 – 138. https://doi.org/10.1016/j.chemgeo.2016.09.013
dc.identifier.citedreferenceStearns, M. A., Bartley, J. M., Bowman, J. R., Forster, C. W., Beno, C. J., Riddle, D. D., et al. ( 2020 ). Simultaneous magmatic and hydrothermal regimes in Alta‐Little Cottonwood stocks, Utah, USA, recorded using multiphase U‐Pb petrochronology. Geosciences, 10 ( 4 ), 129. https://doi.org/10.3390/geosciences10040129
dc.identifier.citedreferenceStolper, D. A., & Eiler, J. M. ( 2015 ). The kinetics of solid‐state isotope‐exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315 ( 5 ), 363 – 411. https://doi.org/10.2475/05.2015.01
dc.identifier.citedreferenceTaylor, H. P. ( 1974 ). The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69 ( 6 ), 843 – 883. https://doi.org/10.2113/gsecongeo.69.6.843
dc.identifier.citedreferenceVeillard, C. M. A., John, C. M., Krevor, S., & Najorka, J. ( 2019 ). Rock‐buffered recrystallization of Marion Plateau dolomites at low temperature evidenced by clumped isotope thermometry and X‐ray diffraction analysis. Geochimica et Cosmochimica Acta, 252, 190 – 212. https://doi.org/10.1016/j.gca.2019.02.012
dc.identifier.citedreferenceVermeesch, P. ( 2018 ). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9 ( 5 ), 1479 – 1493. https://doi.org/10.1016/j.gsf.2018.04.001
dc.identifier.citedreferenceVogel, T. A., Cambray, T. W., & Constenius, K. N. ( 2001 ). Origin and emplacement of igneous rocks in the central Wasatch Mountains, Utah. Rocky Mountain Geology, 36 ( 2 ), 119 – 162. https://doi.org/10.2113/gsrocky.36.2.119
dc.identifier.citedreferenceWang, Z., Schauble, E. A., & Eiler, J. M. ( 2004 ). Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochimica et Cosmochimica Acta, 68 ( 23 ), 4779 – 4797. https://doi.org/10.1016/j.gca.2004.05.039
dc.identifier.citedreferenceWendt, I., & Carl, C. ( 1991 ). The statistical distribution of the mean squared weighted deviation. Chemical Geology: Isotope Geoscience Section, 86 ( 4 ), 275 – 285. https://doi.org/10.1016/0168-9622(91)90010-t
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.