Show simple item record

Environmental Payback Periods of Reusable Alternatives to Single- Use Plastic Kitchenware Products

dc.contributor.authorFetner, Hannah
dc.contributor.advisorMiller, Shelie
dc.date.accessioned2021-05-01T16:55:28Z
dc.date.issued2021-04
dc.date.submitted2021-04
dc.identifier.urihttps://hdl.handle.net/2027.42/167288
dc.description.abstractMany consumers are transitioning away from single-use plastic products and turning to reusable alternatives. Oftentimes this change is being made with the assumption that these alternatives have fewer environmental impacts; however, reusable products are frequently made from more environmentally-intensive materials and have use phase impacts. This study used LCA to examine the GWP, water consumption and primary nonrenewable energy use associated with reusable alternatives for single-use plastic kitchenware products, and determined environmental payback periods. Payback periods are calculated for each reusable alternative and defined as the number of times a consumer must re-use an alternative in order for the environmental impact per use to be equivalent to the environmental impact for the single-use product. The research explored the sensitivity of the results to different consumer washing and reuse behaviors, as well as local conditions such as overall transportation distances and the carbon intensity of different electricity grids. Product types studied included straws (4 reusable, 2 single-use), sandwich storage (2 reusable, 3 single-use), coffee cups (3 reusable, 2 single-use) and forks (1 single-use, 3 reusable). Environmental impacts associated with the reusable alternatives were highly dependent on the use phase due to dishwashing, making payback period sensitive to washing frequency and method, and for GWP, carbon intensity of the energy grid (used for water heating). For single-use products, the material/manufacturing phase was the largest contributor to overall impacts. It was found that nine of the twelve reusable alternatives were able to breakeven in all three environmental indicators. The coffee cup product type was the only product type to have one reusable alternative, the ceramic mug, have the shortest payback period for all three impact categories. Both the bamboo straw and beeswax wrap were unable to breakeven in any scenario due to high use phase impacts from manual washing. The research found that reusable alternatives can payback the environmental impacts of GWP, water consumption, and energy use associated with their more resource intensive materials, but it is dependent on number of uses, consumer behavior and for GWP, carbon intensity of the energy grid. A key takeaway is that consumer behavior and use patterns influence the ultimate environmental impact of reusable kitchenware products.en_US
dc.language.isoen_USen_US
dc.subjectLCAen_US
dc.subjectpaybacken_US
dc.subjectsingle-useen_US
dc.subjectreusableen_US
dc.titleEnvironmental Payback Periods of Reusable Alternatives to Single- Use Plastic Kitchenware Productsen_US
dc.typeThesisen_US
dc.description.thesisdegreenameMaster of Science (MS)en_US
dc.description.thesisdegreedisciplineSchool for Environment and Sustainabilityen_US
dc.description.thesisdegreegrantorUniversity of Michiganen_US
dc.contributor.committeememberKeoleian, Greg
dc.identifier.uniqnamefetnerhnen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167288/1/Fetner_Hannah_Thesis.pdf
dc.identifier.doihttps://dx.doi.org/10.7302/963
dc.working.doi10.7302/963en_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.