Show simple item record

Functional characterization of the HMP‐P synthase of Legionella pneumophila (Lpg1565)

dc.contributor.authorPaxhia, Michael D.
dc.contributor.authorSwanson, Michele S.
dc.contributor.authorDowns, Diana M.
dc.date.accessioned2021-05-12T17:21:57Z
dc.date.available2022-05-12 13:21:55en
dc.date.available2021-05-12T17:21:57Z
dc.date.issued2021-04
dc.identifier.citationPaxhia, Michael D.; Swanson, Michele S.; Downs, Diana M. (2021). "Functional characterization of the HMP‐P synthase of Legionella pneumophila (Lpg1565)." Molecular Microbiology (4): 539-553.
dc.identifier.issn0950-382X
dc.identifier.issn1365-2958
dc.identifier.urihttps://hdl.handle.net/2027.42/167425
dc.description.abstractThe production of the pyrimidine moiety in thiamine synthesis, 2‐methyl‐4‐amino‐5‐hydroxymethylpyrimidine phosphate (HMP‐P), has been described to proceed through the Thi5‐dependent pathway in Saccharomyces cerevisiae and other yeast. Previous work found that ScThi5 functioned poorly in a heterologous context. Here we report a bacterial ortholog to the yeast HMP‐P synthase (Thi5) was necessary for HMP synthesis in Legionella pneumophila. Unlike ScThi5, LpThi5 functioned in vivo in Salmonella enterica under multiple growth conditions. The protein LpThi5 is a dimer that binds pyridoxal‐5′‐phosphate (PLP), apparently without a solvent‐exposed Schiff base. A small percentage of LpThi5 protein co‐purifies with a bound molecule that can be converted to HMP. Analysis of variant proteins both in vivo and in vitro confirmed that residues in sequence motifs conserved across bacterial and eukaryotic orthologs modulate the function of LpThi5.ImportanceThiamine is an essential vitamin for the vast majority of organisms. There are multiple strategies to synthesize and salvage this vitamin. The predominant pathway for synthesis of the pyrimidine moiety of thiamine involves the Fe‐S cluster protein ThiC. An alternative pathway utilizes Thi5, a novel enzyme that uses PLP as a substrate. The Thi5‐dependent pathway is poorly characterized in yeast and has not been characterized in Bacteria. Here we demonstrate that a Thi5‐dependent pathway is necessary for thiamine biosynthesis in Legionella pneumophila and provide biochemical data to extend knowledge of the Thi5 enzyme, the corresponding biosynthetic pathway, and the role of metabolic network architecture in optimizing its function.HMP‐P synthase (Thi5) is a critical enzyme in the biosynthesis of thiamine pyrophosphate in yeast. A Thi5 homolog from Legionella pneumophila, which contributes to HMP synthesis in its native host, is an enzyme that binds pyridoxal‐5′‐phosphate and releases HMP when the purified protein is incubated with iron. In a heterologous system, Thi5 from Saccharomyces cerevisiae and L. pneumophila have functional differences that could reflect structural differences between the enzymes or metabolic differences between organismal hosts.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherHydroxymethyl pyrimidine
dc.subject.otherLegionella pneumophila
dc.subject.otherlpg1565
dc.subject.otherTHI5
dc.subject.otherThiamine synthesis
dc.subject.otherHMP
dc.titleFunctional characterization of the HMP‐P synthase of Legionella pneumophila (Lpg1565)
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167425/1/mmi14622-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167425/2/mmi14622.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167425/3/mmi14622_am.pdf
dc.identifier.doi10.1111/mmi.14622
dc.identifier.sourceMolecular Microbiology
dc.identifier.citedreferenceRistroph, J.D., Hedlund, K.W. and Gowda, S. ( 1981 ) Chemically defined medium for Legionella pneumophila growth. Journal of Clinical Microbiology, 13, 115 – 119.
dc.identifier.citedreferenceLai, R.Y., Huang, S., Fenwick, M.K., Hazra, A., Zhang, Y., Rajashankar, K., et al. ( 2012 ) Thiamin pyrimidine biosynthesis in Candida albicans: a remarkable reaction between histidine and pyridoxal phosphate. Journal of the American Chemical Society, 134, 9157 – 9159.
dc.identifier.citedreferenceLefort, V., Longueville, J.E. and Gascuel, O. ( 2017 ) SMS: Smart Model Selection in PhyML. Molecular Biology and Evolution, 34, 2422 – 2424.
dc.identifier.citedreferenceLetunic, I. and Bork, P. ( 2019 ) Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Research, 47, W256 – W259.
dc.identifier.citedreferenceMarsh, P. ( 1986 ) Ptac‐85, an E. coli vector for expression of non‐fusion proteins. Nucleic Acids Research, 14, 3603.
dc.identifier.citedreferenceMaundrell, K. ( 1990 ) nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. Journal of Biological Chemistry, 265, 10857 – 10864.
dc.identifier.citedreferenceMozzarelli, A. and Bettati, S. ( 2006 ) Exploring the pyridoxal 5′‐phosphate‐dependent enzymes. The Chemical Record, 6, 275 – 287.
dc.identifier.citedreferencePalmer, L.D. and Downs, D.M. ( 2013 ) The thiamine biosynthetic enzyme ThiC catalyzes multiple turnovers and is inhibited by S‐adenosylmethionine (AdoMet) metabolites. Journal of Biological Chemistry, 288, 30693 – 30699.
dc.identifier.citedreferencePalmer, L.D., Paxhia, M.D. and Downs, D.M. ( 2015 ) Induction of the sugar‐phosphate stress response allows Saccharomyces cerevisiae 2‐methyl‐4‐amino‐5‐hydroxymethylpyrimidine phosphate synthase to function in Salmonella enterica. Journal of Bacteriology, 197, 3554 – 3562.
dc.identifier.citedreferencePasculle, A.W., Feeley, J.C., Gibson, R.J., Cordes, L.G., Myerowitz, R.L., Patton, C.M., et al. ( 1980 ) Pittsburgh pneumonia agent: direct isolation from human lung tissue. Journal of Infectious Diseases, 141, 727 – 732.
dc.identifier.citedreferencePaxhia, M.D. and Downs, D.M. ( 2019 ) SNZ3 encodes a PLP synthase involved in thiamine synthesis in Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 9, 335 – 344.
dc.identifier.citedreferenceRodionov, D.A., Vitreschak, A.G., Mironov, A.A. and Gelfand, M.S. ( 2002 ) Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. Journal of Biological Chemistry, 277, 48949 – 48959.
dc.identifier.citedreferenceSahr, T., Rusniok, C., Dervins‐Ravault, D., Sismeiro, O., Coppee, J.Y. and Buchrieser, C. ( 2012 ) Deep sequencing defines the transcriptional map of L. pneumophila and identifies growth phase‐dependent regulated ncRNAs implicated in virulence. RNA Biology, 9, 503 – 519.
dc.identifier.citedreferenceSahr, T., Rusniok, C., Impens, F., Oliva, G., Sismeiro, O., Coppee, J.Y., et al. ( 2017 ) The Legionella pneumophila genome evolved to accommodate multiple regulatory mechanisms controlled by the CsrA‐system. PLoS Genetics, 13, e1006629.
dc.identifier.citedreferenceSauer, J.D., Bachman, M.A. and Swanson, M.S. ( 2005 ) The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. Proceedings of the National Academy of Sciences, 102, 9924 – 9929.
dc.identifier.citedreferenceSchweingruber, A.M., Dlugonski, J., Edenharter, E. and Schweingruber, M.E. ( 1991 ) Thiamine in Schizosaccharomyces pombe: dephosphorylation, intracellular pool, biosynthesis and transport. Current Genetics, 19, 249 – 254.
dc.identifier.citedreferenceSievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., et al. ( 2011 ) Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539.
dc.identifier.citedreferenceSoniya, K. and Chandra, A. ( 2018 ) Free energy landscapes of prototropic tautomerism in pyridoxal 5’‐phosphate schiff bases at the active site of an enzyme in aqueous medium. Journal of Computational Chemistry, 39, 1629 – 1638.
dc.identifier.citedreferenceTazuya, K., Azumi, C., Yamada, K. and Kumaoka, H. ( 1995 ) Pyrimidine moiety of thiamin is biosynthesized from pyridoxine and histidine in Saccharomyces cerevisiae. Biochemistry and Molecular Biology International, 36, 883 – 888.
dc.identifier.citedreferenceTazuya, K., Yamada, K. and Kumaoka, H. ( 1989 ) Incorporation of histidine into the pyrimidine moiety of thiamin in Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) ‐ General Subjects, 990, 73 – 79.
dc.identifier.citedreferenceThamm, A.M., Li, G., Taja‐Moreno, M., Gerdes, S.Y., de Crécy‐Lagard, V., Bruner, S.D., et al. ( 2017 ) A strictly monofunctional bacterial hydroxymethylpyrimidine phosphate kinase precludes damaging errors in thiamin biosynthesis. The Biochemical Journal, 474, 2887 – 2895.
dc.identifier.citedreferenceToney, M.D. ( 2011 ) Controlling reaction specificity in pyridoxal phosphate enzymes. Biochimica et Biophysica Acta (BBA) ‐ Proteins and Proteomics, 1814, 1407 – 1418.
dc.identifier.citedreferenceVogel, H.J. and Bonner, D.M. ( 1956 ) Acetylornithase of Escherichia coli: partial purification and some properties. Journal of Biological Chemistry, 218, 97 – 106.
dc.identifier.citedreferenceWightman, R. and Meacock, P.A. ( 2003 ) The THI5 gene family of Saccharomyces cerevisiae: distribution of homologues among the hemiascomycetes and functional redundancy in the aerobic biosynthesis of thiamin from pyridoxine. Microbiology, 149, 1447 – 1460.
dc.identifier.citedreferenceKennedy, M.C., Kent, T.A., Emptage, M., Merkle, H., Beinert, H. and Munck, E. ( 1984 ) Evidence for the formation of a linear [3Fe‐4S] cluster in partially unfolded aconitase. Journal of Biological Chemistry, 259, 14463 – 14471.
dc.identifier.citedreferenceBackstrom, A.D., McMordie, R.A.S. and Begley, T.P. ( 1995 ) Biosynthesis of thiamin I: the function of the thiE gene product. Journal of the American Chemical Society, 117, 2351 – 2352.
dc.identifier.citedreferenceBalch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R. and Wolfe, R.S. ( 1979 ) Methanogens: reevaluation of a unique biological group. Microbiological Reviews, 43, 260 – 296.
dc.identifier.citedreferenceBale, S., Rajashankar, K.R., Perry, K., Begley, T.P. and Ealick, S.E. ( 2010 ) HMP binding protein ThiY and HMP‐P synthase THI5 are structural homologues. Biochemistry, 49, 8929 – 8936.
dc.identifier.citedreferenceBerger, K.H. and Isberg, R.R. ( 1993 ) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Molecular Microbiology, 7, 7 – 19.
dc.identifier.citedreferenceBryan, A., Abbott, Z.D. and Swanson, M.S. ( 2013 ) Constructing unmarked gene deletions in Legionella pneumophila. Methods in Molecular Biology, 954, 197 – 212.
dc.identifier.citedreferenceChen, I.A., Chu, K., Palaniappan, K., Pillay, M., Ratner, A., Huang, J., et al. ( 2019 ) IMG/M vol 5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Research, 47, D666 – D677.
dc.identifier.citedreferenceCoquille, S., Roux, C., Fitzpatrick, T.B. and Thore, S. ( 2012 ) The last piece in the vitamin B1 biosynthesis puzzle: structural and functional insight into yeast 4‐amino‐5‐hydroxymethyl‐2‐methylpyrimidine phosphate (HMP‐P) synthase. Journal of Biological Chemistry, 287, 42333 – 42343.
dc.identifier.citedreferenceDatsenko, K.A. and Wanner, B.L. ( 2000 ) One‐step inactivation of chromosomal genes in Escherichia coli K‐12 using PCR products. Proceedings of the National Academy of Sciences, 97, 6640 – 6645.
dc.identifier.citedreferenceEdgar, R.C. ( 2004 ) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792 – 1797.
dc.identifier.citedreferenceFeeley, J.C., Gorman, G.W., Weaver, R.E., Mackel, D.C. and Smith, H.W. ( 1978 ) Primary isolation media for Legionnaires disease bacterium. Journal of Clinical Microbiology, 8, 320 – 325.
dc.identifier.citedreferenceGasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D. and Bairoch, A. ( 2003 ) ExPASy: the proteomics server for in‐depth protein knowledge and analysis. Nucleic Acids Research, 31, 3784 – 3788.
dc.identifier.citedreferenceGeders, T.W., Gustafson, K. and Finzel, B.C. ( 2012 ) Use of differential scanning fluorimetry to optimize the purification and crystallization of PLP‐dependent enzymes. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 68, 596 – 600.
dc.identifier.citedreferenceGuindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. and Gascuel, O. ( 2010 ) New algorithms and methods to estimate maximum‐likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59, 307 – 321.
dc.identifier.citedreferenceHammer, B.K. and Swanson, M.S. ( 1999 ) Co‐ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Molecular Microbiology, 33, 721 – 731.
dc.identifier.citedreferenceHong, P., Koza, S. and Bouvier, E.S. ( 2012 ) Size‐exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. Journal of Liquid Chromatography & Related Technologies, 35, 2923 – 2950.
dc.identifier.citedreferenceIshida, S., Tazuya‐Murayama, K., Kijima, Y. and Yamada, K. ( 2008 ) The direct precursor of the pyrimidine moiety of thiamin is not urocanic acid but histidine in Saccharomyces cerevisiae. Journal of Nutritional Science and Vitaminology, 54, 7 – 10.
dc.identifier.citedreferenceJurgenson, C.T., Begley, T.P. and Ealick, S.E. ( 2009 ) The structural and biochemical foundations of thiamin biosynthesis. Annual Review of Biochemistry, 78, 569 – 603.
dc.identifier.citedreferenceKelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N. and Sternberg, M.J.E. ( 2015 ) The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845 – 858.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.