Show simple item record

Engineering spatiotemporal organization and dynamics in synthetic cells

dc.contributor.authorGroaz, Alessandro
dc.contributor.authorMoghimianavval, Hossein
dc.contributor.authorTavella, Franco
dc.contributor.authorGiessen, Tobias W.
dc.contributor.authorVecchiarelli, Anthony G.
dc.contributor.authorYang, Qiong
dc.contributor.authorLiu, Allen P.
dc.date.accessioned2021-05-12T17:22:07Z
dc.date.available2022-06-12 13:22:03en
dc.date.available2021-05-12T17:22:07Z
dc.date.issued2021-05
dc.identifier.citationGroaz, Alessandro; Moghimianavval, Hossein; Tavella, Franco; Giessen, Tobias W.; Vecchiarelli, Anthony G.; Yang, Qiong; Liu, Allen P. (2021). "Engineering spatiotemporal organization and dynamics in synthetic cells." Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 13(3): n/a-n/a.
dc.identifier.issn1939-5116
dc.identifier.issn1939-0041
dc.identifier.urihttps://hdl.handle.net/2027.42/167428
dc.description.abstractConstructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell‐sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells—compartmentalization and self‐organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self‐organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells.This article is categorized under:Biology‐Inspired Nanomaterials > Lipid‐Based StructuresBiology‐Inspired Nanomaterials > Protein and Virus‐Based StructuresSelf‐organizing systems and dynamics in space and time in synthetic cells.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherin vitro reconstitution
dc.subject.otherprotein compartment
dc.subject.othersynthetic cell
dc.subject.otherartificial cells
dc.titleEngineering spatiotemporal organization and dynamics in synthetic cells
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167428/1/wnan1685_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167428/2/wnan1685.pdf
dc.identifier.doi10.1002/wnan.1685
dc.identifier.sourceWiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology
dc.identifier.citedreferencePazos, M., Natale, P., & Vicente, M. ( 2013 ). A specific role for the ZipA protein in cell division: Stabilization of the FtsZ protein. The Journal of Biological Chemistry, 288 ( 5 ), 3219 – 3226. https://doi.org/10.1074/jbc.M112.434944
dc.identifier.citedreferenceTing, C. S., Dusenbury, K. H., Pryzant, R. A., Higgins, K. W., Pang, C. J., Black, C. E., & Beauchamp, E. M. ( 2015 ). The prochlorococcus carbon dioxide‐concentrating mechanism: Evidence of Carboxysome‐associated heterogeneity. Photosynthesis Research, 123 ( 1 ), 45 – 60. https://doi.org/10.1007/s11120-014-0038-0
dc.identifier.citedreferenceToda, S., Blauch, L. R., Tang, S. K. Y., Morsut, L., & Lim, W. A. ( 2018 ). Programming self‐organizing multicellular structures with synthetic cell‐cell signaling. Science, 361 ( 6398 ), 156 – 162. https://doi.org/10.1126/science.aat0271
dc.identifier.citedreferenceTracey, J. C., Coronado, M., Giessen, T. W., Lau, M. C. Y., Silver, P. A., & Ward, B. B. ( 2019 ). The discovery of twenty‐eight new Encapsulin sequences, including three in Anammox Bacteria. Scientific Reports, 9 ( 1 ), 20122. https://doi.org/10.1038/s41598-019-56533-5
dc.identifier.citedreferenceTrantidou, T., Friddin, M. S., Salehi‐Reyhani, A., Ces, O., & Elani, Y. ( 2018 ). Droplet microfluidics for the construction of compartmentalised model membranes. Lab on a Chip. Royal Society of Chemistry, 18, 2488 – 2509. https://doi.org/10.1039/c8lc00028j
dc.identifier.citedreferenceTsai, T. Y. C., Yoon, S. C., Ma, W., Pomerening, J. R., Tang, C., & Ferrell, J. E. ( 2008 ). Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science, 321 ( 5885 ), 126 – 139. https://doi.org/10.1126/science.1156951
dc.identifier.citedreferenceTurmo, A., Gonzalez‐Esquer, C. R., & Kerfeld, C. A. ( 2017 ). Carboxysomes: Metabolic modules for CO2 fixation. FEMS Microbiology Letters, 364 ( 18 ), 1 – 11. https://doi.org/10.1093/femsle/fnx176
dc.identifier.citedreferenceUddin, I., Frank, S., Warren, M. J., & Pickersgill, R. W. ( 2018 ). A generic self‐assembly process in microcompartments and synthetic protein nanotubes. Small (Weinheim an Der Bergstrasse, Germany), 14 ( 19 ), e1704020. https://doi.org/10.1002/smll.201704020
dc.identifier.citedreferenceVargo, K. B., Parthasarathy, R., & Hammer, D. A. ( 2012 ). Self‐assembly of tunable protein Suprastructures from recombinant Oleosin. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 29 ), 11657 – 11662. https://doi.org/10.1073/pnas.1205426109
dc.identifier.citedreferenceVecchiarelli, A. G., Hwang, L. C., & Mizuuchi, K. ( 2013 ). Cell‐free study of F plasmid partition provides evidence for cargo transport by a diffusion‐ratchet mechanism. Proceedings of the National Academy of Sciences of the United States of America, 110 ( 15 ), E1390 – E1397. https://doi.org/10.1073/pnas.1302745110
dc.identifier.citedreferenceVecchiarelli, A. G., Li, M., Mizuuchi, M., Hwang, L. C., Seol, Y., Neuman, K. C., & Mizuuchi, K. ( 2016 ). Membrane‐bound MinDE complex acts as a toggle switch that drives Min oscillation coupled to cytoplasmic depletion of MinD. Proceedings of the National Academy of Sciences of the United States of America, 113 ( 11 ), E1479 – E1488. https://doi.org/10.1073/pnas.1600644113
dc.identifier.citedreferenceVecchiarelli, A. G., Li, M., Mizuuchi, M., & Mizuuchi, K. ( 2014 ). Differential affinities of MinD and MinE to anionic phospholipid influence Min patterning dynamics in vitro. Molecular Microbiology, 93 ( 3 ), 453 – 463. https://doi.org/10.1111/mmi.12669
dc.identifier.citedreferenceVecchiarelli, A. G., Neuman, K. C., & Mizuuchi, K. ( 2014 ). A propagating ATPase gradient drives transport of surface‐confined cellular cargo. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 13 ), 4880 – 4885. https://doi.org/10.1073/pnas.1401025111
dc.identifier.citedreferenceVogele, K., Frank, T., Gasser, L., Goetzfried, M. A., Hackl, M. W., Sieber, S. A., … Pirzer, T. ( 2018 ). Towards synthetic cells using peptide‐based reaction compartments. Nature Communications, 9 ( 1 ), 1 – 7. https://doi.org/10.1038/s41467-018-06379-8
dc.identifier.citedreferenceWalpole, J., Papin, J. A., & Peirce, S. M. ( 2013 ). Multiscale computational models of complex biological systems. Annual Review of Biomedical Engineering, 15 ( 1 ), 137 – 154. https://doi.org/10.1146/annurev-bioeng-071811-150104
dc.identifier.citedreferenceWalter, J.‐C., Dorignac, J., Lorman, V., Rech, J., J‐Y Bouet, M., Nollmann, J., … Geniet, F. ( 2017 ). Surfing on protein waves: Proteophoresis as a mechanism for bacterial genome partitioning. Physical Review Letters, 119 ( 2 ), 028101. https://doi.org/10.1103/PhysRevLett.119.028101
dc.identifier.citedreferenceWang, S., Fan, K., Luo, N., Cao, Y., Wu, F., Zhang, C., … You, L. ( 2019 ). Massive computational acceleration by using neural networks to emulate mechanism‐based biological models. Nature Communications, 10 ( 1 ), 1 – 9. https://doi.org/10.1038/s41467-019-12342-y
dc.identifier.citedreferenceWang, X., Du, H., Wang, Z., Mu, W., & Han, X. ( 2020 ). Versatile phospholipid assemblies for functional synthetic cells and artificial tissues. Advanced Materials, 2002635. https://doi.org/10.1002/adma.202002635
dc.identifier.citedreferenceWeiss, M., Frohnmayer, J. P., Benk, L. T., Haller, B., Janiesch, J. W., Heitkamp, T., … Spatz, J. P. ( 2018 ). Sequential bottom‐up assembly of mechanically stabilized synthetic cells by microfluidics. Nature Materials, 17 ( 1 ), 89 – 95. https://doi.org/10.1038/NMAT5005
dc.identifier.citedreferenceWeitz, M., Kim, J., Kapsner, K., Winfree, E., Franco, E., & Simmel, F. C. ( 2014 ). Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nature Chemistry, 6 ( 4 ), 295 – 302. https://doi.org/10.1038/nchem.1869
dc.identifier.citedreferenceWilliams, E. M., Jung, S. M., Coffman, J. L., & Lutz, S. ( 2018 ). Pore engineering for enhanced mass transport in encapsulin nanocompartments. ACS Synthetic Biology, 7 ( 11 ), 2514 – 2517. https://doi.org/10.1021/acssynbio.8b00295
dc.identifier.citedreferenceXu, C., Hu, S., & Chen, X. ( 2016 ). Artificial cells: From basic science to applications. Biochemical Pharmacology, 19 ( 9 ), 516 – 532. https://doi.org/10.1016/j.mattod.2016.02.020
dc.identifier.citedreferenceYung, M. C., Bourguet, F. A., Carpenter, T. S., & Coleman, M. A. ( 2017 ). Re‐directing bacterial microcompartment systems to enhance recombinant expression of lysis protein E from bacteriophage ΦX174 in Escherichia coli. Microbial Cell Factories, 16 ( 1 ), 71. https://doi.org/10.1186/s12934-017-0685-x
dc.identifier.citedreferenceZakeri, B., Fierer, J. O., Celik, E., Chittock, E. C., Schwarz‐Linek, U., Moy, V. T., & Howarth, M. ( 2012 ). Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial Adhesin. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 12 ), E690 – E697. https://doi.org/10.1073/pnas.1115485109
dc.identifier.citedreferenceZhou, H., & Lutkenhaus, J. ( 2003 ). Membrane binding by MinD involves insertion of hydrophobic residues within the C‐terminal amphipathic Helix into the bilayer. Journal of Bacteriology, 185 ( 15 ), 4326 – 4335. https://doi.org/10.1128/JB.185.15.4326-4335.2003
dc.identifier.citedreferenceZieske, K., & Schwille, P. ( 2014 ). Reconstitution of self‐organizing protein gradients as spatial cues in cell‐free systems. eLife, 3 ( October ), 1 – 19. https://doi.org/10.7554/eLife.03949
dc.identifier.citedreferenceBashirzadeh, Y., & Liu, A. P. ( 2019 ). Encapsulation of the cytoskeleton: Towards mimicking the mechanics of a cell. Soft Matter, 15 ( 42 ), 8425 – 8436. https://doi.org/10.1039/c9sm01669d
dc.identifier.citedreferenceBaxter, J. C., & Funnell, B. E. ( 2014 ). Plasmid partition mechanisms. Microbiology Spectrum, 2 ( 6 ), 1 – 20. https://doi.org/10.1128/microbiolspec.plas-0023-2014
dc.identifier.citedreferenceAshburner, M., Golic, K. G., & Hawley, R. S. ( 2005 ). Drosophila: A laboratory handbook ( 2nd ed., p. 164 ). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
dc.identifier.citedreferenceAhmad, M. R., Nakajima, M., Kojima, S., Homma, M., & Fukuda, T. ( 2008 ). The effects of cell sizes, environmental conditions, and growth phases on the strength of individual W303 yeast cells inside ESEM. IEEE Transactions on Nanobioscience, 7 ( 3 ), 185 – 193. https://doi.org/10.1109/TNB.2008.2002281
dc.identifier.citedreferenceChen, Z., Wang, J., Sun, W., Archibong, E., Kahkoska, A. R., Zhang, X., … Gu, Z. ( 2018 ). Synthetic Beta cells for fusion‐mediated dynamic insulin secretion. Nature Chemical Biology, 14 ( 1 ), 86 – 93. https://doi.org/10.1038/nchembio.2511
dc.identifier.citedreferenceElston, T. C., & Oster, G. ( 1997 ). Protein turbines I: The bacterial flagellar motor. Biophysical Journal, 73 ( 2 ), 703 – 721. https://doi.org/10.1016/S0006-3495(97)78104-9
dc.identifier.citedreferenceGuet, C. C., Bruneaux, L., Min, T. L., Siegal‐Gaskins, D., Figueroa, I., Emonet, T., & Cluzel, P. ( 2008 ). Minimally invasive determination of MRNA concentration in single living Bacteria. Nucleic Acids Research, 36 ( 12 ), e73. https://doi.org/10.1093/nar/gkn329
dc.identifier.citedreferenceGulliver, G. ( 1875 ). On the size and shape of red corpuscles of the blood of vertebrates, with drawings of them to a uniform scale, and extended and revised tables of measurements. Proceedings of the Zoological Society of London, 1875, 474 – 495.
dc.identifier.citedreferenceHirsch, N., Zimmerman, L. B., & Grainger, R. M. ( 2002 ). Xenopus, the next generation: X. Tropicalis genetics and genomics. Developmental Dynamics, 225, 422 – 433. https://doi.org/10.1002/dvdy.10178
dc.identifier.citedreferenceMarkow, T. A., Beall, S., & Matzkin, L. M. ( 2009 ). Egg size, embryonic development time and Ovoviviparity in Drosophila species. Journal of Evolutionary Biology, 22 ( 2 ), 430 – 434. https://doi.org/10.1111/j.1420-9101.2008.01649.x
dc.identifier.citedreferenceMatamoro‐Vidal, A., Salazar‐Ciudad, I., & Houle, D. ( 2015 ). Making quantitative morphological variation from basic developmental processes: Where are we? The case of the Drosophila wing. Developmental Dynamics, 244 ( 9 ), 1058 – 1073. https://doi.org/10.1002/dvdy.24255
dc.identifier.citedreferenceMaurizi, M. R. ( 1992 ). Proteases and protein degradation in Escherichia coli. Experientia, 48 ( 2 ), 178 – 201. https://doi.org/10.1007/bf01923511
dc.identifier.citedreferenceNelson, D. E., & Young, K. D. ( 2000 ). Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. Journal of Bacteriology, 182 ( 6 ), 1714 – 1721. https://doi.org/10.1128/jb.182.6.1714-1721.2000
dc.identifier.citedreferenceSezonov, G., Joseleau‐Petit, D., & D’Ari, R. ( 2007 ). Escherichia coli physiology in Luria‐Bertani broth. Journal of Bacteriology, 189 ( 23 ), 8746 – 8749. https://doi.org/10.1128/JB.01368-07
dc.identifier.citedreferenceWeitz, J. ( 2016 ). Quantitative viral ecology: Dynamics of viruses and their microbial hosts (p. 55 ). Princeton, NJ: Princeton University Press.
dc.identifier.citedreferenceZhao, L., Kroenke, C. D., Song, J., Piwnica‐Worms, D., Ackerman, J. J. H., & Neil, J. J. ( 2008 ). Intracellular water‐specific MR of microbead‐adherent cells: The HeLa cell intracellular water exchange lifetime. NMR in Biomedicine, 21 ( 2 ), 159 – 164. https://doi.org/10.1002/nbm.1173
dc.identifier.citedreferenceAdamala, K. P., Martin‐Alarcon, D. A., Guthrie‐Honea, K. R., & Boyden, E. S. ( 2017 ). Engineering genetic circuit interactions within and between synthetic minimal cells. Nature Chemistry, 9 ( 5 ), 431 – 439. https://doi.org/10.1038/nchem.2644
dc.identifier.citedreferenceAkita, F., Chong, K. T., Tanaka, H., Yamashita, E., Miyazaki, N., Nakaishi, Y., … Nakagawa, A. ( 2007 ). The crystal structure of a virus‐like particle from the hyperthermophilic archaeon pyrococcus furiosus provides insight into the evolution of viruses. Journal of Molecular Biology, 368 ( 5 ), 1469 – 1483. https://doi.org/10.1016/j.jmb.2007.02.075
dc.identifier.citedreferenceAmit, R., Oppenheim, A. B., & Stavans, J. ( 2003 ). Increased bending rigidity of single DNA molecules by H‐NS, a temperature and osmolarity sensor. Biophysical Journal, 84 ( 4 ), 2467 – 2473. https://doi.org/10.1016/S0006-3495(03)75051-6
dc.identifier.citedreferenceAussignargues, C., Paasch, B. C., Gonzalez‐Esquer, R., Erbilgin, O., & Kerfeld, C. A. ( 2015 ). Bacterial microcompartment assembly: The key role of encapsulation peptides. Communicative and Integrative Biology, 8 ( 3 ), e1039755. https://doi.org/10.1080/19420889.2015.1039755
dc.identifier.citedreferenceAussignargues, C., Pandelia, M.‐E., Sutter, M., Plegaria, J. S., Zarzycki, J., Turmo, A., … Kerfeld, C. A. ( 2016 ). Structure and function of a bacterial microcompartment shell protein engineered to bind a [4Fe‐4S] cluster. Journal of the American Chemical Society, 138 ( 16 ), 5262 – 5270. https://doi.org/10.1021/jacs.5b11734
dc.identifier.citedreferenceAxen, S. D., Erbilgin, O., & Kerfeld, C. A. ( 2014 ). A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Computational Biology, 10 ( 10 ), e1003898. https://doi.org/10.1371/journal.pcbi.1003898
dc.identifier.citedreferenceBadieyan, S., Sciore, A., Eschweiler, J. D., Koldewey, P., Cristie‐David, A. S., Ruotolo, B. T., … Marsh, E. N. G. ( 2017 ). Symmetry‐directed self‐assembly of a tetrahedral protein cage mediated by de novo‐designed coiled coils. Chembiochem, 18 ( 19 ), 1888 – 1892. https://doi.org/10.1002/cbic.201700406
dc.identifier.citedreferenceBae, Y., Kim, G. J., Kim, H., Park, S. G., Jung, H. S., & Kang, S. ( 2018 ). Engineering tunable dual functional protein cage nanoparticles using bacterial superglue. Biomacromolecules, 19 ( 7 ), 2896 – 2904. https://doi.org/10.1021/acs.biomac.8b00457
dc.identifier.citedreferenceBaker, D. ( 2019 ). What has de novo protein design taught us about protein folding and biophysics? Protein Science: A Publication of the Protein Society, 28 ( 4 ), 678 – 683. https://doi.org/10.1002/pro.3588
dc.identifier.citedreferenceBale, J. B., Gonen, S., Liu, Y., Sheffler, W., Ellis, D., Thomas, C., … Baker, D. ( 2016 ). Accurate design of megadalton‐scale two‐component icosahedral protein complexes. Science, 353 ( 6297 ), 389 – 394. https://doi.org/10.1126/science.aaf8818
dc.identifier.citedreferenceBellomo, E. G., Wyrsta, M. D., Pakstis, L., Pochan, D. J., & Deming, T. J. ( 2004 ). Stimuli‐responsive polypeptide vesicles by conformation‐specific assembly. Nature Materials, 3 ( 4 ), 244 – 248. https://doi.org/10.1038/nmat1093
dc.identifier.citedreferenceBeneyton, T., Krafft, D., Bednarz, C., Kleineberg, C., Woelfer, C., Ivanov, I., … Baret, J. C. ( 2018 ). Out‐of‐equilibrium microcompartments for the bottom‐up integration of metabolic functions. Nature Communications, 9 ( 1 ), 1 – 10. https://doi.org/10.1038/s41467-018-04825-1
dc.identifier.citedreferenceBerhanu, S., Ueda, T., & Kuruma, Y. ( 2019 ). Artificial photosynthetic cell producing energy for protein synthesis. Nature Communications, 10 ( 1 ), 1 – 10. https://doi.org/10.1038/s41467-019-09147-4
dc.identifier.citedreferenceBhardwaj, T., & Somvanshi, P. ( 2017 ). Pan‐genome analysis of clostridium botulinum reveals unique targets for drug development. Gene, 623 ( August ), 48 – 62. https://doi.org/10.1016/j.gene.2017.04.019
dc.identifier.citedreferenceBhattacharya, A., Brea, R. J., Niederholtmeyer, H., & Devaraj, N. K. ( 2019 ). A minimal biochemical route towards de novo formation of synthetic phospholipid membranes. Nature Communications, 10 ( 1 ), 1 – 8. https://doi.org/10.1038/s41467-018-08174-x
dc.identifier.citedreferenceden Blaauwen, T., Hamoen, L. W., & Levin, P. A. ( 2017 ). The divisome at 25: The road ahead. Current Opinion in Microbiology. Elsevier Ltd, 36, 85 – 94. https://doi.org/10.1016/j.mib.2017.01.007
dc.identifier.citedreferenceBobik, T. A., Lehman, B. P., & Yeates, T. O. ( 2015 ). Bacterial microcompartments: Widespread prokaryotic organelles for isolation and optimization of metabolic pathways. Molecular Microbiology, 98 ( 2 ), 193 – 207. https://doi.org/10.1111/mmi.13117
dc.identifier.citedreferenceBrangwynne, C. P., Eckmann, C. R., Courson, D. S., Rybarska, A., Hoege, C., Gharakhani, J., … Hyman, A. A. ( 2009 ). Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 324 ( 5935 ), 1729 – 1732. https://doi.org/10.1126/science.1172046
dc.identifier.citedreferenceBrouwer, P. J. M., Antanasijevic, A., Berndsen, Z., Yasmeen, A., Fiala, B., Bijl, T. P. L., … Sanders, R. W. ( 2019 ). Enhancing and shaping the immunogenicity of native‐like HIV‐1 envelope trimers with a two‐component protein nanoparticle. Nature Communications, 10 ( 1 ), 4272. https://doi.org/10.1038/s41467-019-12080-1
dc.identifier.citedreferenceBrownlee, C., & Heald, R. ( 2019 ). Importin α partitioning to the plasma membrane regulates intracellular scaling. Cell, 176 ( 4 ), 805 – 815.e8. https://doi.org/10.1016/j.cell.2018.12.001
dc.identifier.citedreferenceCai, F., Bernstein, S. L., Wilson, S. C., & Kerfeld, C. A. ( 2016 ). Production and characterization of synthetic carboxysome shells with incorporated luminal proteins. Plant Physiology, 170 ( 3 ), 1868 – 1877. https://doi.org/10.1104/pp.15.01822
dc.identifier.citedreferenceCai, F., Sutter, M., Bernstein, S. L., Kinney, J. N., & Kerfeld, C. A. ( 2015 ). Engineering bacterial microcompartment shells: Chimeric shell proteins and chimeric carboxysome shells. ACS Synthetic Biology, 4 ( 4 ), 444 – 453. https://doi.org/10.1021/sb500226j
dc.identifier.citedreferenceCannon, K. A., Ochoa, J. M., & Yeates, T. O. ( 2019 ). High‐symmetry protein assemblies: Patterns and emerging applications. Current Opinion in Structural Biology, 55 ( April ), 77 – 84. https://doi.org/10.1016/j.sbi.2019.03.008
dc.identifier.citedreferenceCannon, K. A., Park, R. U., Boyken, S. E., Nattermann, U., Yi, S., Baker, D., … Yeates, T. O. ( 2020 ). Design and structure of two new protein cages illustrate successes and ongoing challenges in protein engineering. Protein Science, 29 ( 4 ), 919 – 929. https://doi.org/10.1002/pro.3802
dc.identifier.citedreferenceCantwell, H., & Nurse, P. ( 2019a ). A systematic genetic screen identifies essential factors involved in nuclear size control. Jan M. Skotheim (Ed.). PLoS Genetics, 15 (2), e1007929. https://doi.org/10.1371/journal.pgen.1007929.
dc.identifier.citedreferenceCantwell, H., & Nurse, P. ( 2019b ). Unravelling nuclear size control. Current Genetics. Springer Verlag, 65, 1281 – 1285. https://doi.org/10.1007/s00294-019-00999-3
dc.identifier.citedreferenceCaspi, Y., & Dekker, C. ( 2016 ). Mapping out Min protein patterns in fully confined fluidic chambers. eLife, 5 ( NOVEMBER2016 ), 1 – 27. https://doi.org/10.7554/eLife.19271
dc.identifier.citedreferenceCassidy‐Amstutz, C., Oltrogge, L., Going, C. C., Lee, A., Teng, P., Quintanilla, D., … Savage, D. F. ( 2016 ). Identification of a minimal peptide tag for in vivo and in vitro loading of Encapsulin. Biochemistry, 55 ( 24 ), 3461 – 3468. https://doi.org/10.1021/acs.biochem.6b00294
dc.identifier.citedreferenceChen, C., MacCready, J. S., Ducat, D. C., & Osteryoung, K. W. ( 2018 ). The molecular machinery of chloroplast division. Plant Physiology, 176 ( 1 ), 138 – 151. https://doi.org/10.1104/pp.17.01272
dc.identifier.citedreferenceChen, I. A., Salehi‐Ashtiani, K., & Szostak, J. W. ( 2005 ). RNA catalysis in model protocell vesicles. Journal of the American Chemical Society, 127 ( 38 ), 13213 – 13219. https://doi.org/10.1021/ja051784p
dc.identifier.citedreferenceCheng, X., & Ferrell, J. E. ( 2019 ). Spontaneous emergence of cell‐like Organization in Xenopus egg Extracts. Science, 366 ( 6465 ), 631 – 637. https://doi.org/10.1126/science.aav7793
dc.identifier.citedreferenceChoi, B., Kim, H., Choi, H., & Kang, S. ( 2018 ). Protein cage nanoparticles as delivery nanoplatforms. In Advances in Experimental Medicine and Biology (Vol. 1064, pp. 27 – 43 ). New York: Springer, LLC. https://doi.org/10.1007/978-981-13-0445-3_2
dc.identifier.citedreferenceGöpfrich, K., Platzman, I., & Spatz, J. P. ( 2018 ). Mastering complexity: Towards bottom‐up construction of multifunctional eukaryotic synthetic cells. Trends in Biotechnology, Elsevier Ltd, 36, 938 – 951. https://doi.org/10.1016/j.tibtech.2018.03.008
dc.identifier.citedreferenceChoi, B., Moon, H., Hong, S. J., Shin, C., Do, Y., Ryu, S., & Kang, S. ( 2016 ). Effective delivery of antigen‐encapsulin nanoparticle fusions to dendritic cells leads to antigen‐specific cytotoxic T cell activation and tumor rejection. ACS Nano, 10 ( 8 ), 7339 – 7350. https://doi.org/10.1021/acsnano.5b08084
dc.identifier.citedreferenceChoi, H. J., & Montemagno, C. D. ( 2007 ). Light‐driven hybrid bioreactor based on protein‐incorporated polymer vesicles. IEEE Transactions on Nanotechnology, 6 ( 2 ), 171 – 176. https://doi.org/10.1109/TNANO.2007.891822
dc.identifier.citedreferenceChoudhary, S., Quin, M. B., Sanders, M. A., Johnson, E. T., & Schmidt‐Dannert, C. ( 2012 ). Engineered protein Nano‐compartments for targeted enzyme localization. PLoS One, 7 ( 3 ), e33342. https://doi.org/10.1371/journal.pone.0033342
dc.identifier.citedreferenceChowdhury, C., Sinha, S., Chun, S., Yeates, T. O., & Bobik, T. A. ( 2014 ). Diverse bacterial microcompartment organelles. Microbiology and Molecular Biology Reviews, 78 ( 3 ), 438 – 468. https://doi.org/10.1128/mmbr.00009-14
dc.identifier.citedreferenceCohan, M. C., Ruff, K. M., & Pappu, R. V. ( 2019 ). Information theoretic measures for quantifying sequence‐ensemble relationships of intrinsically disordered proteins. Protein Engineering, Design & Selection: PEDS, 32 ( 4 ), 191 – 202. https://doi.org/10.1093/protein/gzz014
dc.identifier.citedreferenceContreras, H., Joens, M. S., McMath, L. M., Le, V. P., Tullius, M. V., Kimmey, J. M., … Goulding, C. W. ( 2014 ). Characterization of a Mycobacterium tuberculosis Nanocompartment and its potential cargo proteins. The Journal of Biological Chemistry, 289 ( 26 ), 18279 – 18289. https://doi.org/10.1074/jbc.M114.570119
dc.identifier.citedreferenceCornejo, E., Abreu, N., & Komeili, A. ( 2014 ). Compartmentalization and organelle formation in Bacteria. Current Opinion in Cell Biology, 26 ( 1 ), 132 – 138. https://doi.org/10.1016/j.ceb.2013.12.007
dc.identifier.citedreferenceCristie‐David, A. S., Chen, J., Nowak, D. B., Bondy, A. L., Sun, K., Park, S. I., … Marsh, E. N. G. ( 2019 ). Coiled‐coil‐mediated assembly of an icosahedral protein cage with extremely high thermal and chemical stability. Journal of the American Chemical Society, 141 ( 23 ), 9207 – 9216. https://doi.org/10.1021/jacs.8b13604
dc.identifier.citedreferenceCristie‐David, A. S., & Marsh, E. N. G. ( 2019 ). Metal‐dependent assembly of a protein nano‐cage. Protein Science: A Publication of the Protein Society, 28 ( 9 ), 1620 – 1629. https://doi.org/10.1002/pro.3676
dc.identifier.citedreferenceCrowe, C. D., & Keating, C. D. ( 2018 ). Liquid‐liquid phase separation in artificial cells. Interface Focus, 8 ( 5 ), 20180032. https://doi.org/10.1098/rsfs.2018.0032
dc.identifier.citedreferenceCunha, S., Woldringh, C. L., & Odijk, T. ( 2001 ). Polymer‐mediated compaction and internal dynamics of isolated Escherichia coli nucleoids. Journal of Structural Biology, 136 ( 1 ), 53 – 66. https://doi.org/10.1006/jsbi.2001.4420
dc.identifier.citedreferenceDame, R. T., Noom, M. C., & Wuite, G. J. L. ( 2006 ). Bacterial chromatin organization by H‐NS protein Unravelled using dual DNA manipulation. Nature, 444 ( 7117 ), 387 – 390. https://doi.org/10.1038/nature05283
dc.identifier.citedreferenceDanielli, J. F. ( 1972 ). The artificial synthesis of new life forms in relation to social and industrial evolution. In The future of man (pp. 95 – 112 ). Cambridge, MA: Elsevier. https://doi.org/10.1016/b978-0-12-229060-2.50012-4
dc.identifier.citedreferenceden Blaauwen, T., & Luirink, J. ( 2019 ). Checks and balances in bacterial cell division. MBio, 10 ( 1 ), 1 – 5. https://doi.org/10.1128/mBio.00149-19
dc.identifier.citedreferenceDeng, N.‐N., & Huck, W. T. S. ( 2017 ). Microfluidic formation of monodisperse Coacervate organelles in liposomes. Angewandte Chemie (International Ed. in English), 56 ( 33 ), 9736 – 9740. https://doi.org/10.1002/anie.201703145
dc.identifier.citedreferenceDeshpande, S., Brandenburg, F., Lau, A., Last, M. G. F., Spoelstra, W. K., Reese, L., … Dekker, C. ( 2019 ). Spatiotemporal control of Coacervate formation within liposomes. Nature Communications, 10 ( 1 ), 1800. https://doi.org/10.1038/s41467-019-09855-x
dc.identifier.citedreferenceDiekmann, Y., & Pereira‐Leal, J. B. ( 2013 ). Evolution of intracellular compartmentalization. The Biochemical Journal, 449 ( 2 ), 319 – 331. https://doi.org/10.1042/BJ20120957
dc.identifier.citedreferenceDong, Y., Yang, Y. R., Zhang, Y., Wang, D., Wei, X., Banerjee, S., … Liu, D. ( 2017 ). Cuboid vesicles formed by frame‐guided assembly on DNA origami scaffolds. Angewandte Chemie International Edition, 56 ( 6 ), 1586 – 1589. https://doi.org/10.1002/anie.201610133
dc.identifier.citedreferenceDryden, K. A., Crowley, C. S., Tanaka, S., Yeates, T. O., & Yeager, M. ( 2009 ). Two‐dimensional crystals of carboxysome shell proteins recapitulate the hexagonal packing of three‐dimensional crystals. Protein Science: A Publication of the Protein Society, 18 ( 12 ), 2629 – 2635. https://doi.org/10.1002/pro.272
dc.identifier.citedreferenceDu, M., & Chen, Z. J. ( 2018 ). DNA‐induced liquid phase condensation of CGAS activates innate immune signaling. Science, 361 ( 6403 ), 704 – 709. https://doi.org/10.1126/science.aat1022
dc.identifier.citedreferenceDwidar, M., Seike, Y., Kobori, S., Whitaker, C., Matsuura, T., & Yokobayashi, Y. ( 2019 ). Programmable artificial cells using histamine‐responsive synthetic riboswitch. Journal of the American Chemical Society, 141 ( 28 ), 11103 – 11114. https://doi.org/10.1021/jacs.9b03300
dc.identifier.citedreferenceEinfalt, T., Witzigmann, D., Edlinger, C., Sieber, S., Goers, R., Najer, A., … Palivan, C. G. ( 2018 ). Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment. Nature Communications, 9 ( 1 ), 1 – 12. https://doi.org/10.1038/s41467-018-03560-x
dc.identifier.citedreferenceEinfalt, T., Goers, R., Dinu, I. A., Najer, A., Spulber, M., Onaca‐Fischer, O., & Palivan, C. G. ( 2015 ). Stimuli‐triggered activity of nanoreactors by biomimetic engineering polymer membranes. Nano Letters, 15 ( 11 ), 7596 – 7603. https://doi.org/10.1021/acs.nanolett.5b03386
dc.identifier.citedreferenceElbaum‐Garfinkle, S., Kim, Y., Szczepaniak, K., Chen, C. C.‐H., Eckmann, C. R., Myong, S., & Brangwynne, C. P. ( 2015 ). The disordered P granule protein LAF‐1 drives phase separation into droplets with tunable viscosity and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 112 ( 23 ), 7189 – 7194. https://doi.org/10.1073/pnas.1504822112
dc.identifier.citedreferenceErb, M. L., Kraemer, J. A., Coker, J. K. C., Chaikeeratisak, V., Nonejuie, P., Agard, D. A., & Pogliano, J. ( 2014 ). A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells. eLife, 3, 1 – 18. https://doi.org/10.7554/eLife.03197
dc.identifier.citedreferenceFacchetti, G., Knapp, B., Flor‐Parra, I., Chang, F., & Howard, M. ( 2019 ). Reprogramming Cdr2‐dependent geometry‐based cell size control in fission yeast. Current Biology, 29 ( 2 ), 350 – 358.e4. https://doi.org/10.1016/j.cub.2018.12.017
dc.identifier.citedreferenceFang, Y., Huang, F., Faulkner, M., Jiang, Q., Dykes, G. F., Yang, M., & Liu, L.‐N. ( 2018 ). Engineering and modulating functional cyanobacterial CO2‐fixing organelles. Frontiers in Plant Science, 9 ( June ), 739. https://doi.org/10.3389/fpls.2018.00739
dc.identifier.citedreferenceFink, G., & Löwe, J. ( 2015 ). Reconstitution of a prokaryotic minus end‐tracking system using TubRC Centromeric complexes and tubulin‐like protein TubZ filaments. Proceedings of the National Academy of Sciences of the United States of America, 112 ( 15 ), E1845 – E1850. https://doi.org/10.1073/pnas.1423746112
dc.identifier.citedreferenceGanji, M., Shaltiel, I. A., Bisht, S., Kim, E., Kalichava, A., Haering, C. H., & Dekker, C. ( 2018 ). Real‐time imaging of DNA loop extrusion by condensin. Science, 360 ( 6384 ), 102 – 105. https://doi.org/10.1126/science.aar7831
dc.identifier.citedreferenceGaramella, J., Majumder, S., Liu, A. P., & Noireaux, V. ( 2019 ). An adaptive synthetic cell based on mechanosensing, biosensing, and inducible gene circuits. ACS Synthetic Biology, 8 ( 8 ), 1913 – 1920. https://doi.org/10.1021/acssynbio.9b00204
dc.identifier.citedreferenceGaramella, J., Marshall, R., Rustad, M., & Noireaux, V. ( 2016 ). The all E. coli TX‐TL toolbox 2.0: A platform for cell‐free synthetic biology. ACS Synthetic Biology, 5 ( 4 ), 344 – 355. https://doi.org/10.1021/acssynbio.5b00296
dc.identifier.citedreferenceGarner, E. C., Campbell, C. S., & Dyche Mullins, R. ( 2004 ). Dynamic instability in a DNA‐segregating prokaryotic Actin homolog. Science (New York, N.Y.), 306 ( 5698 ), 1021 – 1025. https://doi.org/10.1126/science.1101313
dc.identifier.citedreferenceGarner, E. C., Campbell, C. S., Weibel, D. B., & Dyche Mullins, R. ( 2007 ). Reconstitution of DNA segregation. Science, 315 ( March ), 1270 – 1274. https://doi.org/10.1126/science.1138527
dc.identifier.citedreferenceGerdes, K., Howard, M., & Szardenings, F. ( 2010 ). Pushing and pulling in prokaryotic DNA segregation. Cell, 141, 927 – 942. https://doi.org/10.1016/j.cell.2010.05.033
dc.identifier.citedreferenceGiessen, T. W. ( 2016 ). Encapsulins: Microbial Nanocompartments with applications in biomedicine, Nanobiotechnology and materials science. Current Opinion in Chemical Biology, 34 ( October ), 1 – 10. https://doi.org/10.1016/j.cbpa.2016.05.013
dc.identifier.citedreferenceGiessen, T. W., & Silver, P. A. ( 2016a ). Encapsulation as a strategy for the Design of Biological Compartmentalization. Journal of Molecular Biology. Academic Press, 428, 916 – 927. https://doi.org/10.1016/j.jmb.2015.09.009
dc.identifier.citedreferenceGiessen, T. W., & Silver, P. A. ( 2016b ). Converting a natural protein compartment into a Nanofactory for the size‐constrained synthesis of antimicrobial Silver nanoparticles. ACS Synthetic Biology, 5 ( 12 ), 1497 – 1504. https://doi.org/10.1021/acssynbio.6b00117
dc.identifier.citedreferenceGiessen, T. W., & Silver, P. A. ( 2017a ). Widespread distribution of Encapsulin Nanocompartments reveals functional diversity. Nature Microbiology, 2 ( March ), 17029. https://doi.org/10.1038/nmicrobiol.2017.29
dc.identifier.citedreferenceGiessen, T. W., & Silver, P. A. ( 2017b ). Engineering carbon fixation with artificial protein organelles. Current Opinion in Biotechnology, 46 ( August ), 42 – 50. https://doi.org/10.1016/j.copbio.2017.01.004
dc.identifier.citedreferenceGligoris, T. G., Scheinost, J. C., Bürmann, F., Petela, N., Chan, K.‐L., Uluocak, P., … Löwe, J. ( 2014 ). Closing the cohesin ring: Structure and function of its Smc3‐Kleisin interface. Science (New York, N.Y.), 346 ( 6212 ), 963 – 967. https://doi.org/10.1126/science.1256917
dc.identifier.citedreferenceGodino, E., López, J. N., Foschepoth, D., Cleij, C., Doerr, A., Castellà, C. F., & Danelon, C. ( 2019 ). De novo synthesized min proteins drive oscillatory liposome deformation and regulate FtsA‐FtsZ cytoskeletal patterns. Nature Communications, 10 ( 1 ), 1 – 12. https://doi.org/10.1038/s41467-019-12932-w
dc.identifier.citedreferenceGodino, E., López, J. N., Zarguit, I., Doerr, A., Jimenez, M., Rivas, G., & Danelon, C. ( 2020 ). Cell‐free biogenesis of bacterial division proto‐rings that can constrict liposomes. Communications Biology, 3 ( 1 ), 539. https://doi.org/10.1038/s42003-020-01258-9
dc.identifier.citedreferenceGood, M. C., Vahey, M. D., Skandarajah, A., Fletcher, D. A., & Heald, R. ( 2013 ). Cytoplasmic volume modulates spindle size during embryogenesis. Science, 342 ( 6160 ), 856 – 860. https://doi.org/10.1126/science.1243147
dc.identifier.citedreferenceOdijk, T. ( 1998 ). Osmotic compaction of supercoiled DNA into a bacterial nucleoid. Biophysical Chemistry, 73 ( 1–2 ), 23 – 29. https://doi.org/10.1016/S0301-4622(98)00115-X
dc.identifier.citedreferenceGordley, R. M., Williams, R. E., Bashor, C. J., Toettcher, J. E., Yan, S., & Lim, W. A. ( 2016 ). Engineering dynamical control of cell fate switching using synthetic phospho‐regulons. Proceedings of the National Academy of Sciences of the United States of America, 113 ( 47 ), 13528 – 13533. https://doi.org/10.1073/pnas.1610973113
dc.identifier.citedreferenceGorochowski, T. E. ( 2016 ). Agent‐based modelling in synthetic biology. Essays in Biochemistry, 60 ( 4 ), 325 – 336. https://doi.org/10.1042/EBC20160037
dc.identifier.citedreferenceGuan, Y., Li, Z., Wang, S., Barnes, P. M., Liu, X., Xu, H., … Yang, Q. ( 2018 ). A robust and tunable mitotic oscillator in artificial cells. eLife, 7 ( April ), e33549. https://doi.org/10.7554/eLife.33549
dc.identifier.citedreferenceGuan, Y., Wang, S., Jin, M., Xu, H., & Yang, Q. ( 2018 ). Reconstitution of cell‐cycle oscillations in microemulsions of cell‐free Xenopus egg extracts. Journal of Visualized Experiments, 2018 ( 139 ), 58240. https://doi.org/10.3791/58240
dc.identifier.citedreferenceHagen, A., Plegaria, J. S., Sloan, N., Ferlez, B., Aussignargues, C., Burton, R., & Kerfeld, C. A. ( 2018 ). In vitro assembly of diverse bacterial microcompartment Shell architectures. Nano Letters, 18 ( 11 ), 7030 – 7037. https://doi.org/10.1021/acs.nanolett.8b02991
dc.identifier.citedreferenceHagen, A., Sutter, M., Sloan, N., & Kerfeld, C. A. ( 2018 ). Programmed loading and rapid purification of engineered bacterial microcompartment shells. Nature Communications, 9 ( 1 ), 2881. https://doi.org/10.1038/s41467-018-05162-z
dc.identifier.citedreferenceHarvey, P. C., Watson, M., Hulme, S., Jones, M. A., Lovell, M., Berchieri, A., … Barrow, P. ( 2011 ). Salmonella enterica Serovar typhimurium colonizing the lumen of the chicken intestine grows slowly and upregulates a unique set of virulence and metabolism genes. Infection and Immunity, 79 ( 10 ), 4105 – 4121. https://doi.org/10.1128/IAI.01390-10
dc.identifier.citedreferenceHeldt, D., Frank, S., Seyedarabi, A., Ladikis, D., Parsons, J. B., Warren, M. J., & Pickersgill, R. W. ( 2009 ). Structure of a trimeric bacterial microcompartment shell protein, EtuB, associated with ethanol utilization in Clostridium kluyveri. The Biochemical Journal, 423 ( 2 ), 199 – 207. https://doi.org/10.1042/BJ20090780
dc.identifier.citedreferenceHerring, T. I., Harris, T. N., Chowdhury, C., Mohanty, S. K., & Bobik, T. A. ( 2018 ). A bacterial microcompartment is used for choline fermentation by Escherichia coli 536. Journal of Bacteriology, 200 ( 10 ), e00764 –17. https://doi.org/10.1128/JB.00764-17
dc.identifier.citedreferenceHilburger, C. E., Jacobs, M. L., Lewis, K. R., Peruzzi, J. A., & Kamat, N. P. ( 2019 ). Controlling secretion in artificial cells with a membrane and gate. ACS Synthetic Biology, 8 ( 6 ), 1224 – 1230. https://doi.org/10.1021/acssynbio.8b00435
dc.identifier.citedreferenceHindley, J. W., Zheleva, D. G., Elani, Y., Charalambous, K., Barter, L. M. C., Booth, P. J., … Ces, O. ( 2019 ). Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells. Proceedings of the National Academy of Sciences of the United States of America, 116 ( 34 ), 16711 – 16716. https://doi.org/10.1073/pnas.1903500116
dc.identifier.citedreferenceHolehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. G., & Pappu, R. V. ( 2017 ). CIDER: Resources to analyze sequence‐ensemble relationships of intrinsically disordered proteins. Biophysical Journal, 112 ( 1 ), 16 – 21. https://doi.org/10.1016/j.bpj.2016.11.3200
dc.identifier.citedreferenceHsia, Y., Bale, J. B., Gonen, S., Shi, D., Sheffler, W., Fong, K. K., … Baker, D. ( 2016 ). Design of a Hyperstable 60‐subunit protein dodecahedron. [corrected]. Nature, 535 ( 7610 ), 136 – 139. https://doi.org/10.1038/nature18010
dc.identifier.citedreferenceHu, Z., Gogol, E. P., & Lutkenhaus, J. ( 2002 ). Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proceedings of the National Academy of Sciences of the United States of America, 99 ( 10 ), 6761 – 6766. https://doi.org/10.1073/pnas.102059099
dc.identifier.citedreferenceHu, Z., & Lutkenhaus, J. ( 2003 ). A conserved sequence at the C‐terminus of MinD is required for binding to the membrane and targeting MinC to the septum. Molecular Microbiology, 47 ( 2 ), 345 – 355. https://doi.org/10.1046/j.1365-2958.2003.03321.x
dc.identifier.citedreferenceHutchison, C. A., Chuang, R. Y., Noskov, V. N., Assad‐Garcia, N., Deerinck, T. J., Ellisman, M. H., … Venter, J. C. ( 2016 ). Design and synthesis of a minimal bacterial genome. Science, 351 ( 6280 ), aad6253. https://doi.org/10.1126/science.aad6253
dc.identifier.citedreferenceHwang, L. C., Vecchiarelli, A. G., Han, Y.‐W., Mizuuchi, M., Harada, Y., Funnell, B. E., & Mizuuchi, K. ( 2013 ). ParA‐mediated plasmid partition driven by protein pattern self‐organization. The EMBO Journal, 32 ( 9 ), 1238 – 1249. https://doi.org/10.1038/emboj.2013.34
dc.identifier.citedreferenceHyman, A. A., Weber, C. A., & Jülicher, F. ( 2014 ). Liquid‐liquid phase separation in biology. Annual Review of Cell and Developmental Biology, 30 ( 1 ), 39 – 58. https://doi.org/10.1146/annurev-cellbio-100913-013325
dc.identifier.citedreferenceIancu, C. V., Morris, D. M., Dou, Z., Heinhorst, S., Cannon, G. C., & Jensen, G. J. ( 2010 ). Organization, structure, and assembly of alpha‐Carboxysomes determined by Electron Cryotomography of intact cells. Journal of Molecular Biology, 396 ( 1 ), 105 – 117. https://doi.org/10.1016/j.jmb.2009.11.019
dc.identifier.citedreferenceJacobs, M. L., Boyd, M. A., & Kamat, N. P. ( 2019 ). Diblock copolymers enhance folding of a mechanosensitive membrane protein during cell‐free expression. Proceedings of the National Academy of Sciences of the United States of America, 116 ( 10 ), 4031 – 4036. https://doi.org/10.1073/pnas.1814775116
dc.identifier.citedreferenceJain, A., & Vale, R. D. ( 2017 ). RNA phase transitions in repeat expansion disorders. Nature, 546 ( 7657 ), 243 – 247. https://doi.org/10.1038/nature22386
dc.identifier.citedreferenceJakobson, C. M., Kim, E. Y., Slininger, M. F., Chien, A., & Tullman‐Ercek, D. ( 2015 ). Localization of proteins to the 1,2‐Propanediol utilization microcompartment by non‐native signal sequences is mediated by a common hydrophobic motif. The Journal of Biological Chemistry, 290 ( 40 ), 24519 – 24533. https://doi.org/10.1074/jbc.M115.651919
dc.identifier.citedreferenceJoesaar, A., Yang, S., Bögels, B., van der Linden, A., Pieters, P., Kumar, B. V. V. S. P., … de Greef, T. F. A. ( 2019 ). DNA‐based communication in populations of synthetic protocells. Nature Nanotechnology, 14 ( 4 ), 369 – 378. https://doi.org/10.1038/s41565-019-0399-9
dc.identifier.citedreferenceJones, A. R., Forero‐Vargas, M., Withers, S. P., Smith, R. S., Traas, J., Dewitte, W., & Murray, J. A. H. ( 2017 ). Cell‐size dependent progression of the cell cycle creates homeostasis and flexibility of plant cell size. Nature Communications, 8 ( April ), 15060 – 15060. https://doi.org/10.1038/ncomms15060
dc.identifier.citedreferenceJun, S. ( 2015 ). Chromosome, cell cycle, and entropy. Biophysical Journal. Biophysical Society, 108, 785 – 786. https://doi.org/10.1016/j.bpj.2014.12.032
dc.identifier.citedreferenceKarig, D., Michael Martini, K., Lu, T., DeLateur, N. A., Goldenfeld, N., & Weiss, R. ( 2018 ). Stochastic turing patterns in a synthetic bacterial population. Proceedings of the National Academy of Sciences of the United States of America, 115 ( 26 ), 6572 – 6577. https://doi.org/10.1073/pnas.1720770115
dc.identifier.citedreferenceKerfeld, C. A. ( 2017 ). A bioarchitectonic approach to the modular engineering of metabolism. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372 ( 1730 ), 20160387. https://doi.org/10.1098/rstb.2016.0387
dc.identifier.citedreferenceKerfeld, C. A., Aussignargues, C., Zarzycki, J., Cai, F., & Sutter, M. ( 2018 ). Bacterial microcompartments. Nature Reviews. Microbiology, 16 ( 5 ), 277 – 290. https://doi.org/10.1038/nrmicro.2018.10
dc.identifier.citedreferenceKerfeld, C. A., & Erbilgin, O. ( 2015 ). Bacterial microcompartments and the modular construction of microbial metabolism. Trends in Microbiology. Elsevier Ltd, 23, 22 – 34. https://doi.org/10.1016/j.tim.2014.10.003
dc.identifier.citedreferenceKerfeld, C. A., & Melnicki, M. R. ( 2016 ). Assembly, function and evolution of cyanobacterial Carboxysomes. Current Opinion in Plant Biology. Elsevier Ltd, 31, 66 – 75. https://doi.org/10.1016/j.pbi.2016.03.009
dc.identifier.citedreferenceKim, E. Y., & Tullman‐Ercek, D. ( 2014 ). A rapid flow cytometry assay for the relative quantification of protein encapsulation into bacterial microcompartments. Biotechnology Journal, 9 ( 3 ), 348 – 354. https://doi.org/10.1002/biot.201300391
dc.identifier.citedreferenceKim, E., Kerssemakers, J., Shaltiel, I. A., Haering, C. H., & Dekker, C. ( 2020 ). DNA‐loop extruding Condensin complexes can traverse one another. Nature, 579 ( 7799 ), 438 – 442. https://doi.org/10.1038/s41586-020-2067-5
dc.identifier.citedreferenceKim, W., & Chaikof, E. L. ( 2010 ). Recombinant elastin‐mimetic biomaterials: Emerging applications in medicine. Advanced Drug Delivery Reviews. Elsevier, 62, 1468 – 1478. https://doi.org/10.1016/j.addr.2010.04.007
dc.identifier.citedreferenceKlumpp, J., & Fuchs, T. M. ( 2007 ). Identification of novel genes in Genomic Islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology, 153 ( 4 ), 1207 – 1220. https://doi.org/10.1099/mic.0.2006/004747-0
dc.identifier.citedreferenceKoepnick, B., Flatten, J., Husain, T., Ford, A., Silva, D.‐A., Bick, M. J., … Baker, D. ( 2019 ). De novo protein design by citizen scientists. Nature, 570 ( 7761 ), 390 – 394. https://doi.org/10.1038/s41586-019-1274-4
dc.identifier.citedreferenceKohyama, S., Yoshinaga, N., Yanagisawa, M., Fujiwara, K., & Doi, N. ( 2019 ). Cell‐sized confinement controls generation and stability of a protein wave for spatiotemporal regulation in cells. eLife, 8 ( July ), 1 – 30. https://doi.org/10.7554/eLife.44591
dc.identifier.citedreferenceKretschmer, S., Zieske, K., & Schwille, P. ( 2017 ). Large‐scale modulation of reconstituted Min protein patterns and gradients by defined mutations in MinE’s membrane targeting sequence. PLoS One, 12 ( 6 ), e0179582. https://doi.org/10.1371/journal.pone.0179582
dc.identifier.citedreferenceKumar, B. V. V. S. P., Patil, A. J., & Mann, S. ( 2018 ). Enzyme‐powered motility in buoyant organoclay/DNA protocells. Nature Chemistry, 10 ( 11 ), 1154 – 1163. https://doi.org/10.1038/s41557-018-0119-3
dc.identifier.citedreferenceKünzle, M., Mangler, J., Lach, M., & Beck, T. ( 2018 ). Peptide‐directed encapsulation of inorganic nanoparticles into protein containers. Nanoscale, 10 ( 48 ), 22917 – 22926. https://doi.org/10.1039/c8nr06236f
dc.identifier.citedreferenceKurokawa, C., Fujiwara, K., Morita, M., Kawamata, I., Kawagishi, Y., Sakai, A., … Yanagisawa, M. ( 2017 ). DNA cytoskeleton for stabilizing artificial cells. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 28 ), 7228 – 7233. https://doi.org/10.1073/pnas.1702208114
dc.identifier.citedreferenceLagoutte, P., Mignon, C., Stadthagen, G., Potisopon, S., Donnat, S., Mast, J., … Werle, B. ( 2018 ). Simultaneous surface display and cargo loading of encapsulin Nanocompartments and their use for rational vaccine design. Vaccine, 36 ( 25 ), 3622 – 3628. https://doi.org/10.1016/j.vaccine.2018.05.034
dc.identifier.citedreferenceLarsen, R. A., Cusumano, C., Fujioka, A., Lim‐Fong, G., Patterson, P., & Pogliano, J. ( 2007 ). Treadmilling of a prokaryotic tubulin‐like protein, TubZ, required for plasmid stability in Bacillus thuringiensis. Genes and Development, 21 ( 11 ), 1340 – 1352. https://doi.org/10.1101/gad.1546107
dc.identifier.citedreferenceLutkenhaus, J. ( 2007 ). Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annual Review of Biochemistry, 76 ( 1 ), 539 – 562. https://doi.org/10.1146/annurev.biochem.75.103004.142652
dc.identifier.citedreferenceLassila, J. K., Bernstein, S. L., Kinney, J. N., Axen, S. D., & Kerfeld, C. A. ( 2014 ). Assembly of robust bacterial microcompartment shells using building blocks from an organelle of unknown function. Journal of Molecular Biology, 426 ( 11 ), 2217 – 2228. https://doi.org/10.1016/j.jmb.2014.02.025
dc.identifier.citedreferenceLast, M. G. F., Deshpande, S., & Dekker, C. ( 2020 ). PH‐controlled Coacervate‐membrane interactions within liposomes. ACS Nano, 14, 4487 – 4498. https://doi.org/10.1021/acsnano.9b10167
dc.identifier.citedreferenceLau, Y. H., Giessen, T. W., Altenburg, W. J., & Silver, P. A. ( 2018 ). Prokaryotic nanocompartments form synthetic organelles in a eukaryote. Nature Communications, 9 ( 1 ), 1311. https://doi.org/10.1038/s41467-018-03768-x
dc.identifier.citedreferenceLawrence, A. D., Frank, S., Newnham, S., Lee, M. J., Brown, I. R., Xue, W.‐F., … Warren, M. J. ( 2014 ). Solution structure of a bacterial microcompartment targeting peptide and its application in the construction of an ethanol bioreactor. ACS Synthetic Biology, 3 ( 7 ), 454 – 465. https://doi.org/10.1021/sb4001118
dc.identifier.citedreferenceLe Gall, A., Cattoni, D. I., Guilhas, B., Mathieu‐Demazière, C., Oudjedi, L., Fiche, J.‐B., et al. ( 2016 ). Bacterial partition complexes segregate within the volume of the nucleoid. Nature Communications, 7 ( July ), 12107. https://doi.org/10.1038/ncomms12107
dc.identifier.citedreferenceLee, K. Y., Park, S. J., Lee, K. A., Se, H. K., Kim, H., Meroz, Y., et al. ( 2018 ). Photosynthetic artificial organelles sustain and control ATP‐dependent reactions in a protocellular system. Nature Biotechnology, 36 ( 6 ), 530 – 535. https://doi.org/10.1038/nbt.4140
dc.identifier.citedreferenceLee, M. J., Palmer, D. J., & Warren, M. J. ( 2019 ). Biotechnological advances in bacterial microcompartment technology. Trends in Biotechnology, 37 ( 3 ), 325 – 336. https://doi.org/10.1016/j.tibtech.2018.08.006
dc.identifier.citedreferenceLee, T. H., Carpenter, T. S., D’haeseleer, P., Savage, D. F., & Yung, M. C. ( 2020 ). Encapsulin carrier proteins for enhanced expression of antimicrobial peptides. Biotechnology and Bioengineering, 117 ( 3 ), 603 – 613. https://doi.org/10.1002/bit.27222
dc.identifier.citedreferenceLeger, M. M., Petru, M., Žárský, V., Eme, L., Vlček, Č., Tommy, H., … Roger, A. J. ( 2015 ). An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 112 ( 33 ), 10239 – 10246. https://doi.org/10.1073/pnas.1421392112
dc.identifier.citedreferenceLentini, R., Martín, N. Y., Forlin, M., Belmonte, L., Fontana, J., Cornella, M., … Mansy, S. S. ( 2017 ). Two‐way chemical communication between artificial and natural cells. ACS Central Science, 3 ( 2 ), 117 – 123. https://doi.org/10.1021/acscentsci.6b00330
dc.identifier.citedreferenceLentini, R., Santero, S. P., Chizzolini, F., Cecchi, D., Fontana, J., Marchioretto, M., et al. ( 2014 ). Integrating artificial with natural cells to translate chemical messages that Direct E. coli behaviour. Nature Communications, 5 ( May ), 1 – 6. https://doi.org/10.1038/ncomms5012
dc.identifier.citedreferenceLi, P., Banjade, S., Cheng, H. C., Kim, S., Chen, B., Guo, L., … Rosen, M. K. ( 2012 ). Phase transitions in the assembly of multivalent signalling proteins. Nature, 483 ( 7389 ), 336 – 340. https://doi.org/10.1038/nature10879
dc.identifier.citedreferenceLi, Y. ( 2015 ). Split‐Inteins and their bioapplications. Biotechnology Letters, 37 ( 11 ), 2121 – 2137. https://doi.org/10.1007/s10529-015-1905-2
dc.identifier.citedreferenceLi, Z., Liu, S., & Yang, Q. ( 2017 ). Incoherent inputs enhance the robustness of biological oscillators. Cell Systems, 5 ( 1 ), 72 – 81. https://doi.org/10.1016/j.cels.2017.06.013
dc.identifier.citedreferenceLiang, M., Frank, S., Lünsdorf, H., Warren, M. J., & Prentice, M. B. ( 2017 ). Bacterial microcompartment‐directed polyphosphate kinase promotes stable polyphosphate accumulation in E. coli. Biotechnology Journal, 12 ( 3 ), 1600415. https://doi.org/10.1002/biot.201600415
dc.identifier.citedreferenceLim, H. C., Surovtsev, I. V., Beltran, B. G., Huang, F., Bewersdorf, J., & Jacobs‐Wagner, C. ( 2014 ). Evidence for a DNA‐relay mechanism in ParABS‐mediated chromosome segregation. eLife, 3 ( 3 ), e02758. https://doi.org/10.7554/eLife.02758
dc.identifier.citedreferenceLitschel, T., Ramm, B., Maas, R., Heymann, M., & Schwille, P. ( 2018 ). Beating vesicles: Encapsulated protein oscillations cause dynamic membrane deformations. Angewandte Chemie International Edition, 57 ( 50 ), 16286 – 16290. https://doi.org/10.1002/anie.201808750
dc.identifier.citedreferenceLong, M. S., Jones, C. D., Helfrich, M. R., Mangeney‐Slavin, L. K., & Keating, C. D. ( 2005 ). Dynamic microcompartmentation in synthetic cells. Proceedings of the National Academy of Sciences of the United States of America, 102 ( 17 ), 5920 – 5925. https://doi.org/10.1073/pnas.0409333102
dc.identifier.citedreferenceLoose, M., Fischer‐Friedrich, E., Herold, C., Kruse, K., & Schwille, P. ( 2011 ). Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nature Structural & Molecular Biology, 18 ( 5 ), 577 – 583. https://doi.org/10.1038/nsmb.2037
dc.identifier.citedreferenceLoose, M., Fischer‐Friedrich, E., Ries, J., Kruse, K., & Schwille, P. ( 2008 ). Spatial regulators for bacterial cell division self‐organize into surface waves in vitro. Science (New York, N.Y.), 320 ( 5877 ), 789 – 792. https://doi.org/10.1126/science.1154413
dc.identifier.citedreferenceLove, C., Steinkühler, J., Gonzales, D. T., Yandrapalli, N., Robinson, T., Dimova, R., & Dora Tang, T.‐Y. ( 2020 ). Reversible PH‐responsive Coacervate formation in lipid vesicles activates dormant enzymatic reactions. Angewandte Chemie (International Ed. in English), 59 ( 15 ), 5950 – 5957. https://doi.org/10.1002/anie.201914893
dc.identifier.citedreferenceMajumder, S., Garamella, J., Wang, Y. L., Denies, M., Noireaux, V., & Liu, A. P. ( 2017 ). Cell‐sized mechanosensitive and biosensing compartment programmed with DNA. Chemical Communications, 53 ( 53 ), 7349 – 7352. https://doi.org/10.1039/c7cc03455e
dc.identifier.citedreferenceMajumder, S., & Liu, A. P. ( 2017 ). Bottom‐up synthetic biology: Modular design for making artificial platelets. Physical Biology, 15 ( 1 ), 013001. https://doi.org/10.1088/1478-3975/aa9768
dc.identifier.citedreferenceMajumder, S., Willey, P. T., DeNies, M. S., Liu, A. P., & Luxton, G. ( 2019 ). A synthetic biology platform for the reconstitution and mechanistic dissection of LINC complex assembly. Journal of Cell Science, 132 ( 4 ), jcs219451. https://doi.org/10.1242/jcs.219451
dc.identifier.citedreferenceMajumder, S., Wubshet, N., & Liu, A. P. ( 2019 ). Encapsulation of complex solutions using droplet microfluidics towards the synthesis of artificial cells. Journal of Micromechanics and Microengineering, 29 ( 8 ), 083001. https://doi.org/10.1088/1361-6439/AB2377
dc.identifier.citedreferenceMalay, A. D., Miyazaki, N., Biela, A., Chakraborti, S., Majsterkiewicz, K., Stupka, I., … Heddle, J. G. ( 2019 ). An ultra‐stable gold‐coordinated protein cage displaying reversible assembly. Nature, 569 ( 7756 ), 438 – 442. https://doi.org/10.1038/s41586-019-1185-4
dc.identifier.citedreferenceMartín, L., Castro, E., Ribeiro, A., Alonso, M., & Carlos Rodríguez‐Cabello, J. ( 2012 ). Temperature‐triggered self‐assembly of elastin‐like block co‐Recombinamers: The controlled formation of micelles and vesicles in an aqueous medium. Biomacromolecules, 13 ( 2 ), 293 – 298. https://doi.org/10.1021/bm201436y
dc.identifier.citedreferenceMartin, W. ( 2010 ). Evolutionary origins of metabolic compartmentalization in eukaryotes. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365 ( 1541 ), 847 – 855. https://doi.org/10.1098/rstb.2009.0252
dc.identifier.citedreferenceMartos, A., Petrasek, Z., & Schwille, P. ( 2013 ). Propagation of MinCDE waves on free‐standing membranes. Environmental Microbiology, 15 ( 12 ), 3319 – 3326. https://doi.org/10.1111/1462-2920.12295
dc.identifier.citedreferenceMayer, M. J., Juodeikis, R., Brown, I. R., Frank, S., Palmer, D. J., Deery, E., … Warren, M. J. ( 2016 ). Effect of bio‐engineering on size, shape, composition and rigidity of bacterial microcompartments. Scientific Reports, 6 ( November ), 36899. https://doi.org/10.1038/srep36899
dc.identifier.citedreferenceMcHugh, C. A., Fontana, J., Nemecek, D., Cheng, N., Aksyuk, A. A., Bernard Heymann, J., et al. ( 2014 ). A virus capsid‐like nanocompartment that stores Iron and protects Bacteria from oxidative stress. The EMBO Journal, 33 ( 17 ), 1896 – 1911. https://doi.org/10.15252/embj.201488566
dc.identifier.citedreferenceMizuuchi, K., & Vecchiarelli, A. G. ( 2018 ). Mechanistic insights of the Min oscillator via cell‐free reconstitution and imaging. Physical Biology, 15 ( 3 ), 031001. https://doi.org/10.1088/1478-3975/aa9e5e
dc.identifier.citedreferenceMøller‐Jensen, J., Borch, J., Dam, M., Jensen, R. B., Roepstorff, P., & Gerdes, K. ( 2003 ). Bacterial mitosis: Parm of plasmid R1 moves plasmid DNA by an Actin‐like insertional polymerization mechanism. Molecular Cell, 12 ( 6 ), 1477 – 1487. https://doi.org/10.1016/S1097-2765(03)00451-9
dc.identifier.citedreferenceMolliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A. P., Kim, H. J., … Taylor, J. P. ( 2015 ). Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell, 163 ( 1 ), 123 – 133. https://doi.org/10.1016/j.cell.2015.09.015
dc.identifier.citedreferenceMonahan, L. G., Liew, A. T. F., Bottomley, A. L., & Harry, E. J. ( 2014 ). Division site positioning in bacteria: One size does not fit all. Frontiers in Microbiology, 5 ( FEB ), 19. https://doi.org/10.3389/fmicb.2014.00019
dc.identifier.citedreferenceMonterroso, B., Zorrilla, S., Sobrinos‐Sanguino, M., Robles‐Ramos, M. A., López‐Álvarez, M., Margolin, W., … Rivas, G. ( 2019 ). Bacterial FtsZ protein forms phase‐separated condensates with its nucleoid‐associated inhibitor SlmA. EMBO Reports, 20 ( 1 ), 1 – 13. https://doi.org/10.15252/embr.201845946
dc.identifier.citedreferenceMoon, H., Lee, J., Min, J., & Kang, S. ( 2014 ). Developing genetically engineered Encapsulin protein cage nanoparticles as a targeted delivery Nanoplatform. Biomacromolecules, 15 ( 10 ), 3794 – 3801. https://doi.org/10.1021/bm501066m
dc.identifier.citedreferenceMurphy, L. D., & Zimmerman, S. B. ( 1997 ). Stabilization of compact spermidine nucleoids from Escherichia coli under crowded conditions: Implications for in vivo nucleoid structure. Journal of Structural Biology, 119 ( 3 ), 336 – 346. https://doi.org/10.1006/jsbi.1997.3884
dc.identifier.citedreferenceNakajima, M., Imai, K., Ito, H., Nishiwaki, T., Murayama, Y., Iwasaki, H., … Kondo, T. ( 2005 ). Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science, 308 ( 5720 ), 414 – 415. https://doi.org/10.1126/science.1108451
dc.identifier.citedreferenceNichols, R. J., Cassidy‐Amstutz, C., Chaijarasphong, T., & Savage, D. F. ( 2017 ). Encapsulins: Molecular biology of the shell. Critical Reviews in Biochemistry and Molecular Biology. Taylor and Francis Ltd, 52, 583 – 594. https://doi.org/10.1080/10409238.2017.1337709
dc.identifier.citedreferenceNoireaux, V., & Liu, A. P. ( 2020 ). The new age of cell‐free biology. Annual Review of Biomedical Engineering, 22 ( 1 ), 51 – 77. https://doi.org/10.1146/annurev-bioeng-092019-111110
dc.identifier.citedreferenceOberholzer, T., Wick, R., Luisi, P. L., & Biebricher, C. K. ( 1995 ). Enzymatic RNA replication in self‐reproducing vesicles: An approach to a minimal cell. Biochemical and Biophysical Research Communications, 207, 250 – 257. https://doi.org/10.1006/bbrc.1995.1180
dc.identifier.citedreferenceOtrin, L., Marušič, N., Bednarz, C., Vidaković‐Koch, T., Lieberwirth, I., Landfester, K., & Sundmacher, K. ( 2017 ). Toward artificial mitochondrion: Mimicking oxidative phosphorylation in polymer and hybrid membranes. Nano Letters, 17 ( 11 ), 6816 – 6821. https://doi.org/10.1021/acs.nanolett.7b03093
dc.identifier.citedreferenceParsons, J. B., Frank, S., Bhella, D., Liang, M., Prentice, M. B., Mulvihill, D. P., & Warren, M. J. ( 2010 ). Synthesis of empty bacterial microcompartments, directed organelle protein incorporation, and evidence of filament‐associated organelle movement. Molecular Cell, 38 ( 2 ), 305 – 315. https://doi.org/10.1016/j.molcel.2010.04.008
dc.identifier.citedreferencePautot, S., Frisken, B. J., & Weitz, D. A. ( 2003 ). Production of Unilamellar vesicles using an inverted emulsion. Langmuir, 19 ( 7 ), 2870 – 2879. https://doi.org/10.1021/la026100v
dc.identifier.citedreferencePeters, R. J. R. W., Marguet, M., Marais, S., Fraaije, M. W., van Hest, J. C. M., & Lecommandoux, S. ( 2014 ). Cascade reactions in multicompartmentalized polymersomes. Angewandte Chemie International Edition, 53 ( 1 ), 146 – 150. https://doi.org/10.1002/anie.201308141
dc.identifier.citedreferencePetit, E., Greg, W., LaTouf, M. V., Coppi, T. A., Warnick, D. C., Romashko, I., et al. ( 2013 ). Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by clostridium phytofermentans. PLoS One, 8 ( 1 ), e54337. https://doi.org/10.1371/journal.pone.0054337
dc.identifier.citedreferencePeyret, A., Ibarboure, E., Pippa, N., & Lecommandoux, S. ( 2017 ). Liposomes in polymersomes: Multicompartment system with temperature‐triggered release. Langmuir, 33 ( 28 ), 7079 – 7085. https://doi.org/10.1021/acs.langmuir.7b00655
dc.identifier.citedreferencePitts, A. C., Tuck, L. R., Faulds‐Pain, A., Lewis, R. J., & Marles‐Wright, J. ( 2012 ). Structural insight into the Clostridium difficile ethanolamine utilisation microcompartment. PLoS One, 7 ( 10 ), e48360. https://doi.org/10.1371/journal.pone.0048360
dc.identifier.citedreferencePlanamente, S., & Frank, S. ( 2019 ). Bio‐engineering of bacterial microcompartments: A mini review. Biochemical Society Transactions, 47 ( 3 ), 765 – 777. https://doi.org/10.1042/BST20170564
dc.identifier.citedreferencePlegaria, J. S., & Kerfeld, C. A. ( 2018 ). Engineering Nanoreactors using bacterial microcompartment architectures. Current Opinion in Biotechnology, 51 ( June ), 1 – 7. https://doi.org/10.1016/j.copbio.2017.09.005
dc.identifier.citedreferencePutri, R. M., Allende‐Ballestero, C., Luque, D., Klem, R., Rousou, K.‐A., Liu, A., … Cornelissen, J. J. L. M. ( 2017 ). Structural characterization of native and modified encapsulins as nanoplatforms for in vitro catalysis and cellular uptake. ACS Nano, 11 ( 12 ), 12796 – 12804. https://doi.org/10.1021/acsnano.7b07669
dc.identifier.citedreferenceRahmanpour, R., & Bugg, T. D. H. ( 2013 ). Assembly in vitro of Rhodococcus Jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment. The FEBS Journal, 280 ( 9 ), 2097 – 2104. https://doi.org/10.1111/febs.12234
dc.identifier.citedreferenceRamm, B., Glock, P., & Schwille, P. ( 2018 ). In vitro reconstitution of self‐organizing protein patterns on supported lipid bilayers. Journal of Visualized Experiments, 2018 ( 137 ), 1 – 13. https://doi.org/10.3791/58139
dc.identifier.citedreferenceRaskin, D. M., & De Boer, P. A. J. ( 1999 ). Rapid pole‐to‐pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 96 ( 9 ), 4971 – 4976. https://doi.org/10.1073/pnas.96.9.4971
dc.identifier.citedreferenceRico, A. I., Krupka, M., & Vicente, M. ( 2013 ). In the beginning, Escherichia coli assembled the proto‐ring: An initial phase of division. The Journal of Biological Chemistry, 288 ( 29 ), 20830 – 20836. https://doi.org/10.1074/jbc.R113.479519
dc.identifier.citedreferenceSaha, S., Weber, C. A., Nousch, M., Adame‐Arana, O., Hoege, C., Hein, M. Y., … Hyman, A. A. ( 2016 ). Polar positioning of phase‐separated liquid compartments in cells regulated by an MRNA competition mechanism. Cell, 166 ( 6 ), 1572 – 1584.e16. https://doi.org/10.1016/j.cell.2016.08.006
dc.identifier.citedreferenceSchaffter, S. W., & Schulman, R. ( 2019 ). Building in vitro transcriptional regulatory networks by successively integrating multiple functional circuit modules. Nature Chemistry, 11 ( 9 ), 829 – 838. https://doi.org/10.1038/s41557-019-0292-z
dc.identifier.citedreferenceSchramm, A., Lieutaud, P., Gianni, S., Longhi, S., & Bignon, C. ( 2017 ). InSiDDe: A server for designing artificial disordered proteins. International Journal of Molecular Sciences, 19 ( 1 ), 91. https://doi.org/10.3390/ijms19010091
dc.identifier.citedreferenceSchulz, M., & Binder, W. H. ( 2015 ). Mixed hybrid lipid/polymer vesicles as a novel membrane platform. Macromolecular Rapid Communications, 36 ( 23 ), 2031 – 2041. https://doi.org/10.1002/marc.201500344
dc.identifier.citedreferenceSchuster, B. S., Reed, E. H., Parthasarathy, R., Jahnke, C. N., Caldwell, R. M., Bermudez, J. G., … Hammer, D. A. ( 2018 ). Controllable protein phase separation and modular recruitment to form responsive Membraneless organelles. Nature Communications, 9 ( 1 ), 2985. https://doi.org/10.1038/s41467-018-05403-1
dc.identifier.citedreferenceSchweizer, J., Loose, M., Bonny, M., Kruse, K., Mönch, I., & Schwille, P. ( 2012 ). Geometry sensing by self‐organized protein patterns. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 38 ), 15283 – 15288. https://doi.org/10.1073/pnas.1206953109
dc.identifier.citedreferenceSchwille, P., Spatz, J., Landfester, K., Bodenschatz, E., Herminghaus, S., Sourjik, V., … Sundmacher, K. ( 2018 ). MaxSynBio: Avenues towards creating cells from the bottom up. Angewandte Chemie ‐ International Edition English, 57 ( 41 ), 13382 – 13392. https://doi.org/10.1002/anie.201802288
dc.identifier.citedreferenceShimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., & Ueda, T. ( 2001 ). Cell‐free translation reconstituted with purified components. Nature Biotechnology, 19 ( 8 ), 751 – 755. https://doi.org/10.1038/90802
dc.identifier.citedreferenceShin, J., Jardine, P., & Noireaux, V. ( 2012 ). Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cell‐free reaction. ACS Synthetic Biology, 1 ( 9 ), 408 – 413. https://doi.org/10.1021/sb300049p
dc.identifier.citedreferenceShinoda, T., Shinya, N., Ito, K., Ishizuka‐Katsura, Y., Ohsawa, N., Terada, T., … Yokoyama, S. ( 2016 ). Cell‐free methods to produce structurally intact mammalian membrane proteins. Scientific Reports, 6 ( 1 ), 1 – 15. https://doi.org/10.1038/srep30442
dc.identifier.citedreferenceSigmund, F., Massner, C., Erdmann, P., Stelzl, A., Rolbieski, H., Desai, M., … Westmeyer, G. G. ( 2018 ). Bacterial encapsulins as orthogonal compartments for mammalian cell engineering. Nature Communications, 9 ( 1 ), 1990. https://doi.org/10.1038/s41467-018-04227-3
dc.identifier.citedreferenceSigmund, F., Pettinger, S., Kube, M., Schneider, F., Schifferer, M., Schneider, S., … Westmeyer, G. G. ( 2019 ). Iron‐sequestering nanocompartments as multiplexed electron microscopy gene reporters. ACS Nano, 13 ( 7 ), 8114 – 8123. https://doi.org/10.1021/acsnano.9b03140
dc.identifier.citedreferenceSlininger Lee, M. F., Jakobson, C. M., & Tullman‐Ercek, D. ( 2017 ). Evidence for improved encapsulated pathway behavior in a bacterial microcompartment through Shell protein engineering. ACS Synthetic Biology, 6 ( 10 ), 1880 – 1891. https://doi.org/10.1021/acssynbio.7b00042
dc.identifier.citedreferenceSonotaki, S., Takami, T., Noguchi, K., Odaka, M., Yohda, M., & Murakami, Y. ( 2017 ). Successful PEGylation of hollow encapsulin nanoparticles from rhodococcus erythropolis N771 without affecting their disassembly and reassembly properties. Biomaterials Science, 5 ( 6 ), 1082 – 1089. https://doi.org/10.1039/c7bm00207f
dc.identifier.citedreferenceStaller, M. V., Holehouse, A. S., Swain‐Lenz, D., Das, R. K., Pappu, R. V., & Cohen, B. A. ( 2018 ). A high‐throughput mutational scan of an intrinsically disordered acidic transcriptional activation domain. Cell Systems, 6 ( 4 ), 444 – 455. https://doi.org/10.1016/j.cels.2018.01.015
dc.identifier.citedreferenceSun, M., Li, Z., Wang, S., Maryu, G., & Yang, Q. ( 2019 ). Building dynamic cellular machineries in droplet‐based artificial cells with single‐droplet tracking and analysis. Analytical Chemistry, 91 ( 15 ), 9813 – 9818. https://doi.org/10.1021/acs.analchem.9b01481
dc.identifier.citedreferenceSurovtsev, I. V., & Jacobs‐Wagner, C. ( 2018 ). Subcellular organization: A critical feature of bacterial cell replication. Cell. Cell Press, 172, 1271 – 1293. https://doi.org/10.1016/j.cell.2018.01.014
dc.identifier.citedreferenceSutter, M., Boehringer, D., Gutmann, S., Günther, S., Prangishvili, D., Loessner, M. J., … Ban, N. ( 2008 ). Structural basis of enzyme encapsulation into a bacterial Nanocompartment. Nature Structural and Molecular Biology, 15 ( 9 ), 939 – 947. https://doi.org/10.1038/nsmb.1473
dc.identifier.citedreferenceSutter, M., Greber, B., Aussignargues, C., & Kerfeld, C. A. ( 2017 ). Assembly principles and structure of a 6.5‐MDa bacterial microcompartment Shell. Science (New York, N.Y.), 356 ( 6344 ), 1293 – 1297. https://doi.org/10.1126/science.aan3289
dc.identifier.citedreferenceSwank, Z., Laohakunakorn, N., & Maerkl, S. J. ( 2019 ). Cell‐free gene‐regulatory network engineering with synthetic transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 116 ( 13 ), 5892 – 5901. https://doi.org/10.1073/pnas.1816591116
dc.identifier.citedreferenceSzwedziak, P., & Ghosal, D. ( 2017 ). FtsZ‐ring architecture and its control by MinCD. Sub‐Cellular Biochemistry, 84, 213 – 244. https://doi.org/10.1007/978-3-319-53047-5_7
dc.identifier.citedreferenceSzwedziak, P., Wang, Q., Bharat, T. A. M., Tsim, M., & Löwe, J. ( 2014 ). Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. eLife, 3 ( December ), e04601. https://doi.org/10.7554/eLife.04601
dc.identifier.citedreferenceTamura, A., Fukutani, Y., Takami, T., Fujii, M., Nakaguchi, Y., Murakami, Y., … Odaka, M. ( 2015 ). Packaging guest proteins into the encapsulin nanocompartment from rhodococcus erythropolis N771. Biotechnology and Bioengineering, 112 ( 1 ), 13 – 20. https://doi.org/10.1002/bit.25322
dc.identifier.citedreferenceTanaka, S., Kerfeld, C. A., Sawaya, M. R., Cai, F., Heinhorst, S., Cannon, G. C., & Yeates, T. O. ( 2008 ). Atomic‐level models of the bacterial carboxysome Shell. Science, 319 ( 5866 ), 1083 – 1086. https://doi.org/10.1126/science.1151458
dc.identifier.citedreferenceTayar, A. M., Karzbrun, E., Noireaux, V., & Bar‐Ziv, R. H. ( 2017 ). Synchrony and pattern formation of coupled genetic oscillators on a Chip of artificial cells. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 44 ), 11609 – 11614. https://doi.org/10.1073/pnas.1710620114
dc.identifier.citedreferenceThiennimitr, P., Winter, S. E., Winter, M. G., Xavier, M. N., Tolstikov, V., Huseby, D. L., … Bäumler, A. J. ( 2011 ). Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proceedings of the National Academy of Sciences of the United States of America, 108 ( 42 ), 17480 – 17485. https://doi.org/10.1073/pnas.1107857108
dc.identifier.citedreferenceThompson, J. F., & Landy, A. ( 1988 ). Empirical estimation of protein‐induced DNA bending angles: Applications to λ site‐specific recombination complexes. Nucleic Acids Research, 16 ( 20 ), 9687 – 9705. https://doi.org/10.1093/nar/16.20.9687
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.