Engineering spatiotemporal organization and dynamics in synthetic cells
dc.contributor.author | Groaz, Alessandro | |
dc.contributor.author | Moghimianavval, Hossein | |
dc.contributor.author | Tavella, Franco | |
dc.contributor.author | Giessen, Tobias W. | |
dc.contributor.author | Vecchiarelli, Anthony G. | |
dc.contributor.author | Yang, Qiong | |
dc.contributor.author | Liu, Allen P. | |
dc.date.accessioned | 2021-05-12T17:22:07Z | |
dc.date.available | 2022-06-12 13:22:03 | en |
dc.date.available | 2021-05-12T17:22:07Z | |
dc.date.issued | 2021-05 | |
dc.identifier.citation | Groaz, Alessandro; Moghimianavval, Hossein; Tavella, Franco; Giessen, Tobias W.; Vecchiarelli, Anthony G.; Yang, Qiong; Liu, Allen P. (2021). "Engineering spatiotemporal organization and dynamics in synthetic cells." Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 13(3): n/a-n/a. | |
dc.identifier.issn | 1939-5116 | |
dc.identifier.issn | 1939-0041 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/167428 | |
dc.description.abstract | Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell‐sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells—compartmentalization and self‐organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self‐organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells.This article is categorized under:Biology‐Inspired Nanomaterials > Lipid‐Based StructuresBiology‐Inspired Nanomaterials > Protein and Virus‐Based StructuresSelf‐organizing systems and dynamics in space and time in synthetic cells. | |
dc.publisher | John Wiley & Sons, Inc. | |
dc.subject.other | in vitro reconstitution | |
dc.subject.other | protein compartment | |
dc.subject.other | synthetic cell | |
dc.subject.other | artificial cells | |
dc.title | Engineering spatiotemporal organization and dynamics in synthetic cells | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Biomedical Engineering | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/167428/1/wnan1685_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/167428/2/wnan1685.pdf | |
dc.identifier.doi | 10.1002/wnan.1685 | |
dc.identifier.source | Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology | |
dc.identifier.citedreference | Pazos, M., Natale, P., & Vicente, M. ( 2013 ). A specific role for the ZipA protein in cell division: Stabilization of the FtsZ protein. The Journal of Biological Chemistry, 288 ( 5 ), 3219 – 3226. https://doi.org/10.1074/jbc.M112.434944 | |
dc.identifier.citedreference | Ting, C. S., Dusenbury, K. H., Pryzant, R. A., Higgins, K. W., Pang, C. J., Black, C. E., & Beauchamp, E. M. ( 2015 ). The prochlorococcus carbon dioxide‐concentrating mechanism: Evidence of Carboxysome‐associated heterogeneity. Photosynthesis Research, 123 ( 1 ), 45 – 60. https://doi.org/10.1007/s11120-014-0038-0 | |
dc.identifier.citedreference | Toda, S., Blauch, L. R., Tang, S. K. Y., Morsut, L., & Lim, W. A. ( 2018 ). Programming self‐organizing multicellular structures with synthetic cell‐cell signaling. Science, 361 ( 6398 ), 156 – 162. https://doi.org/10.1126/science.aat0271 | |
dc.identifier.citedreference | Tracey, J. C., Coronado, M., Giessen, T. W., Lau, M. C. Y., Silver, P. A., & Ward, B. B. ( 2019 ). The discovery of twenty‐eight new Encapsulin sequences, including three in Anammox Bacteria. Scientific Reports, 9 ( 1 ), 20122. https://doi.org/10.1038/s41598-019-56533-5 | |
dc.identifier.citedreference | Trantidou, T., Friddin, M. S., Salehi‐Reyhani, A., Ces, O., & Elani, Y. ( 2018 ). Droplet microfluidics for the construction of compartmentalised model membranes. Lab on a Chip. Royal Society of Chemistry, 18, 2488 – 2509. https://doi.org/10.1039/c8lc00028j | |
dc.identifier.citedreference | Tsai, T. Y. C., Yoon, S. C., Ma, W., Pomerening, J. R., Tang, C., & Ferrell, J. E. ( 2008 ). Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science, 321 ( 5885 ), 126 – 139. https://doi.org/10.1126/science.1156951 | |
dc.identifier.citedreference | Turmo, A., Gonzalez‐Esquer, C. R., & Kerfeld, C. A. ( 2017 ). Carboxysomes: Metabolic modules for CO2 fixation. FEMS Microbiology Letters, 364 ( 18 ), 1 – 11. https://doi.org/10.1093/femsle/fnx176 | |
dc.identifier.citedreference | Uddin, I., Frank, S., Warren, M. J., & Pickersgill, R. W. ( 2018 ). A generic self‐assembly process in microcompartments and synthetic protein nanotubes. Small (Weinheim an Der Bergstrasse, Germany), 14 ( 19 ), e1704020. https://doi.org/10.1002/smll.201704020 | |
dc.identifier.citedreference | Vargo, K. B., Parthasarathy, R., & Hammer, D. A. ( 2012 ). Self‐assembly of tunable protein Suprastructures from recombinant Oleosin. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 29 ), 11657 – 11662. https://doi.org/10.1073/pnas.1205426109 | |
dc.identifier.citedreference | Vecchiarelli, A. G., Hwang, L. C., & Mizuuchi, K. ( 2013 ). Cell‐free study of F plasmid partition provides evidence for cargo transport by a diffusion‐ratchet mechanism. Proceedings of the National Academy of Sciences of the United States of America, 110 ( 15 ), E1390 – E1397. https://doi.org/10.1073/pnas.1302745110 | |
dc.identifier.citedreference | Vecchiarelli, A. G., Li, M., Mizuuchi, M., Hwang, L. C., Seol, Y., Neuman, K. C., & Mizuuchi, K. ( 2016 ). Membrane‐bound MinDE complex acts as a toggle switch that drives Min oscillation coupled to cytoplasmic depletion of MinD. Proceedings of the National Academy of Sciences of the United States of America, 113 ( 11 ), E1479 – E1488. https://doi.org/10.1073/pnas.1600644113 | |
dc.identifier.citedreference | Vecchiarelli, A. G., Li, M., Mizuuchi, M., & Mizuuchi, K. ( 2014 ). Differential affinities of MinD and MinE to anionic phospholipid influence Min patterning dynamics in vitro. Molecular Microbiology, 93 ( 3 ), 453 – 463. https://doi.org/10.1111/mmi.12669 | |
dc.identifier.citedreference | Vecchiarelli, A. G., Neuman, K. C., & Mizuuchi, K. ( 2014 ). A propagating ATPase gradient drives transport of surface‐confined cellular cargo. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 13 ), 4880 – 4885. https://doi.org/10.1073/pnas.1401025111 | |
dc.identifier.citedreference | Vogele, K., Frank, T., Gasser, L., Goetzfried, M. A., Hackl, M. W., Sieber, S. A., … Pirzer, T. ( 2018 ). Towards synthetic cells using peptide‐based reaction compartments. Nature Communications, 9 ( 1 ), 1 – 7. https://doi.org/10.1038/s41467-018-06379-8 | |
dc.identifier.citedreference | Walpole, J., Papin, J. A., & Peirce, S. M. ( 2013 ). Multiscale computational models of complex biological systems. Annual Review of Biomedical Engineering, 15 ( 1 ), 137 – 154. https://doi.org/10.1146/annurev-bioeng-071811-150104 | |
dc.identifier.citedreference | Walter, J.‐C., Dorignac, J., Lorman, V., Rech, J., J‐Y Bouet, M., Nollmann, J., … Geniet, F. ( 2017 ). Surfing on protein waves: Proteophoresis as a mechanism for bacterial genome partitioning. Physical Review Letters, 119 ( 2 ), 028101. https://doi.org/10.1103/PhysRevLett.119.028101 | |
dc.identifier.citedreference | Wang, S., Fan, K., Luo, N., Cao, Y., Wu, F., Zhang, C., … You, L. ( 2019 ). Massive computational acceleration by using neural networks to emulate mechanism‐based biological models. Nature Communications, 10 ( 1 ), 1 – 9. https://doi.org/10.1038/s41467-019-12342-y | |
dc.identifier.citedreference | Wang, X., Du, H., Wang, Z., Mu, W., & Han, X. ( 2020 ). Versatile phospholipid assemblies for functional synthetic cells and artificial tissues. Advanced Materials, 2002635. https://doi.org/10.1002/adma.202002635 | |
dc.identifier.citedreference | Weiss, M., Frohnmayer, J. P., Benk, L. T., Haller, B., Janiesch, J. W., Heitkamp, T., … Spatz, J. P. ( 2018 ). Sequential bottom‐up assembly of mechanically stabilized synthetic cells by microfluidics. Nature Materials, 17 ( 1 ), 89 – 95. https://doi.org/10.1038/NMAT5005 | |
dc.identifier.citedreference | Weitz, M., Kim, J., Kapsner, K., Winfree, E., Franco, E., & Simmel, F. C. ( 2014 ). Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nature Chemistry, 6 ( 4 ), 295 – 302. https://doi.org/10.1038/nchem.1869 | |
dc.identifier.citedreference | Williams, E. M., Jung, S. M., Coffman, J. L., & Lutz, S. ( 2018 ). Pore engineering for enhanced mass transport in encapsulin nanocompartments. ACS Synthetic Biology, 7 ( 11 ), 2514 – 2517. https://doi.org/10.1021/acssynbio.8b00295 | |
dc.identifier.citedreference | Xu, C., Hu, S., & Chen, X. ( 2016 ). Artificial cells: From basic science to applications. Biochemical Pharmacology, 19 ( 9 ), 516 – 532. https://doi.org/10.1016/j.mattod.2016.02.020 | |
dc.identifier.citedreference | Yung, M. C., Bourguet, F. A., Carpenter, T. S., & Coleman, M. A. ( 2017 ). Re‐directing bacterial microcompartment systems to enhance recombinant expression of lysis protein E from bacteriophage ΦX174 in Escherichia coli. Microbial Cell Factories, 16 ( 1 ), 71. https://doi.org/10.1186/s12934-017-0685-x | |
dc.identifier.citedreference | Zakeri, B., Fierer, J. O., Celik, E., Chittock, E. C., Schwarz‐Linek, U., Moy, V. T., & Howarth, M. ( 2012 ). Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial Adhesin. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 12 ), E690 – E697. https://doi.org/10.1073/pnas.1115485109 | |
dc.identifier.citedreference | Zhou, H., & Lutkenhaus, J. ( 2003 ). Membrane binding by MinD involves insertion of hydrophobic residues within the C‐terminal amphipathic Helix into the bilayer. Journal of Bacteriology, 185 ( 15 ), 4326 – 4335. https://doi.org/10.1128/JB.185.15.4326-4335.2003 | |
dc.identifier.citedreference | Zieske, K., & Schwille, P. ( 2014 ). Reconstitution of self‐organizing protein gradients as spatial cues in cell‐free systems. eLife, 3 ( October ), 1 – 19. https://doi.org/10.7554/eLife.03949 | |
dc.identifier.citedreference | Bashirzadeh, Y., & Liu, A. P. ( 2019 ). Encapsulation of the cytoskeleton: Towards mimicking the mechanics of a cell. Soft Matter, 15 ( 42 ), 8425 – 8436. https://doi.org/10.1039/c9sm01669d | |
dc.identifier.citedreference | Baxter, J. C., & Funnell, B. E. ( 2014 ). Plasmid partition mechanisms. Microbiology Spectrum, 2 ( 6 ), 1 – 20. https://doi.org/10.1128/microbiolspec.plas-0023-2014 | |
dc.identifier.citedreference | Ashburner, M., Golic, K. G., & Hawley, R. S. ( 2005 ). Drosophila: A laboratory handbook ( 2nd ed., p. 164 ). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. | |
dc.identifier.citedreference | Ahmad, M. R., Nakajima, M., Kojima, S., Homma, M., & Fukuda, T. ( 2008 ). The effects of cell sizes, environmental conditions, and growth phases on the strength of individual W303 yeast cells inside ESEM. IEEE Transactions on Nanobioscience, 7 ( 3 ), 185 – 193. https://doi.org/10.1109/TNB.2008.2002281 | |
dc.identifier.citedreference | Chen, Z., Wang, J., Sun, W., Archibong, E., Kahkoska, A. R., Zhang, X., … Gu, Z. ( 2018 ). Synthetic Beta cells for fusion‐mediated dynamic insulin secretion. Nature Chemical Biology, 14 ( 1 ), 86 – 93. https://doi.org/10.1038/nchembio.2511 | |
dc.identifier.citedreference | Elston, T. C., & Oster, G. ( 1997 ). Protein turbines I: The bacterial flagellar motor. Biophysical Journal, 73 ( 2 ), 703 – 721. https://doi.org/10.1016/S0006-3495(97)78104-9 | |
dc.identifier.citedreference | Guet, C. C., Bruneaux, L., Min, T. L., Siegal‐Gaskins, D., Figueroa, I., Emonet, T., & Cluzel, P. ( 2008 ). Minimally invasive determination of MRNA concentration in single living Bacteria. Nucleic Acids Research, 36 ( 12 ), e73. https://doi.org/10.1093/nar/gkn329 | |
dc.identifier.citedreference | Gulliver, G. ( 1875 ). On the size and shape of red corpuscles of the blood of vertebrates, with drawings of them to a uniform scale, and extended and revised tables of measurements. Proceedings of the Zoological Society of London, 1875, 474 – 495. | |
dc.identifier.citedreference | Hirsch, N., Zimmerman, L. B., & Grainger, R. M. ( 2002 ). Xenopus, the next generation: X. Tropicalis genetics and genomics. Developmental Dynamics, 225, 422 – 433. https://doi.org/10.1002/dvdy.10178 | |
dc.identifier.citedreference | Markow, T. A., Beall, S., & Matzkin, L. M. ( 2009 ). Egg size, embryonic development time and Ovoviviparity in Drosophila species. Journal of Evolutionary Biology, 22 ( 2 ), 430 – 434. https://doi.org/10.1111/j.1420-9101.2008.01649.x | |
dc.identifier.citedreference | Matamoro‐Vidal, A., Salazar‐Ciudad, I., & Houle, D. ( 2015 ). Making quantitative morphological variation from basic developmental processes: Where are we? The case of the Drosophila wing. Developmental Dynamics, 244 ( 9 ), 1058 – 1073. https://doi.org/10.1002/dvdy.24255 | |
dc.identifier.citedreference | Maurizi, M. R. ( 1992 ). Proteases and protein degradation in Escherichia coli. Experientia, 48 ( 2 ), 178 – 201. https://doi.org/10.1007/bf01923511 | |
dc.identifier.citedreference | Nelson, D. E., & Young, K. D. ( 2000 ). Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. Journal of Bacteriology, 182 ( 6 ), 1714 – 1721. https://doi.org/10.1128/jb.182.6.1714-1721.2000 | |
dc.identifier.citedreference | Sezonov, G., Joseleau‐Petit, D., & D’Ari, R. ( 2007 ). Escherichia coli physiology in Luria‐Bertani broth. Journal of Bacteriology, 189 ( 23 ), 8746 – 8749. https://doi.org/10.1128/JB.01368-07 | |
dc.identifier.citedreference | Weitz, J. ( 2016 ). Quantitative viral ecology: Dynamics of viruses and their microbial hosts (p. 55 ). Princeton, NJ: Princeton University Press. | |
dc.identifier.citedreference | Zhao, L., Kroenke, C. D., Song, J., Piwnica‐Worms, D., Ackerman, J. J. H., & Neil, J. J. ( 2008 ). Intracellular water‐specific MR of microbead‐adherent cells: The HeLa cell intracellular water exchange lifetime. NMR in Biomedicine, 21 ( 2 ), 159 – 164. https://doi.org/10.1002/nbm.1173 | |
dc.identifier.citedreference | Adamala, K. P., Martin‐Alarcon, D. A., Guthrie‐Honea, K. R., & Boyden, E. S. ( 2017 ). Engineering genetic circuit interactions within and between synthetic minimal cells. Nature Chemistry, 9 ( 5 ), 431 – 439. https://doi.org/10.1038/nchem.2644 | |
dc.identifier.citedreference | Akita, F., Chong, K. T., Tanaka, H., Yamashita, E., Miyazaki, N., Nakaishi, Y., … Nakagawa, A. ( 2007 ). The crystal structure of a virus‐like particle from the hyperthermophilic archaeon pyrococcus furiosus provides insight into the evolution of viruses. Journal of Molecular Biology, 368 ( 5 ), 1469 – 1483. https://doi.org/10.1016/j.jmb.2007.02.075 | |
dc.identifier.citedreference | Amit, R., Oppenheim, A. B., & Stavans, J. ( 2003 ). Increased bending rigidity of single DNA molecules by H‐NS, a temperature and osmolarity sensor. Biophysical Journal, 84 ( 4 ), 2467 – 2473. https://doi.org/10.1016/S0006-3495(03)75051-6 | |
dc.identifier.citedreference | Aussignargues, C., Paasch, B. C., Gonzalez‐Esquer, R., Erbilgin, O., & Kerfeld, C. A. ( 2015 ). Bacterial microcompartment assembly: The key role of encapsulation peptides. Communicative and Integrative Biology, 8 ( 3 ), e1039755. https://doi.org/10.1080/19420889.2015.1039755 | |
dc.identifier.citedreference | Aussignargues, C., Pandelia, M.‐E., Sutter, M., Plegaria, J. S., Zarzycki, J., Turmo, A., … Kerfeld, C. A. ( 2016 ). Structure and function of a bacterial microcompartment shell protein engineered to bind a [4Fe‐4S] cluster. Journal of the American Chemical Society, 138 ( 16 ), 5262 – 5270. https://doi.org/10.1021/jacs.5b11734 | |
dc.identifier.citedreference | Axen, S. D., Erbilgin, O., & Kerfeld, C. A. ( 2014 ). A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Computational Biology, 10 ( 10 ), e1003898. https://doi.org/10.1371/journal.pcbi.1003898 | |
dc.identifier.citedreference | Badieyan, S., Sciore, A., Eschweiler, J. D., Koldewey, P., Cristie‐David, A. S., Ruotolo, B. T., … Marsh, E. N. G. ( 2017 ). Symmetry‐directed self‐assembly of a tetrahedral protein cage mediated by de novo‐designed coiled coils. Chembiochem, 18 ( 19 ), 1888 – 1892. https://doi.org/10.1002/cbic.201700406 | |
dc.identifier.citedreference | Bae, Y., Kim, G. J., Kim, H., Park, S. G., Jung, H. S., & Kang, S. ( 2018 ). Engineering tunable dual functional protein cage nanoparticles using bacterial superglue. Biomacromolecules, 19 ( 7 ), 2896 – 2904. https://doi.org/10.1021/acs.biomac.8b00457 | |
dc.identifier.citedreference | Baker, D. ( 2019 ). What has de novo protein design taught us about protein folding and biophysics? Protein Science: A Publication of the Protein Society, 28 ( 4 ), 678 – 683. https://doi.org/10.1002/pro.3588 | |
dc.identifier.citedreference | Bale, J. B., Gonen, S., Liu, Y., Sheffler, W., Ellis, D., Thomas, C., … Baker, D. ( 2016 ). Accurate design of megadalton‐scale two‐component icosahedral protein complexes. Science, 353 ( 6297 ), 389 – 394. https://doi.org/10.1126/science.aaf8818 | |
dc.identifier.citedreference | Bellomo, E. G., Wyrsta, M. D., Pakstis, L., Pochan, D. J., & Deming, T. J. ( 2004 ). Stimuli‐responsive polypeptide vesicles by conformation‐specific assembly. Nature Materials, 3 ( 4 ), 244 – 248. https://doi.org/10.1038/nmat1093 | |
dc.identifier.citedreference | Beneyton, T., Krafft, D., Bednarz, C., Kleineberg, C., Woelfer, C., Ivanov, I., … Baret, J. C. ( 2018 ). Out‐of‐equilibrium microcompartments for the bottom‐up integration of metabolic functions. Nature Communications, 9 ( 1 ), 1 – 10. https://doi.org/10.1038/s41467-018-04825-1 | |
dc.identifier.citedreference | Berhanu, S., Ueda, T., & Kuruma, Y. ( 2019 ). Artificial photosynthetic cell producing energy for protein synthesis. Nature Communications, 10 ( 1 ), 1 – 10. https://doi.org/10.1038/s41467-019-09147-4 | |
dc.identifier.citedreference | Bhardwaj, T., & Somvanshi, P. ( 2017 ). Pan‐genome analysis of clostridium botulinum reveals unique targets for drug development. Gene, 623 ( August ), 48 – 62. https://doi.org/10.1016/j.gene.2017.04.019 | |
dc.identifier.citedreference | Bhattacharya, A., Brea, R. J., Niederholtmeyer, H., & Devaraj, N. K. ( 2019 ). A minimal biochemical route towards de novo formation of synthetic phospholipid membranes. Nature Communications, 10 ( 1 ), 1 – 8. https://doi.org/10.1038/s41467-018-08174-x | |
dc.identifier.citedreference | den Blaauwen, T., Hamoen, L. W., & Levin, P. A. ( 2017 ). The divisome at 25: The road ahead. Current Opinion in Microbiology. Elsevier Ltd, 36, 85 – 94. https://doi.org/10.1016/j.mib.2017.01.007 | |
dc.identifier.citedreference | Bobik, T. A., Lehman, B. P., & Yeates, T. O. ( 2015 ). Bacterial microcompartments: Widespread prokaryotic organelles for isolation and optimization of metabolic pathways. Molecular Microbiology, 98 ( 2 ), 193 – 207. https://doi.org/10.1111/mmi.13117 | |
dc.identifier.citedreference | Brangwynne, C. P., Eckmann, C. R., Courson, D. S., Rybarska, A., Hoege, C., Gharakhani, J., … Hyman, A. A. ( 2009 ). Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 324 ( 5935 ), 1729 – 1732. https://doi.org/10.1126/science.1172046 | |
dc.identifier.citedreference | Brouwer, P. J. M., Antanasijevic, A., Berndsen, Z., Yasmeen, A., Fiala, B., Bijl, T. P. L., … Sanders, R. W. ( 2019 ). Enhancing and shaping the immunogenicity of native‐like HIV‐1 envelope trimers with a two‐component protein nanoparticle. Nature Communications, 10 ( 1 ), 4272. https://doi.org/10.1038/s41467-019-12080-1 | |
dc.identifier.citedreference | Brownlee, C., & Heald, R. ( 2019 ). Importin α partitioning to the plasma membrane regulates intracellular scaling. Cell, 176 ( 4 ), 805 – 815.e8. https://doi.org/10.1016/j.cell.2018.12.001 | |
dc.identifier.citedreference | Cai, F., Bernstein, S. L., Wilson, S. C., & Kerfeld, C. A. ( 2016 ). Production and characterization of synthetic carboxysome shells with incorporated luminal proteins. Plant Physiology, 170 ( 3 ), 1868 – 1877. https://doi.org/10.1104/pp.15.01822 | |
dc.identifier.citedreference | Cai, F., Sutter, M., Bernstein, S. L., Kinney, J. N., & Kerfeld, C. A. ( 2015 ). Engineering bacterial microcompartment shells: Chimeric shell proteins and chimeric carboxysome shells. ACS Synthetic Biology, 4 ( 4 ), 444 – 453. https://doi.org/10.1021/sb500226j | |
dc.identifier.citedreference | Cannon, K. A., Ochoa, J. M., & Yeates, T. O. ( 2019 ). High‐symmetry protein assemblies: Patterns and emerging applications. Current Opinion in Structural Biology, 55 ( April ), 77 – 84. https://doi.org/10.1016/j.sbi.2019.03.008 | |
dc.identifier.citedreference | Cannon, K. A., Park, R. U., Boyken, S. E., Nattermann, U., Yi, S., Baker, D., … Yeates, T. O. ( 2020 ). Design and structure of two new protein cages illustrate successes and ongoing challenges in protein engineering. Protein Science, 29 ( 4 ), 919 – 929. https://doi.org/10.1002/pro.3802 | |
dc.identifier.citedreference | Cantwell, H., & Nurse, P. ( 2019a ). A systematic genetic screen identifies essential factors involved in nuclear size control. Jan M. Skotheim (Ed.). PLoS Genetics, 15 (2), e1007929. https://doi.org/10.1371/journal.pgen.1007929. | |
dc.identifier.citedreference | Cantwell, H., & Nurse, P. ( 2019b ). Unravelling nuclear size control. Current Genetics. Springer Verlag, 65, 1281 – 1285. https://doi.org/10.1007/s00294-019-00999-3 | |
dc.identifier.citedreference | Caspi, Y., & Dekker, C. ( 2016 ). Mapping out Min protein patterns in fully confined fluidic chambers. eLife, 5 ( NOVEMBER2016 ), 1 – 27. https://doi.org/10.7554/eLife.19271 | |
dc.identifier.citedreference | Cassidy‐Amstutz, C., Oltrogge, L., Going, C. C., Lee, A., Teng, P., Quintanilla, D., … Savage, D. F. ( 2016 ). Identification of a minimal peptide tag for in vivo and in vitro loading of Encapsulin. Biochemistry, 55 ( 24 ), 3461 – 3468. https://doi.org/10.1021/acs.biochem.6b00294 | |
dc.identifier.citedreference | Chen, C., MacCready, J. S., Ducat, D. C., & Osteryoung, K. W. ( 2018 ). The molecular machinery of chloroplast division. Plant Physiology, 176 ( 1 ), 138 – 151. https://doi.org/10.1104/pp.17.01272 | |
dc.identifier.citedreference | Chen, I. A., Salehi‐Ashtiani, K., & Szostak, J. W. ( 2005 ). RNA catalysis in model protocell vesicles. Journal of the American Chemical Society, 127 ( 38 ), 13213 – 13219. https://doi.org/10.1021/ja051784p | |
dc.identifier.citedreference | Cheng, X., & Ferrell, J. E. ( 2019 ). Spontaneous emergence of cell‐like Organization in Xenopus egg Extracts. Science, 366 ( 6465 ), 631 – 637. https://doi.org/10.1126/science.aav7793 | |
dc.identifier.citedreference | Choi, B., Kim, H., Choi, H., & Kang, S. ( 2018 ). Protein cage nanoparticles as delivery nanoplatforms. In Advances in Experimental Medicine and Biology (Vol. 1064, pp. 27 – 43 ). New York: Springer, LLC. https://doi.org/10.1007/978-981-13-0445-3_2 | |
dc.identifier.citedreference | Göpfrich, K., Platzman, I., & Spatz, J. P. ( 2018 ). Mastering complexity: Towards bottom‐up construction of multifunctional eukaryotic synthetic cells. Trends in Biotechnology, Elsevier Ltd, 36, 938 – 951. https://doi.org/10.1016/j.tibtech.2018.03.008 | |
dc.identifier.citedreference | Choi, B., Moon, H., Hong, S. J., Shin, C., Do, Y., Ryu, S., & Kang, S. ( 2016 ). Effective delivery of antigen‐encapsulin nanoparticle fusions to dendritic cells leads to antigen‐specific cytotoxic T cell activation and tumor rejection. ACS Nano, 10 ( 8 ), 7339 – 7350. https://doi.org/10.1021/acsnano.5b08084 | |
dc.identifier.citedreference | Choi, H. J., & Montemagno, C. D. ( 2007 ). Light‐driven hybrid bioreactor based on protein‐incorporated polymer vesicles. IEEE Transactions on Nanotechnology, 6 ( 2 ), 171 – 176. https://doi.org/10.1109/TNANO.2007.891822 | |
dc.identifier.citedreference | Choudhary, S., Quin, M. B., Sanders, M. A., Johnson, E. T., & Schmidt‐Dannert, C. ( 2012 ). Engineered protein Nano‐compartments for targeted enzyme localization. PLoS One, 7 ( 3 ), e33342. https://doi.org/10.1371/journal.pone.0033342 | |
dc.identifier.citedreference | Chowdhury, C., Sinha, S., Chun, S., Yeates, T. O., & Bobik, T. A. ( 2014 ). Diverse bacterial microcompartment organelles. Microbiology and Molecular Biology Reviews, 78 ( 3 ), 438 – 468. https://doi.org/10.1128/mmbr.00009-14 | |
dc.identifier.citedreference | Cohan, M. C., Ruff, K. M., & Pappu, R. V. ( 2019 ). Information theoretic measures for quantifying sequence‐ensemble relationships of intrinsically disordered proteins. Protein Engineering, Design & Selection: PEDS, 32 ( 4 ), 191 – 202. https://doi.org/10.1093/protein/gzz014 | |
dc.identifier.citedreference | Contreras, H., Joens, M. S., McMath, L. M., Le, V. P., Tullius, M. V., Kimmey, J. M., … Goulding, C. W. ( 2014 ). Characterization of a Mycobacterium tuberculosis Nanocompartment and its potential cargo proteins. The Journal of Biological Chemistry, 289 ( 26 ), 18279 – 18289. https://doi.org/10.1074/jbc.M114.570119 | |
dc.identifier.citedreference | Cornejo, E., Abreu, N., & Komeili, A. ( 2014 ). Compartmentalization and organelle formation in Bacteria. Current Opinion in Cell Biology, 26 ( 1 ), 132 – 138. https://doi.org/10.1016/j.ceb.2013.12.007 | |
dc.identifier.citedreference | Cristie‐David, A. S., Chen, J., Nowak, D. B., Bondy, A. L., Sun, K., Park, S. I., … Marsh, E. N. G. ( 2019 ). Coiled‐coil‐mediated assembly of an icosahedral protein cage with extremely high thermal and chemical stability. Journal of the American Chemical Society, 141 ( 23 ), 9207 – 9216. https://doi.org/10.1021/jacs.8b13604 | |
dc.identifier.citedreference | Cristie‐David, A. S., & Marsh, E. N. G. ( 2019 ). Metal‐dependent assembly of a protein nano‐cage. Protein Science: A Publication of the Protein Society, 28 ( 9 ), 1620 – 1629. https://doi.org/10.1002/pro.3676 | |
dc.identifier.citedreference | Crowe, C. D., & Keating, C. D. ( 2018 ). Liquid‐liquid phase separation in artificial cells. Interface Focus, 8 ( 5 ), 20180032. https://doi.org/10.1098/rsfs.2018.0032 | |
dc.identifier.citedreference | Cunha, S., Woldringh, C. L., & Odijk, T. ( 2001 ). Polymer‐mediated compaction and internal dynamics of isolated Escherichia coli nucleoids. Journal of Structural Biology, 136 ( 1 ), 53 – 66. https://doi.org/10.1006/jsbi.2001.4420 | |
dc.identifier.citedreference | Dame, R. T., Noom, M. C., & Wuite, G. J. L. ( 2006 ). Bacterial chromatin organization by H‐NS protein Unravelled using dual DNA manipulation. Nature, 444 ( 7117 ), 387 – 390. https://doi.org/10.1038/nature05283 | |
dc.identifier.citedreference | Danielli, J. F. ( 1972 ). The artificial synthesis of new life forms in relation to social and industrial evolution. In The future of man (pp. 95 – 112 ). Cambridge, MA: Elsevier. https://doi.org/10.1016/b978-0-12-229060-2.50012-4 | |
dc.identifier.citedreference | den Blaauwen, T., & Luirink, J. ( 2019 ). Checks and balances in bacterial cell division. MBio, 10 ( 1 ), 1 – 5. https://doi.org/10.1128/mBio.00149-19 | |
dc.identifier.citedreference | Deng, N.‐N., & Huck, W. T. S. ( 2017 ). Microfluidic formation of monodisperse Coacervate organelles in liposomes. Angewandte Chemie (International Ed. in English), 56 ( 33 ), 9736 – 9740. https://doi.org/10.1002/anie.201703145 | |
dc.identifier.citedreference | Deshpande, S., Brandenburg, F., Lau, A., Last, M. G. F., Spoelstra, W. K., Reese, L., … Dekker, C. ( 2019 ). Spatiotemporal control of Coacervate formation within liposomes. Nature Communications, 10 ( 1 ), 1800. https://doi.org/10.1038/s41467-019-09855-x | |
dc.identifier.citedreference | Diekmann, Y., & Pereira‐Leal, J. B. ( 2013 ). Evolution of intracellular compartmentalization. The Biochemical Journal, 449 ( 2 ), 319 – 331. https://doi.org/10.1042/BJ20120957 | |
dc.identifier.citedreference | Dong, Y., Yang, Y. R., Zhang, Y., Wang, D., Wei, X., Banerjee, S., … Liu, D. ( 2017 ). Cuboid vesicles formed by frame‐guided assembly on DNA origami scaffolds. Angewandte Chemie International Edition, 56 ( 6 ), 1586 – 1589. https://doi.org/10.1002/anie.201610133 | |
dc.identifier.citedreference | Dryden, K. A., Crowley, C. S., Tanaka, S., Yeates, T. O., & Yeager, M. ( 2009 ). Two‐dimensional crystals of carboxysome shell proteins recapitulate the hexagonal packing of three‐dimensional crystals. Protein Science: A Publication of the Protein Society, 18 ( 12 ), 2629 – 2635. https://doi.org/10.1002/pro.272 | |
dc.identifier.citedreference | Du, M., & Chen, Z. J. ( 2018 ). DNA‐induced liquid phase condensation of CGAS activates innate immune signaling. Science, 361 ( 6403 ), 704 – 709. https://doi.org/10.1126/science.aat1022 | |
dc.identifier.citedreference | Dwidar, M., Seike, Y., Kobori, S., Whitaker, C., Matsuura, T., & Yokobayashi, Y. ( 2019 ). Programmable artificial cells using histamine‐responsive synthetic riboswitch. Journal of the American Chemical Society, 141 ( 28 ), 11103 – 11114. https://doi.org/10.1021/jacs.9b03300 | |
dc.identifier.citedreference | Einfalt, T., Witzigmann, D., Edlinger, C., Sieber, S., Goers, R., Najer, A., … Palivan, C. G. ( 2018 ). Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment. Nature Communications, 9 ( 1 ), 1 – 12. https://doi.org/10.1038/s41467-018-03560-x | |
dc.identifier.citedreference | Einfalt, T., Goers, R., Dinu, I. A., Najer, A., Spulber, M., Onaca‐Fischer, O., & Palivan, C. G. ( 2015 ). Stimuli‐triggered activity of nanoreactors by biomimetic engineering polymer membranes. Nano Letters, 15 ( 11 ), 7596 – 7603. https://doi.org/10.1021/acs.nanolett.5b03386 | |
dc.identifier.citedreference | Elbaum‐Garfinkle, S., Kim, Y., Szczepaniak, K., Chen, C. C.‐H., Eckmann, C. R., Myong, S., & Brangwynne, C. P. ( 2015 ). The disordered P granule protein LAF‐1 drives phase separation into droplets with tunable viscosity and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 112 ( 23 ), 7189 – 7194. https://doi.org/10.1073/pnas.1504822112 | |
dc.identifier.citedreference | Erb, M. L., Kraemer, J. A., Coker, J. K. C., Chaikeeratisak, V., Nonejuie, P., Agard, D. A., & Pogliano, J. ( 2014 ). A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells. eLife, 3, 1 – 18. https://doi.org/10.7554/eLife.03197 | |
dc.identifier.citedreference | Facchetti, G., Knapp, B., Flor‐Parra, I., Chang, F., & Howard, M. ( 2019 ). Reprogramming Cdr2‐dependent geometry‐based cell size control in fission yeast. Current Biology, 29 ( 2 ), 350 – 358.e4. https://doi.org/10.1016/j.cub.2018.12.017 | |
dc.identifier.citedreference | Fang, Y., Huang, F., Faulkner, M., Jiang, Q., Dykes, G. F., Yang, M., & Liu, L.‐N. ( 2018 ). Engineering and modulating functional cyanobacterial CO2‐fixing organelles. Frontiers in Plant Science, 9 ( June ), 739. https://doi.org/10.3389/fpls.2018.00739 | |
dc.identifier.citedreference | Fink, G., & Löwe, J. ( 2015 ). Reconstitution of a prokaryotic minus end‐tracking system using TubRC Centromeric complexes and tubulin‐like protein TubZ filaments. Proceedings of the National Academy of Sciences of the United States of America, 112 ( 15 ), E1845 – E1850. https://doi.org/10.1073/pnas.1423746112 | |
dc.identifier.citedreference | Ganji, M., Shaltiel, I. A., Bisht, S., Kim, E., Kalichava, A., Haering, C. H., & Dekker, C. ( 2018 ). Real‐time imaging of DNA loop extrusion by condensin. Science, 360 ( 6384 ), 102 – 105. https://doi.org/10.1126/science.aar7831 | |
dc.identifier.citedreference | Garamella, J., Majumder, S., Liu, A. P., & Noireaux, V. ( 2019 ). An adaptive synthetic cell based on mechanosensing, biosensing, and inducible gene circuits. ACS Synthetic Biology, 8 ( 8 ), 1913 – 1920. https://doi.org/10.1021/acssynbio.9b00204 | |
dc.identifier.citedreference | Garamella, J., Marshall, R., Rustad, M., & Noireaux, V. ( 2016 ). The all E. coli TX‐TL toolbox 2.0: A platform for cell‐free synthetic biology. ACS Synthetic Biology, 5 ( 4 ), 344 – 355. https://doi.org/10.1021/acssynbio.5b00296 | |
dc.identifier.citedreference | Garner, E. C., Campbell, C. S., & Dyche Mullins, R. ( 2004 ). Dynamic instability in a DNA‐segregating prokaryotic Actin homolog. Science (New York, N.Y.), 306 ( 5698 ), 1021 – 1025. https://doi.org/10.1126/science.1101313 | |
dc.identifier.citedreference | Garner, E. C., Campbell, C. S., Weibel, D. B., & Dyche Mullins, R. ( 2007 ). Reconstitution of DNA segregation. Science, 315 ( March ), 1270 – 1274. https://doi.org/10.1126/science.1138527 | |
dc.identifier.citedreference | Gerdes, K., Howard, M., & Szardenings, F. ( 2010 ). Pushing and pulling in prokaryotic DNA segregation. Cell, 141, 927 – 942. https://doi.org/10.1016/j.cell.2010.05.033 | |
dc.identifier.citedreference | Giessen, T. W. ( 2016 ). Encapsulins: Microbial Nanocompartments with applications in biomedicine, Nanobiotechnology and materials science. Current Opinion in Chemical Biology, 34 ( October ), 1 – 10. https://doi.org/10.1016/j.cbpa.2016.05.013 | |
dc.identifier.citedreference | Giessen, T. W., & Silver, P. A. ( 2016a ). Encapsulation as a strategy for the Design of Biological Compartmentalization. Journal of Molecular Biology. Academic Press, 428, 916 – 927. https://doi.org/10.1016/j.jmb.2015.09.009 | |
dc.identifier.citedreference | Giessen, T. W., & Silver, P. A. ( 2016b ). Converting a natural protein compartment into a Nanofactory for the size‐constrained synthesis of antimicrobial Silver nanoparticles. ACS Synthetic Biology, 5 ( 12 ), 1497 – 1504. https://doi.org/10.1021/acssynbio.6b00117 | |
dc.identifier.citedreference | Giessen, T. W., & Silver, P. A. ( 2017a ). Widespread distribution of Encapsulin Nanocompartments reveals functional diversity. Nature Microbiology, 2 ( March ), 17029. https://doi.org/10.1038/nmicrobiol.2017.29 | |
dc.identifier.citedreference | Giessen, T. W., & Silver, P. A. ( 2017b ). Engineering carbon fixation with artificial protein organelles. Current Opinion in Biotechnology, 46 ( August ), 42 – 50. https://doi.org/10.1016/j.copbio.2017.01.004 | |
dc.identifier.citedreference | Gligoris, T. G., Scheinost, J. C., Bürmann, F., Petela, N., Chan, K.‐L., Uluocak, P., … Löwe, J. ( 2014 ). Closing the cohesin ring: Structure and function of its Smc3‐Kleisin interface. Science (New York, N.Y.), 346 ( 6212 ), 963 – 967. https://doi.org/10.1126/science.1256917 | |
dc.identifier.citedreference | Godino, E., López, J. N., Foschepoth, D., Cleij, C., Doerr, A., Castellà, C. F., & Danelon, C. ( 2019 ). De novo synthesized min proteins drive oscillatory liposome deformation and regulate FtsA‐FtsZ cytoskeletal patterns. Nature Communications, 10 ( 1 ), 1 – 12. https://doi.org/10.1038/s41467-019-12932-w | |
dc.identifier.citedreference | Godino, E., López, J. N., Zarguit, I., Doerr, A., Jimenez, M., Rivas, G., & Danelon, C. ( 2020 ). Cell‐free biogenesis of bacterial division proto‐rings that can constrict liposomes. Communications Biology, 3 ( 1 ), 539. https://doi.org/10.1038/s42003-020-01258-9 | |
dc.identifier.citedreference | Good, M. C., Vahey, M. D., Skandarajah, A., Fletcher, D. A., & Heald, R. ( 2013 ). Cytoplasmic volume modulates spindle size during embryogenesis. Science, 342 ( 6160 ), 856 – 860. https://doi.org/10.1126/science.1243147 | |
dc.identifier.citedreference | Odijk, T. ( 1998 ). Osmotic compaction of supercoiled DNA into a bacterial nucleoid. Biophysical Chemistry, 73 ( 1–2 ), 23 – 29. https://doi.org/10.1016/S0301-4622(98)00115-X | |
dc.identifier.citedreference | Gordley, R. M., Williams, R. E., Bashor, C. J., Toettcher, J. E., Yan, S., & Lim, W. A. ( 2016 ). Engineering dynamical control of cell fate switching using synthetic phospho‐regulons. Proceedings of the National Academy of Sciences of the United States of America, 113 ( 47 ), 13528 – 13533. https://doi.org/10.1073/pnas.1610973113 | |
dc.identifier.citedreference | Gorochowski, T. E. ( 2016 ). Agent‐based modelling in synthetic biology. Essays in Biochemistry, 60 ( 4 ), 325 – 336. https://doi.org/10.1042/EBC20160037 | |
dc.identifier.citedreference | Guan, Y., Li, Z., Wang, S., Barnes, P. M., Liu, X., Xu, H., … Yang, Q. ( 2018 ). A robust and tunable mitotic oscillator in artificial cells. eLife, 7 ( April ), e33549. https://doi.org/10.7554/eLife.33549 | |
dc.identifier.citedreference | Guan, Y., Wang, S., Jin, M., Xu, H., & Yang, Q. ( 2018 ). Reconstitution of cell‐cycle oscillations in microemulsions of cell‐free Xenopus egg extracts. Journal of Visualized Experiments, 2018 ( 139 ), 58240. https://doi.org/10.3791/58240 | |
dc.identifier.citedreference | Hagen, A., Plegaria, J. S., Sloan, N., Ferlez, B., Aussignargues, C., Burton, R., & Kerfeld, C. A. ( 2018 ). In vitro assembly of diverse bacterial microcompartment Shell architectures. Nano Letters, 18 ( 11 ), 7030 – 7037. https://doi.org/10.1021/acs.nanolett.8b02991 | |
dc.identifier.citedreference | Hagen, A., Sutter, M., Sloan, N., & Kerfeld, C. A. ( 2018 ). Programmed loading and rapid purification of engineered bacterial microcompartment shells. Nature Communications, 9 ( 1 ), 2881. https://doi.org/10.1038/s41467-018-05162-z | |
dc.identifier.citedreference | Harvey, P. C., Watson, M., Hulme, S., Jones, M. A., Lovell, M., Berchieri, A., … Barrow, P. ( 2011 ). Salmonella enterica Serovar typhimurium colonizing the lumen of the chicken intestine grows slowly and upregulates a unique set of virulence and metabolism genes. Infection and Immunity, 79 ( 10 ), 4105 – 4121. https://doi.org/10.1128/IAI.01390-10 | |
dc.identifier.citedreference | Heldt, D., Frank, S., Seyedarabi, A., Ladikis, D., Parsons, J. B., Warren, M. J., & Pickersgill, R. W. ( 2009 ). Structure of a trimeric bacterial microcompartment shell protein, EtuB, associated with ethanol utilization in Clostridium kluyveri. The Biochemical Journal, 423 ( 2 ), 199 – 207. https://doi.org/10.1042/BJ20090780 | |
dc.identifier.citedreference | Herring, T. I., Harris, T. N., Chowdhury, C., Mohanty, S. K., & Bobik, T. A. ( 2018 ). A bacterial microcompartment is used for choline fermentation by Escherichia coli 536. Journal of Bacteriology, 200 ( 10 ), e00764 –17. https://doi.org/10.1128/JB.00764-17 | |
dc.identifier.citedreference | Hilburger, C. E., Jacobs, M. L., Lewis, K. R., Peruzzi, J. A., & Kamat, N. P. ( 2019 ). Controlling secretion in artificial cells with a membrane and gate. ACS Synthetic Biology, 8 ( 6 ), 1224 – 1230. https://doi.org/10.1021/acssynbio.8b00435 | |
dc.identifier.citedreference | Hindley, J. W., Zheleva, D. G., Elani, Y., Charalambous, K., Barter, L. M. C., Booth, P. J., … Ces, O. ( 2019 ). Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells. Proceedings of the National Academy of Sciences of the United States of America, 116 ( 34 ), 16711 – 16716. https://doi.org/10.1073/pnas.1903500116 | |
dc.identifier.citedreference | Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. G., & Pappu, R. V. ( 2017 ). CIDER: Resources to analyze sequence‐ensemble relationships of intrinsically disordered proteins. Biophysical Journal, 112 ( 1 ), 16 – 21. https://doi.org/10.1016/j.bpj.2016.11.3200 | |
dc.identifier.citedreference | Hsia, Y., Bale, J. B., Gonen, S., Shi, D., Sheffler, W., Fong, K. K., … Baker, D. ( 2016 ). Design of a Hyperstable 60‐subunit protein dodecahedron. [corrected]. Nature, 535 ( 7610 ), 136 – 139. https://doi.org/10.1038/nature18010 | |
dc.identifier.citedreference | Hu, Z., Gogol, E. P., & Lutkenhaus, J. ( 2002 ). Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proceedings of the National Academy of Sciences of the United States of America, 99 ( 10 ), 6761 – 6766. https://doi.org/10.1073/pnas.102059099 | |
dc.identifier.citedreference | Hu, Z., & Lutkenhaus, J. ( 2003 ). A conserved sequence at the C‐terminus of MinD is required for binding to the membrane and targeting MinC to the septum. Molecular Microbiology, 47 ( 2 ), 345 – 355. https://doi.org/10.1046/j.1365-2958.2003.03321.x | |
dc.identifier.citedreference | Hutchison, C. A., Chuang, R. Y., Noskov, V. N., Assad‐Garcia, N., Deerinck, T. J., Ellisman, M. H., … Venter, J. C. ( 2016 ). Design and synthesis of a minimal bacterial genome. Science, 351 ( 6280 ), aad6253. https://doi.org/10.1126/science.aad6253 | |
dc.identifier.citedreference | Hwang, L. C., Vecchiarelli, A. G., Han, Y.‐W., Mizuuchi, M., Harada, Y., Funnell, B. E., & Mizuuchi, K. ( 2013 ). ParA‐mediated plasmid partition driven by protein pattern self‐organization. The EMBO Journal, 32 ( 9 ), 1238 – 1249. https://doi.org/10.1038/emboj.2013.34 | |
dc.identifier.citedreference | Hyman, A. A., Weber, C. A., & Jülicher, F. ( 2014 ). Liquid‐liquid phase separation in biology. Annual Review of Cell and Developmental Biology, 30 ( 1 ), 39 – 58. https://doi.org/10.1146/annurev-cellbio-100913-013325 | |
dc.identifier.citedreference | Iancu, C. V., Morris, D. M., Dou, Z., Heinhorst, S., Cannon, G. C., & Jensen, G. J. ( 2010 ). Organization, structure, and assembly of alpha‐Carboxysomes determined by Electron Cryotomography of intact cells. Journal of Molecular Biology, 396 ( 1 ), 105 – 117. https://doi.org/10.1016/j.jmb.2009.11.019 | |
dc.identifier.citedreference | Jacobs, M. L., Boyd, M. A., & Kamat, N. P. ( 2019 ). Diblock copolymers enhance folding of a mechanosensitive membrane protein during cell‐free expression. Proceedings of the National Academy of Sciences of the United States of America, 116 ( 10 ), 4031 – 4036. https://doi.org/10.1073/pnas.1814775116 | |
dc.identifier.citedreference | Jain, A., & Vale, R. D. ( 2017 ). RNA phase transitions in repeat expansion disorders. Nature, 546 ( 7657 ), 243 – 247. https://doi.org/10.1038/nature22386 | |
dc.identifier.citedreference | Jakobson, C. M., Kim, E. Y., Slininger, M. F., Chien, A., & Tullman‐Ercek, D. ( 2015 ). Localization of proteins to the 1,2‐Propanediol utilization microcompartment by non‐native signal sequences is mediated by a common hydrophobic motif. The Journal of Biological Chemistry, 290 ( 40 ), 24519 – 24533. https://doi.org/10.1074/jbc.M115.651919 | |
dc.identifier.citedreference | Joesaar, A., Yang, S., Bögels, B., van der Linden, A., Pieters, P., Kumar, B. V. V. S. P., … de Greef, T. F. A. ( 2019 ). DNA‐based communication in populations of synthetic protocells. Nature Nanotechnology, 14 ( 4 ), 369 – 378. https://doi.org/10.1038/s41565-019-0399-9 | |
dc.identifier.citedreference | Jones, A. R., Forero‐Vargas, M., Withers, S. P., Smith, R. S., Traas, J., Dewitte, W., & Murray, J. A. H. ( 2017 ). Cell‐size dependent progression of the cell cycle creates homeostasis and flexibility of plant cell size. Nature Communications, 8 ( April ), 15060 – 15060. https://doi.org/10.1038/ncomms15060 | |
dc.identifier.citedreference | Jun, S. ( 2015 ). Chromosome, cell cycle, and entropy. Biophysical Journal. Biophysical Society, 108, 785 – 786. https://doi.org/10.1016/j.bpj.2014.12.032 | |
dc.identifier.citedreference | Karig, D., Michael Martini, K., Lu, T., DeLateur, N. A., Goldenfeld, N., & Weiss, R. ( 2018 ). Stochastic turing patterns in a synthetic bacterial population. Proceedings of the National Academy of Sciences of the United States of America, 115 ( 26 ), 6572 – 6577. https://doi.org/10.1073/pnas.1720770115 | |
dc.identifier.citedreference | Kerfeld, C. A. ( 2017 ). A bioarchitectonic approach to the modular engineering of metabolism. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372 ( 1730 ), 20160387. https://doi.org/10.1098/rstb.2016.0387 | |
dc.identifier.citedreference | Kerfeld, C. A., Aussignargues, C., Zarzycki, J., Cai, F., & Sutter, M. ( 2018 ). Bacterial microcompartments. Nature Reviews. Microbiology, 16 ( 5 ), 277 – 290. https://doi.org/10.1038/nrmicro.2018.10 | |
dc.identifier.citedreference | Kerfeld, C. A., & Erbilgin, O. ( 2015 ). Bacterial microcompartments and the modular construction of microbial metabolism. Trends in Microbiology. Elsevier Ltd, 23, 22 – 34. https://doi.org/10.1016/j.tim.2014.10.003 | |
dc.identifier.citedreference | Kerfeld, C. A., & Melnicki, M. R. ( 2016 ). Assembly, function and evolution of cyanobacterial Carboxysomes. Current Opinion in Plant Biology. Elsevier Ltd, 31, 66 – 75. https://doi.org/10.1016/j.pbi.2016.03.009 | |
dc.identifier.citedreference | Kim, E. Y., & Tullman‐Ercek, D. ( 2014 ). A rapid flow cytometry assay for the relative quantification of protein encapsulation into bacterial microcompartments. Biotechnology Journal, 9 ( 3 ), 348 – 354. https://doi.org/10.1002/biot.201300391 | |
dc.identifier.citedreference | Kim, E., Kerssemakers, J., Shaltiel, I. A., Haering, C. H., & Dekker, C. ( 2020 ). DNA‐loop extruding Condensin complexes can traverse one another. Nature, 579 ( 7799 ), 438 – 442. https://doi.org/10.1038/s41586-020-2067-5 | |
dc.identifier.citedreference | Kim, W., & Chaikof, E. L. ( 2010 ). Recombinant elastin‐mimetic biomaterials: Emerging applications in medicine. Advanced Drug Delivery Reviews. Elsevier, 62, 1468 – 1478. https://doi.org/10.1016/j.addr.2010.04.007 | |
dc.identifier.citedreference | Klumpp, J., & Fuchs, T. M. ( 2007 ). Identification of novel genes in Genomic Islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology, 153 ( 4 ), 1207 – 1220. https://doi.org/10.1099/mic.0.2006/004747-0 | |
dc.identifier.citedreference | Koepnick, B., Flatten, J., Husain, T., Ford, A., Silva, D.‐A., Bick, M. J., … Baker, D. ( 2019 ). De novo protein design by citizen scientists. Nature, 570 ( 7761 ), 390 – 394. https://doi.org/10.1038/s41586-019-1274-4 | |
dc.identifier.citedreference | Kohyama, S., Yoshinaga, N., Yanagisawa, M., Fujiwara, K., & Doi, N. ( 2019 ). Cell‐sized confinement controls generation and stability of a protein wave for spatiotemporal regulation in cells. eLife, 8 ( July ), 1 – 30. https://doi.org/10.7554/eLife.44591 | |
dc.identifier.citedreference | Kretschmer, S., Zieske, K., & Schwille, P. ( 2017 ). Large‐scale modulation of reconstituted Min protein patterns and gradients by defined mutations in MinE’s membrane targeting sequence. PLoS One, 12 ( 6 ), e0179582. https://doi.org/10.1371/journal.pone.0179582 | |
dc.identifier.citedreference | Kumar, B. V. V. S. P., Patil, A. J., & Mann, S. ( 2018 ). Enzyme‐powered motility in buoyant organoclay/DNA protocells. Nature Chemistry, 10 ( 11 ), 1154 – 1163. https://doi.org/10.1038/s41557-018-0119-3 | |
dc.identifier.citedreference | Künzle, M., Mangler, J., Lach, M., & Beck, T. ( 2018 ). Peptide‐directed encapsulation of inorganic nanoparticles into protein containers. Nanoscale, 10 ( 48 ), 22917 – 22926. https://doi.org/10.1039/c8nr06236f | |
dc.identifier.citedreference | Kurokawa, C., Fujiwara, K., Morita, M., Kawamata, I., Kawagishi, Y., Sakai, A., … Yanagisawa, M. ( 2017 ). DNA cytoskeleton for stabilizing artificial cells. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 28 ), 7228 – 7233. https://doi.org/10.1073/pnas.1702208114 | |
dc.identifier.citedreference | Lagoutte, P., Mignon, C., Stadthagen, G., Potisopon, S., Donnat, S., Mast, J., … Werle, B. ( 2018 ). Simultaneous surface display and cargo loading of encapsulin Nanocompartments and their use for rational vaccine design. Vaccine, 36 ( 25 ), 3622 – 3628. https://doi.org/10.1016/j.vaccine.2018.05.034 | |
dc.identifier.citedreference | Larsen, R. A., Cusumano, C., Fujioka, A., Lim‐Fong, G., Patterson, P., & Pogliano, J. ( 2007 ). Treadmilling of a prokaryotic tubulin‐like protein, TubZ, required for plasmid stability in Bacillus thuringiensis. Genes and Development, 21 ( 11 ), 1340 – 1352. https://doi.org/10.1101/gad.1546107 | |
dc.identifier.citedreference | Lutkenhaus, J. ( 2007 ). Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annual Review of Biochemistry, 76 ( 1 ), 539 – 562. https://doi.org/10.1146/annurev.biochem.75.103004.142652 | |
dc.identifier.citedreference | Lassila, J. K., Bernstein, S. L., Kinney, J. N., Axen, S. D., & Kerfeld, C. A. ( 2014 ). Assembly of robust bacterial microcompartment shells using building blocks from an organelle of unknown function. Journal of Molecular Biology, 426 ( 11 ), 2217 – 2228. https://doi.org/10.1016/j.jmb.2014.02.025 | |
dc.identifier.citedreference | Last, M. G. F., Deshpande, S., & Dekker, C. ( 2020 ). PH‐controlled Coacervate‐membrane interactions within liposomes. ACS Nano, 14, 4487 – 4498. https://doi.org/10.1021/acsnano.9b10167 | |
dc.identifier.citedreference | Lau, Y. H., Giessen, T. W., Altenburg, W. J., & Silver, P. A. ( 2018 ). Prokaryotic nanocompartments form synthetic organelles in a eukaryote. Nature Communications, 9 ( 1 ), 1311. https://doi.org/10.1038/s41467-018-03768-x | |
dc.identifier.citedreference | Lawrence, A. D., Frank, S., Newnham, S., Lee, M. J., Brown, I. R., Xue, W.‐F., … Warren, M. J. ( 2014 ). Solution structure of a bacterial microcompartment targeting peptide and its application in the construction of an ethanol bioreactor. ACS Synthetic Biology, 3 ( 7 ), 454 – 465. https://doi.org/10.1021/sb4001118 | |
dc.identifier.citedreference | Le Gall, A., Cattoni, D. I., Guilhas, B., Mathieu‐Demazière, C., Oudjedi, L., Fiche, J.‐B., et al. ( 2016 ). Bacterial partition complexes segregate within the volume of the nucleoid. Nature Communications, 7 ( July ), 12107. https://doi.org/10.1038/ncomms12107 | |
dc.identifier.citedreference | Lee, K. Y., Park, S. J., Lee, K. A., Se, H. K., Kim, H., Meroz, Y., et al. ( 2018 ). Photosynthetic artificial organelles sustain and control ATP‐dependent reactions in a protocellular system. Nature Biotechnology, 36 ( 6 ), 530 – 535. https://doi.org/10.1038/nbt.4140 | |
dc.identifier.citedreference | Lee, M. J., Palmer, D. J., & Warren, M. J. ( 2019 ). Biotechnological advances in bacterial microcompartment technology. Trends in Biotechnology, 37 ( 3 ), 325 – 336. https://doi.org/10.1016/j.tibtech.2018.08.006 | |
dc.identifier.citedreference | Lee, T. H., Carpenter, T. S., D’haeseleer, P., Savage, D. F., & Yung, M. C. ( 2020 ). Encapsulin carrier proteins for enhanced expression of antimicrobial peptides. Biotechnology and Bioengineering, 117 ( 3 ), 603 – 613. https://doi.org/10.1002/bit.27222 | |
dc.identifier.citedreference | Leger, M. M., Petru, M., Žárský, V., Eme, L., Vlček, Č., Tommy, H., … Roger, A. J. ( 2015 ). An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 112 ( 33 ), 10239 – 10246. https://doi.org/10.1073/pnas.1421392112 | |
dc.identifier.citedreference | Lentini, R., Martín, N. Y., Forlin, M., Belmonte, L., Fontana, J., Cornella, M., … Mansy, S. S. ( 2017 ). Two‐way chemical communication between artificial and natural cells. ACS Central Science, 3 ( 2 ), 117 – 123. https://doi.org/10.1021/acscentsci.6b00330 | |
dc.identifier.citedreference | Lentini, R., Santero, S. P., Chizzolini, F., Cecchi, D., Fontana, J., Marchioretto, M., et al. ( 2014 ). Integrating artificial with natural cells to translate chemical messages that Direct E. coli behaviour. Nature Communications, 5 ( May ), 1 – 6. https://doi.org/10.1038/ncomms5012 | |
dc.identifier.citedreference | Li, P., Banjade, S., Cheng, H. C., Kim, S., Chen, B., Guo, L., … Rosen, M. K. ( 2012 ). Phase transitions in the assembly of multivalent signalling proteins. Nature, 483 ( 7389 ), 336 – 340. https://doi.org/10.1038/nature10879 | |
dc.identifier.citedreference | Li, Y. ( 2015 ). Split‐Inteins and their bioapplications. Biotechnology Letters, 37 ( 11 ), 2121 – 2137. https://doi.org/10.1007/s10529-015-1905-2 | |
dc.identifier.citedreference | Li, Z., Liu, S., & Yang, Q. ( 2017 ). Incoherent inputs enhance the robustness of biological oscillators. Cell Systems, 5 ( 1 ), 72 – 81. https://doi.org/10.1016/j.cels.2017.06.013 | |
dc.identifier.citedreference | Liang, M., Frank, S., Lünsdorf, H., Warren, M. J., & Prentice, M. B. ( 2017 ). Bacterial microcompartment‐directed polyphosphate kinase promotes stable polyphosphate accumulation in E. coli. Biotechnology Journal, 12 ( 3 ), 1600415. https://doi.org/10.1002/biot.201600415 | |
dc.identifier.citedreference | Lim, H. C., Surovtsev, I. V., Beltran, B. G., Huang, F., Bewersdorf, J., & Jacobs‐Wagner, C. ( 2014 ). Evidence for a DNA‐relay mechanism in ParABS‐mediated chromosome segregation. eLife, 3 ( 3 ), e02758. https://doi.org/10.7554/eLife.02758 | |
dc.identifier.citedreference | Litschel, T., Ramm, B., Maas, R., Heymann, M., & Schwille, P. ( 2018 ). Beating vesicles: Encapsulated protein oscillations cause dynamic membrane deformations. Angewandte Chemie International Edition, 57 ( 50 ), 16286 – 16290. https://doi.org/10.1002/anie.201808750 | |
dc.identifier.citedreference | Long, M. S., Jones, C. D., Helfrich, M. R., Mangeney‐Slavin, L. K., & Keating, C. D. ( 2005 ). Dynamic microcompartmentation in synthetic cells. Proceedings of the National Academy of Sciences of the United States of America, 102 ( 17 ), 5920 – 5925. https://doi.org/10.1073/pnas.0409333102 | |
dc.identifier.citedreference | Loose, M., Fischer‐Friedrich, E., Herold, C., Kruse, K., & Schwille, P. ( 2011 ). Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nature Structural & Molecular Biology, 18 ( 5 ), 577 – 583. https://doi.org/10.1038/nsmb.2037 | |
dc.identifier.citedreference | Loose, M., Fischer‐Friedrich, E., Ries, J., Kruse, K., & Schwille, P. ( 2008 ). Spatial regulators for bacterial cell division self‐organize into surface waves in vitro. Science (New York, N.Y.), 320 ( 5877 ), 789 – 792. https://doi.org/10.1126/science.1154413 | |
dc.identifier.citedreference | Love, C., Steinkühler, J., Gonzales, D. T., Yandrapalli, N., Robinson, T., Dimova, R., & Dora Tang, T.‐Y. ( 2020 ). Reversible PH‐responsive Coacervate formation in lipid vesicles activates dormant enzymatic reactions. Angewandte Chemie (International Ed. in English), 59 ( 15 ), 5950 – 5957. https://doi.org/10.1002/anie.201914893 | |
dc.identifier.citedreference | Majumder, S., Garamella, J., Wang, Y. L., Denies, M., Noireaux, V., & Liu, A. P. ( 2017 ). Cell‐sized mechanosensitive and biosensing compartment programmed with DNA. Chemical Communications, 53 ( 53 ), 7349 – 7352. https://doi.org/10.1039/c7cc03455e | |
dc.identifier.citedreference | Majumder, S., & Liu, A. P. ( 2017 ). Bottom‐up synthetic biology: Modular design for making artificial platelets. Physical Biology, 15 ( 1 ), 013001. https://doi.org/10.1088/1478-3975/aa9768 | |
dc.identifier.citedreference | Majumder, S., Willey, P. T., DeNies, M. S., Liu, A. P., & Luxton, G. ( 2019 ). A synthetic biology platform for the reconstitution and mechanistic dissection of LINC complex assembly. Journal of Cell Science, 132 ( 4 ), jcs219451. https://doi.org/10.1242/jcs.219451 | |
dc.identifier.citedreference | Majumder, S., Wubshet, N., & Liu, A. P. ( 2019 ). Encapsulation of complex solutions using droplet microfluidics towards the synthesis of artificial cells. Journal of Micromechanics and Microengineering, 29 ( 8 ), 083001. https://doi.org/10.1088/1361-6439/AB2377 | |
dc.identifier.citedreference | Malay, A. D., Miyazaki, N., Biela, A., Chakraborti, S., Majsterkiewicz, K., Stupka, I., … Heddle, J. G. ( 2019 ). An ultra‐stable gold‐coordinated protein cage displaying reversible assembly. Nature, 569 ( 7756 ), 438 – 442. https://doi.org/10.1038/s41586-019-1185-4 | |
dc.identifier.citedreference | Martín, L., Castro, E., Ribeiro, A., Alonso, M., & Carlos Rodríguez‐Cabello, J. ( 2012 ). Temperature‐triggered self‐assembly of elastin‐like block co‐Recombinamers: The controlled formation of micelles and vesicles in an aqueous medium. Biomacromolecules, 13 ( 2 ), 293 – 298. https://doi.org/10.1021/bm201436y | |
dc.identifier.citedreference | Martin, W. ( 2010 ). Evolutionary origins of metabolic compartmentalization in eukaryotes. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365 ( 1541 ), 847 – 855. https://doi.org/10.1098/rstb.2009.0252 | |
dc.identifier.citedreference | Martos, A., Petrasek, Z., & Schwille, P. ( 2013 ). Propagation of MinCDE waves on free‐standing membranes. Environmental Microbiology, 15 ( 12 ), 3319 – 3326. https://doi.org/10.1111/1462-2920.12295 | |
dc.identifier.citedreference | Mayer, M. J., Juodeikis, R., Brown, I. R., Frank, S., Palmer, D. J., Deery, E., … Warren, M. J. ( 2016 ). Effect of bio‐engineering on size, shape, composition and rigidity of bacterial microcompartments. Scientific Reports, 6 ( November ), 36899. https://doi.org/10.1038/srep36899 | |
dc.identifier.citedreference | McHugh, C. A., Fontana, J., Nemecek, D., Cheng, N., Aksyuk, A. A., Bernard Heymann, J., et al. ( 2014 ). A virus capsid‐like nanocompartment that stores Iron and protects Bacteria from oxidative stress. The EMBO Journal, 33 ( 17 ), 1896 – 1911. https://doi.org/10.15252/embj.201488566 | |
dc.identifier.citedreference | Mizuuchi, K., & Vecchiarelli, A. G. ( 2018 ). Mechanistic insights of the Min oscillator via cell‐free reconstitution and imaging. Physical Biology, 15 ( 3 ), 031001. https://doi.org/10.1088/1478-3975/aa9e5e | |
dc.identifier.citedreference | Møller‐Jensen, J., Borch, J., Dam, M., Jensen, R. B., Roepstorff, P., & Gerdes, K. ( 2003 ). Bacterial mitosis: Parm of plasmid R1 moves plasmid DNA by an Actin‐like insertional polymerization mechanism. Molecular Cell, 12 ( 6 ), 1477 – 1487. https://doi.org/10.1016/S1097-2765(03)00451-9 | |
dc.identifier.citedreference | Molliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A. P., Kim, H. J., … Taylor, J. P. ( 2015 ). Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell, 163 ( 1 ), 123 – 133. https://doi.org/10.1016/j.cell.2015.09.015 | |
dc.identifier.citedreference | Monahan, L. G., Liew, A. T. F., Bottomley, A. L., & Harry, E. J. ( 2014 ). Division site positioning in bacteria: One size does not fit all. Frontiers in Microbiology, 5 ( FEB ), 19. https://doi.org/10.3389/fmicb.2014.00019 | |
dc.identifier.citedreference | Monterroso, B., Zorrilla, S., Sobrinos‐Sanguino, M., Robles‐Ramos, M. A., López‐Álvarez, M., Margolin, W., … Rivas, G. ( 2019 ). Bacterial FtsZ protein forms phase‐separated condensates with its nucleoid‐associated inhibitor SlmA. EMBO Reports, 20 ( 1 ), 1 – 13. https://doi.org/10.15252/embr.201845946 | |
dc.identifier.citedreference | Moon, H., Lee, J., Min, J., & Kang, S. ( 2014 ). Developing genetically engineered Encapsulin protein cage nanoparticles as a targeted delivery Nanoplatform. Biomacromolecules, 15 ( 10 ), 3794 – 3801. https://doi.org/10.1021/bm501066m | |
dc.identifier.citedreference | Murphy, L. D., & Zimmerman, S. B. ( 1997 ). Stabilization of compact spermidine nucleoids from Escherichia coli under crowded conditions: Implications for in vivo nucleoid structure. Journal of Structural Biology, 119 ( 3 ), 336 – 346. https://doi.org/10.1006/jsbi.1997.3884 | |
dc.identifier.citedreference | Nakajima, M., Imai, K., Ito, H., Nishiwaki, T., Murayama, Y., Iwasaki, H., … Kondo, T. ( 2005 ). Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science, 308 ( 5720 ), 414 – 415. https://doi.org/10.1126/science.1108451 | |
dc.identifier.citedreference | Nichols, R. J., Cassidy‐Amstutz, C., Chaijarasphong, T., & Savage, D. F. ( 2017 ). Encapsulins: Molecular biology of the shell. Critical Reviews in Biochemistry and Molecular Biology. Taylor and Francis Ltd, 52, 583 – 594. https://doi.org/10.1080/10409238.2017.1337709 | |
dc.identifier.citedreference | Noireaux, V., & Liu, A. P. ( 2020 ). The new age of cell‐free biology. Annual Review of Biomedical Engineering, 22 ( 1 ), 51 – 77. https://doi.org/10.1146/annurev-bioeng-092019-111110 | |
dc.identifier.citedreference | Oberholzer, T., Wick, R., Luisi, P. L., & Biebricher, C. K. ( 1995 ). Enzymatic RNA replication in self‐reproducing vesicles: An approach to a minimal cell. Biochemical and Biophysical Research Communications, 207, 250 – 257. https://doi.org/10.1006/bbrc.1995.1180 | |
dc.identifier.citedreference | Otrin, L., Marušič, N., Bednarz, C., Vidaković‐Koch, T., Lieberwirth, I., Landfester, K., & Sundmacher, K. ( 2017 ). Toward artificial mitochondrion: Mimicking oxidative phosphorylation in polymer and hybrid membranes. Nano Letters, 17 ( 11 ), 6816 – 6821. https://doi.org/10.1021/acs.nanolett.7b03093 | |
dc.identifier.citedreference | Parsons, J. B., Frank, S., Bhella, D., Liang, M., Prentice, M. B., Mulvihill, D. P., & Warren, M. J. ( 2010 ). Synthesis of empty bacterial microcompartments, directed organelle protein incorporation, and evidence of filament‐associated organelle movement. Molecular Cell, 38 ( 2 ), 305 – 315. https://doi.org/10.1016/j.molcel.2010.04.008 | |
dc.identifier.citedreference | Pautot, S., Frisken, B. J., & Weitz, D. A. ( 2003 ). Production of Unilamellar vesicles using an inverted emulsion. Langmuir, 19 ( 7 ), 2870 – 2879. https://doi.org/10.1021/la026100v | |
dc.identifier.citedreference | Peters, R. J. R. W., Marguet, M., Marais, S., Fraaije, M. W., van Hest, J. C. M., & Lecommandoux, S. ( 2014 ). Cascade reactions in multicompartmentalized polymersomes. Angewandte Chemie International Edition, 53 ( 1 ), 146 – 150. https://doi.org/10.1002/anie.201308141 | |
dc.identifier.citedreference | Petit, E., Greg, W., LaTouf, M. V., Coppi, T. A., Warnick, D. C., Romashko, I., et al. ( 2013 ). Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by clostridium phytofermentans. PLoS One, 8 ( 1 ), e54337. https://doi.org/10.1371/journal.pone.0054337 | |
dc.identifier.citedreference | Peyret, A., Ibarboure, E., Pippa, N., & Lecommandoux, S. ( 2017 ). Liposomes in polymersomes: Multicompartment system with temperature‐triggered release. Langmuir, 33 ( 28 ), 7079 – 7085. https://doi.org/10.1021/acs.langmuir.7b00655 | |
dc.identifier.citedreference | Pitts, A. C., Tuck, L. R., Faulds‐Pain, A., Lewis, R. J., & Marles‐Wright, J. ( 2012 ). Structural insight into the Clostridium difficile ethanolamine utilisation microcompartment. PLoS One, 7 ( 10 ), e48360. https://doi.org/10.1371/journal.pone.0048360 | |
dc.identifier.citedreference | Planamente, S., & Frank, S. ( 2019 ). Bio‐engineering of bacterial microcompartments: A mini review. Biochemical Society Transactions, 47 ( 3 ), 765 – 777. https://doi.org/10.1042/BST20170564 | |
dc.identifier.citedreference | Plegaria, J. S., & Kerfeld, C. A. ( 2018 ). Engineering Nanoreactors using bacterial microcompartment architectures. Current Opinion in Biotechnology, 51 ( June ), 1 – 7. https://doi.org/10.1016/j.copbio.2017.09.005 | |
dc.identifier.citedreference | Putri, R. M., Allende‐Ballestero, C., Luque, D., Klem, R., Rousou, K.‐A., Liu, A., … Cornelissen, J. J. L. M. ( 2017 ). Structural characterization of native and modified encapsulins as nanoplatforms for in vitro catalysis and cellular uptake. ACS Nano, 11 ( 12 ), 12796 – 12804. https://doi.org/10.1021/acsnano.7b07669 | |
dc.identifier.citedreference | Rahmanpour, R., & Bugg, T. D. H. ( 2013 ). Assembly in vitro of Rhodococcus Jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment. The FEBS Journal, 280 ( 9 ), 2097 – 2104. https://doi.org/10.1111/febs.12234 | |
dc.identifier.citedreference | Ramm, B., Glock, P., & Schwille, P. ( 2018 ). In vitro reconstitution of self‐organizing protein patterns on supported lipid bilayers. Journal of Visualized Experiments, 2018 ( 137 ), 1 – 13. https://doi.org/10.3791/58139 | |
dc.identifier.citedreference | Raskin, D. M., & De Boer, P. A. J. ( 1999 ). Rapid pole‐to‐pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 96 ( 9 ), 4971 – 4976. https://doi.org/10.1073/pnas.96.9.4971 | |
dc.identifier.citedreference | Rico, A. I., Krupka, M., & Vicente, M. ( 2013 ). In the beginning, Escherichia coli assembled the proto‐ring: An initial phase of division. The Journal of Biological Chemistry, 288 ( 29 ), 20830 – 20836. https://doi.org/10.1074/jbc.R113.479519 | |
dc.identifier.citedreference | Saha, S., Weber, C. A., Nousch, M., Adame‐Arana, O., Hoege, C., Hein, M. Y., … Hyman, A. A. ( 2016 ). Polar positioning of phase‐separated liquid compartments in cells regulated by an MRNA competition mechanism. Cell, 166 ( 6 ), 1572 – 1584.e16. https://doi.org/10.1016/j.cell.2016.08.006 | |
dc.identifier.citedreference | Schaffter, S. W., & Schulman, R. ( 2019 ). Building in vitro transcriptional regulatory networks by successively integrating multiple functional circuit modules. Nature Chemistry, 11 ( 9 ), 829 – 838. https://doi.org/10.1038/s41557-019-0292-z | |
dc.identifier.citedreference | Schramm, A., Lieutaud, P., Gianni, S., Longhi, S., & Bignon, C. ( 2017 ). InSiDDe: A server for designing artificial disordered proteins. International Journal of Molecular Sciences, 19 ( 1 ), 91. https://doi.org/10.3390/ijms19010091 | |
dc.identifier.citedreference | Schulz, M., & Binder, W. H. ( 2015 ). Mixed hybrid lipid/polymer vesicles as a novel membrane platform. Macromolecular Rapid Communications, 36 ( 23 ), 2031 – 2041. https://doi.org/10.1002/marc.201500344 | |
dc.identifier.citedreference | Schuster, B. S., Reed, E. H., Parthasarathy, R., Jahnke, C. N., Caldwell, R. M., Bermudez, J. G., … Hammer, D. A. ( 2018 ). Controllable protein phase separation and modular recruitment to form responsive Membraneless organelles. Nature Communications, 9 ( 1 ), 2985. https://doi.org/10.1038/s41467-018-05403-1 | |
dc.identifier.citedreference | Schweizer, J., Loose, M., Bonny, M., Kruse, K., Mönch, I., & Schwille, P. ( 2012 ). Geometry sensing by self‐organized protein patterns. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 38 ), 15283 – 15288. https://doi.org/10.1073/pnas.1206953109 | |
dc.identifier.citedreference | Schwille, P., Spatz, J., Landfester, K., Bodenschatz, E., Herminghaus, S., Sourjik, V., … Sundmacher, K. ( 2018 ). MaxSynBio: Avenues towards creating cells from the bottom up. Angewandte Chemie ‐ International Edition English, 57 ( 41 ), 13382 – 13392. https://doi.org/10.1002/anie.201802288 | |
dc.identifier.citedreference | Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., & Ueda, T. ( 2001 ). Cell‐free translation reconstituted with purified components. Nature Biotechnology, 19 ( 8 ), 751 – 755. https://doi.org/10.1038/90802 | |
dc.identifier.citedreference | Shin, J., Jardine, P., & Noireaux, V. ( 2012 ). Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cell‐free reaction. ACS Synthetic Biology, 1 ( 9 ), 408 – 413. https://doi.org/10.1021/sb300049p | |
dc.identifier.citedreference | Shinoda, T., Shinya, N., Ito, K., Ishizuka‐Katsura, Y., Ohsawa, N., Terada, T., … Yokoyama, S. ( 2016 ). Cell‐free methods to produce structurally intact mammalian membrane proteins. Scientific Reports, 6 ( 1 ), 1 – 15. https://doi.org/10.1038/srep30442 | |
dc.identifier.citedreference | Sigmund, F., Massner, C., Erdmann, P., Stelzl, A., Rolbieski, H., Desai, M., … Westmeyer, G. G. ( 2018 ). Bacterial encapsulins as orthogonal compartments for mammalian cell engineering. Nature Communications, 9 ( 1 ), 1990. https://doi.org/10.1038/s41467-018-04227-3 | |
dc.identifier.citedreference | Sigmund, F., Pettinger, S., Kube, M., Schneider, F., Schifferer, M., Schneider, S., … Westmeyer, G. G. ( 2019 ). Iron‐sequestering nanocompartments as multiplexed electron microscopy gene reporters. ACS Nano, 13 ( 7 ), 8114 – 8123. https://doi.org/10.1021/acsnano.9b03140 | |
dc.identifier.citedreference | Slininger Lee, M. F., Jakobson, C. M., & Tullman‐Ercek, D. ( 2017 ). Evidence for improved encapsulated pathway behavior in a bacterial microcompartment through Shell protein engineering. ACS Synthetic Biology, 6 ( 10 ), 1880 – 1891. https://doi.org/10.1021/acssynbio.7b00042 | |
dc.identifier.citedreference | Sonotaki, S., Takami, T., Noguchi, K., Odaka, M., Yohda, M., & Murakami, Y. ( 2017 ). Successful PEGylation of hollow encapsulin nanoparticles from rhodococcus erythropolis N771 without affecting their disassembly and reassembly properties. Biomaterials Science, 5 ( 6 ), 1082 – 1089. https://doi.org/10.1039/c7bm00207f | |
dc.identifier.citedreference | Staller, M. V., Holehouse, A. S., Swain‐Lenz, D., Das, R. K., Pappu, R. V., & Cohen, B. A. ( 2018 ). A high‐throughput mutational scan of an intrinsically disordered acidic transcriptional activation domain. Cell Systems, 6 ( 4 ), 444 – 455. https://doi.org/10.1016/j.cels.2018.01.015 | |
dc.identifier.citedreference | Sun, M., Li, Z., Wang, S., Maryu, G., & Yang, Q. ( 2019 ). Building dynamic cellular machineries in droplet‐based artificial cells with single‐droplet tracking and analysis. Analytical Chemistry, 91 ( 15 ), 9813 – 9818. https://doi.org/10.1021/acs.analchem.9b01481 | |
dc.identifier.citedreference | Surovtsev, I. V., & Jacobs‐Wagner, C. ( 2018 ). Subcellular organization: A critical feature of bacterial cell replication. Cell. Cell Press, 172, 1271 – 1293. https://doi.org/10.1016/j.cell.2018.01.014 | |
dc.identifier.citedreference | Sutter, M., Boehringer, D., Gutmann, S., Günther, S., Prangishvili, D., Loessner, M. J., … Ban, N. ( 2008 ). Structural basis of enzyme encapsulation into a bacterial Nanocompartment. Nature Structural and Molecular Biology, 15 ( 9 ), 939 – 947. https://doi.org/10.1038/nsmb.1473 | |
dc.identifier.citedreference | Sutter, M., Greber, B., Aussignargues, C., & Kerfeld, C. A. ( 2017 ). Assembly principles and structure of a 6.5‐MDa bacterial microcompartment Shell. Science (New York, N.Y.), 356 ( 6344 ), 1293 – 1297. https://doi.org/10.1126/science.aan3289 | |
dc.identifier.citedreference | Swank, Z., Laohakunakorn, N., & Maerkl, S. J. ( 2019 ). Cell‐free gene‐regulatory network engineering with synthetic transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 116 ( 13 ), 5892 – 5901. https://doi.org/10.1073/pnas.1816591116 | |
dc.identifier.citedreference | Szwedziak, P., & Ghosal, D. ( 2017 ). FtsZ‐ring architecture and its control by MinCD. Sub‐Cellular Biochemistry, 84, 213 – 244. https://doi.org/10.1007/978-3-319-53047-5_7 | |
dc.identifier.citedreference | Szwedziak, P., Wang, Q., Bharat, T. A. M., Tsim, M., & Löwe, J. ( 2014 ). Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. eLife, 3 ( December ), e04601. https://doi.org/10.7554/eLife.04601 | |
dc.identifier.citedreference | Tamura, A., Fukutani, Y., Takami, T., Fujii, M., Nakaguchi, Y., Murakami, Y., … Odaka, M. ( 2015 ). Packaging guest proteins into the encapsulin nanocompartment from rhodococcus erythropolis N771. Biotechnology and Bioengineering, 112 ( 1 ), 13 – 20. https://doi.org/10.1002/bit.25322 | |
dc.identifier.citedreference | Tanaka, S., Kerfeld, C. A., Sawaya, M. R., Cai, F., Heinhorst, S., Cannon, G. C., & Yeates, T. O. ( 2008 ). Atomic‐level models of the bacterial carboxysome Shell. Science, 319 ( 5866 ), 1083 – 1086. https://doi.org/10.1126/science.1151458 | |
dc.identifier.citedreference | Tayar, A. M., Karzbrun, E., Noireaux, V., & Bar‐Ziv, R. H. ( 2017 ). Synchrony and pattern formation of coupled genetic oscillators on a Chip of artificial cells. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 44 ), 11609 – 11614. https://doi.org/10.1073/pnas.1710620114 | |
dc.identifier.citedreference | Thiennimitr, P., Winter, S. E., Winter, M. G., Xavier, M. N., Tolstikov, V., Huseby, D. L., … Bäumler, A. J. ( 2011 ). Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proceedings of the National Academy of Sciences of the United States of America, 108 ( 42 ), 17480 – 17485. https://doi.org/10.1073/pnas.1107857108 | |
dc.identifier.citedreference | Thompson, J. F., & Landy, A. ( 1988 ). Empirical estimation of protein‐induced DNA bending angles: Applications to λ site‐specific recombination complexes. Nucleic Acids Research, 16 ( 20 ), 9687 – 9705. https://doi.org/10.1093/nar/16.20.9687 | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.