Show simple item record

CCL25 and CCR9 is a unique pathway that potentiates pannus formation by remodeling RA macrophages into mature osteoclasts

dc.contributor.authorUmar, Sadiq
dc.contributor.authorPalasiewicz, Karol
dc.contributor.authorVan Raemdonck, Katrien
dc.contributor.authorVolin, Michael V.
dc.contributor.authorRomay, Bianca
dc.contributor.authorAhmad, Imran
dc.contributor.authorTetali, Chandana
dc.contributor.authorSweiss, Nadera
dc.contributor.authorAmin, M Asif
dc.contributor.authorZomorrodi, Ryan K
dc.contributor.authorShahrara, Shiva
dc.date.accessioned2021-05-12T17:22:12Z
dc.date.available2022-05-12 13:22:10en
dc.date.available2021-05-12T17:22:12Z
dc.date.issued2021-04
dc.identifier.citationUmar, Sadiq; Palasiewicz, Karol; Van Raemdonck, Katrien; Volin, Michael V.; Romay, Bianca; Ahmad, Imran; Tetali, Chandana; Sweiss, Nadera; Amin, M Asif; Zomorrodi, Ryan K; Shahrara, Shiva (2021). "CCL25 and CCR9 is a unique pathway that potentiates pannus formation by remodeling RA macrophages into mature osteoclasts." European Journal of Immunology 51(4): 903-914.
dc.identifier.issn0014-2980
dc.identifier.issn1521-4141
dc.identifier.urihttps://hdl.handle.net/2027.42/167430
dc.description.abstractThis study elucidates the mechanism of CCL25 and CCR9 in rheumatoid arthritis (RA). RA synovial fluid (SF) expresses elevated levels of CCL25 compared to OA SF and plasma from RA and normal. CCL25 was released into RA SF by fibroblasts (FLS) and macrophages (MΦs) stimulated with IL‐1β and IL‐6. CCR9 is also presented on IL‐1β and IL‐6 activated RA FLS and differentiated MΦs. Conversely, in RA PBMCs neither CCL25 nor CCR9 are impacted by 3‐month longitudinal TNF inhibitor therapy. CCL25 amplifies RA FLS and monocyte infiltration via p38 and ERK phosphorylation. CCL25‐stimulated RA FLS secrete potentiated levels of IL‐8 which is disrupted by p38 and ERK inhibitors. CCL25 polarizes RA monocytes into nontraditional M1 MΦs that produce IL‐8 and CCL2. Activation of p38 and ERK cascades are also responsible for the CCL25‐induced M1 MΦ development. Unexpectedly, CCL25 was unable to polarize RA PBMCs into effector Th1/Th17 cells. Consistently, lymphokine like RANKL was uninvolved in CCL25‐induced osteoclastogenesis; however, this manifestation was regulated by osteoclastic factors such as RANK, cathepsin K (CTSK), and TNF‐α. In short, we reveal that CCL25/CCR9 manipulates RA FLS and MΦ migration and inflammatory phenotype in addition to osteoclast formation via p38 and ERK activation.Rheumatoid arthritis synovial fluid (RA SF) express markedly higher levels of CCL25 compared to osteoarthritis (OA) SF. We found that CCL25 is secreted from RA fibroblast like synoviocytes (FLS) and macrophages in response to IL‐1β and IL‐6 activation. Moreover, RA FLS and monocyte infiltration is potentiated by CCL25 through ERK and p38 phosphorylation. Extending these observations, inhibition of ERK and p38 pathways interferes with CCL25‐induced inflammatory phenotype in RA FLS and macrophages as well as its ability to promote osteoclastogenesis.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherFibroblasts
dc.subject.otherMacrophages
dc.subject.otherCCL25
dc.subject.otherCCR9
dc.subject.otherRA
dc.titleCCL25 and CCR9 is a unique pathway that potentiates pannus formation by remodeling RA macrophages into mature osteoclasts
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167430/1/eji4976.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167430/2/eji4976-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167430/3/eji4976_am.pdf
dc.identifier.doi10.1002/eji.202048681
dc.identifier.sourceEuropean Journal of Immunology
dc.identifier.citedreferenceChu, P. S., Nakamoto, N., Ebinuma, H., Usui, S., Saeki, K., Matsumoto, A., Mikami, Y. et al., C‐C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology 2013. 58: 337 – 350.
dc.identifier.citedreferenceAmersi, F. F., Terando, A. M., Goto, Y., Scolyer, R. A., Thompson, J. F., Tran, A. N., Faries, M. B. et al., Activation of CCR9/CCL25 in cutaneous melanoma mediates preferential metastasis to the small intestine. Clin. Cancer Res. 2008. 14: 638 – 645.
dc.identifier.citedreferenceSingh, R., Stockard, C. R., Grizzle, W. E., Lillard, J. W., Jr. and Singh, S., Expression and histopathological correlation of CCR9 and CCL25 in ovarian cancer. Int. J. Oncol. 2011. 39: 373 – 381.
dc.identifier.citedreferenceTu, Z., Xiao, R., Xiong, J., Tembo, K. M., Deng, X., Xiong, M., Liu, P. et al., CCR9 in cancer: oncogenic role and therapeutic targeting. J. Hematol. Oncol. 2016. 9: 10.
dc.identifier.citedreferenceJohnson‐Holiday, C., Singh, R., Johnson, E. L., Grizzle, W. E., Lillard, J. W., Jr. and Singh, S., CCR9‐CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K‐dependent and FAK‐independent fashion. World J. Surg. Oncol. 2011. 9: 46.
dc.identifier.citedreferenceChen, H. J., Edwards, R., Tucci, S., Bu, P., Milsom, J., Lee, S., Edelmann, W. et al., Chemokine 25‐induced signaling suppresses colon cancer invasion and metastasis. J. Clin. Invest. 2012. 122: 3184 – 3196.
dc.identifier.citedreferenceEndres, M., Andreas, K., Kalwitz, G., Freymann, U., Neumann, K., Ringe, J., Sittinger, M. et al., Chemokine profile of synovial fluid from normal, osteoarthritis and rheumatoid arthritis patients: CCL25, CXCL10 and XCL1 recruit human subchondral mesenchymal progenitor cells. Osteoarthritis Cartilage 2010. 18: 1458 – 1466.
dc.identifier.citedreferenceZabel, B. A., Agace, W. W., Campbell, J. J., Heath, H. M., Parent, D., Roberts, A. I., Ebert, E. C. et al., Human G protein‐coupled receptor GPR‐9‐6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus‐expressed chemokine‐mediated chemotaxis. J. Exp. Med. 1999. 190: 1241 – 1256.
dc.identifier.citedreferenceZhou, B., Leng, J., Hu, M., Zhang, L., Wang, Z., Liu, D., Tong, X. et al., Ezrin is a key molecule in the metastasis of MOLT4 cells induced by CCL25/CCR9. Leuk. Res. 2010. 34: 769 – 776.
dc.identifier.citedreferenceHeinrich, E. L., Arrington, A. K., Ko, M. E., Luu, C., Lee, W., Lu, J. and Kim, J., Paracrine activation of chemokine receptor CCR9 enhances the invasiveness of pancreatic cancer cells. Cancer Microenviron. 2013. 6: 241 – 245.
dc.identifier.citedreferenceOmland, S. H., Wettergren, E. E., Mollerup, S., Asplund, M., Mourier, T., Hansen, A. J. and Gniadecki, R., Cancer associated fibroblasts (CAFs) are activated in cutaneous basal cell carcinoma and in the peritumoural skin. BMC Cancer 2017. 17: 675.
dc.identifier.citedreferenceMizukami, T., Kanai, T., Mikami, Y., Hayashi, A., Doi, T., Handa, T., Matsumoto, A. et al., CCR9+ macrophages are required for eradication of peritoneal bacterial infections and prevention of polymicrobial sepsis. Immunol. Lett. 2012. 147: 75 – 79.
dc.identifier.citedreferenceNakamoto, N., Ebinuma, H., Kanai, T., Chu, P. S., Ono, Y., Mikami, Y., Ojiro, K. et al., CCR9+ macrophages are required for acute liver inflammation in mouse models of hepatitis. Gastroenterology 2012. 142: 366 – 376.
dc.identifier.citedreferencePark, C., Cheung, K. P., Limon, N., Costanzo, A., Barba, C., Miranda, N., Gargas, S. et al., Obesity modulates intestinal intraepithelial T cell persistence, CD103 and CCR9 expression, and outcome in dextran sulfate sodium‐induced colitis. J. Immunol. 2019. 203: 3427 – 3435.
dc.identifier.citedreferenceIgaki, K., Komoike, Y., Nakamura, Y., Watanabe, T., Yamasaki, M., Fleming, P., Yang, L. et al., MLN3126, an antagonist of the chemokine receptor CCR9, ameliorates inflammation in a T‐cell mediated mouse colitis model. Int. Immunopharmacol. 2018. 60: 160 – 169.
dc.identifier.citedreferenceQiuping, Z., Jei, X., Youxin, J., Wei, J., Chun, L., Jin, W., Qun, W. et al., CC chemokine ligand 25 enhances resistance to apoptosis in CD4+ T cells from patients with T‐cell lineage acute and chronic lymphocytic leukemia by means of livin activation. Cancer Res. 2004. 64: 7579 – 7587.
dc.identifier.citedreferenceOhoka, Y., Yokota, A., Takeuchi, H., Maeda, N. and Iwata, M., Retinoic acid‐induced CCR9 expression requires transient TCR stimulation and cooperativity between NFATc2 and the retinoic acid receptor/retinoid X receptor complex. J. Immunol. 2011. 186: 733 – 744.
dc.identifier.citedreferenceQiuping, Z., Qun, L., Chunsong, H., Xiaolian, Z., Baojun, H., Mingzhen, Y., Chengming, L. et al., Selectively increased expression and functions of chemokine receptor CCR9 on CD4+ T cells from patients with T‐cell lineage acute lymphocytic leukemia. Cancer Res. 2003. 63: 6469 – 6477.
dc.identifier.citedreferenceSchmutz, C., Cartwright, A., Williams, H., Haworth, O., Williams, J. H., Filer, A., Salmon, M. et al., Monocytes/macrophages express chemokine receptor CCR9 in rheumatoid arthritis and CCL25 stimulates their differentiation. Arthritis Res. Ther. 2010. 12: R161.
dc.identifier.citedreferenceKunkel, E. J., Campbell, D. J. and Butcher, E. C., Chemokines in lymphocyte trafficking and intestinal immunity. Microcirculation. 2003. 10: 313 – 323.
dc.identifier.citedreferenceLi, B., Wang, Z., Zhong, Y., Lan, J., Li, X. and Lin, H., CCR9‐CCL25 interaction suppresses apoptosis of lung cancer cells by activating the PI3K/Akt pathway. Med. Oncol. 2015. 32: 66.
dc.identifier.citedreferenceSharma, P. K., Singh, R., Novakovic, K. R., Eaton, J. W., Grizzle, W. E. and Singh, S., CCR9 mediates PI3K/AKT‐dependent antiapoptotic signals in prostate cancer cells and inhibition of CCR9‐CCL25 interaction enhances the cytotoxic effects of etoposide. Int. J. Cancer 2010. 127: 2020 – 2030.
dc.identifier.citedreferenceHuang, Y., Wang, D., Wang, X., Zhang, Y., Liu, T., Chen, Y., Tang, Y. et al., Abrogation of CC chemokine receptor 9 ameliorates ventricular remodeling in mice after myocardial infarction. Sci. Rep. 2016. 6: 32660.
dc.identifier.citedreferenceUnderhill, D. M., Macrophage recognition of zymosan particles. J. Endotoxin. Res. 2003. 9: 176 – 180.
dc.identifier.citedreferenceArnett, F. C., Edworthy, S. M., Bloch, D. A., McShane, D. J., Fries, J. F., Cooper, N. S., Healey, L. A. et al., The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988. 31: 315 – 324.
dc.identifier.citedreferencePickens, S. R., Chamberlain, N. D., Volin, M. V., Pope, R. M., Talarico, N. E., Mandelin, A. M., 2nd and Shahrara, S., Characterization of interleukin‐7 and interleukin‐7 receptor in the pathogenesis of rheumatoid arthritis. Arthritis Rheum. 2011. 63: 2884 – 2893.
dc.identifier.citedreferencePickens, S. R., Chamberlain, N. D., Volin, M. V., Pope, R. M., Mandelin, A. M., 2nd and Shahrara, S., Characterization of CCL19 and CCL21 in rheumatoid arthritis. Arthritis Rheum. 2011. 63: 914 – 922.
dc.identifier.citedreferenceElshabrawy, H. A., Volin, M. V., Essani, A. B., Chen, Z., McInnes, I. B., Van Raemdonck, K., Palasiewicz, K. et al., IL‐11 facilitates a novel connection between RA joint fibroblasts and endothelial cells. Angiogenesis 2018. 21: 215 – 228.
dc.identifier.citedreferenceChamberlain, N. D., Vila, O. M., Volin, M. V., Volkov, S., Pope, R. M., Swedler, W., Mandelin, A. M., 2nd et al., TLR5, a novel and unidentified inflammatory mediator in rheumatoid arthritis that correlates with disease activity score and joint TNF‐alpha levels. J. Immunol. 2012. 189: 475 – 483.
dc.identifier.citedreferenceMorgan, R., Endres, J., Behbahani‐Nejad, N., Phillips, K., Ruth, J. H., Friday, S. C. et al., Expression and function of aminopeptidase N/CD13 produced by fibroblast‐like synoviocytes in rheumatoid arthritis: role of CD13 in chemotaxis of cytokine‐activated T cells independent of enzymatic activity. Arthritis Rheumatol. 2015. 67: 74 – 85.
dc.identifier.citedreferenceKim, S. J., Chen, Z., Chamberlain, N. D., Essani, A. B., Volin, M. V., Amin, M. A., Volkov, S. et al., Ligation of TLR5 promotes myeloid cell infiltration and differentiation into mature osteoclasts in rheumatoid arthritis and experimental arthritis. J. Immunol. 2014. 193: 3902 – 3913.
dc.identifier.citedreferenceKim, S. J., Chang, H. J., Volin, M. V., Umar, S., Van Raemdonck, K., Chevalier, A., Palasiewicz, K. et al., Macrophages are the primary effector cells in IL‐7‐induced arthritis. Cellular Molecular Immunol. 2019. 17: 728 – 740.
dc.identifier.citedreferenceVan Raemdonck, K., Umar, S., Palasiewicz, K., Volkov, S., Volin, M. V., Arami, S., Chang, H. J. et al., CCL21/CCR7 signaling in macrophages promotes joint inflammation and Th17‐mediated osteoclast formation in rheumatoid arthritis. Cell. Mol. Life Sci. 2019. 77: 1387 – 1399.
dc.identifier.citedreferenceBrennan, F. M. and McInnes, I. B., Evidence that cytokines play a role in rheumatoid arthritis. J. Clin. Invest. 2008. 118: 3537 – 3545.
dc.identifier.citedreferenceMcInnes, I. B. and Schett, G., The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011. 365: 2205 – 2219.
dc.identifier.citedreferencePapadakis, K. A., Prehn, J., Nelson, V., Cheng, L., Binder, S. W., Ponath, P. D., Andrew, D. P. et al., The role of thymus‐expressed chemokine and its receptor CCR9 on lymphocytes in the regional specialization of the mucosal immune system. J. Immunol. 2000. 165: 5069 – 5076.
dc.identifier.citedreferenceStenstad, H., Svensson, M., Cucak, H., Kotarsky, K. and Agace, W. W., Differential homing mechanisms regulate regionalized effector CD8alphabeta+ T cell accumulation within the small intestine. Proc. Natl. Acad. Sci. USA. 2007. 104: 10122 – 10127.
dc.identifier.citedreferenceSvensson, M., Marsal, J., Ericsson, A., Carramolino, L., Broden, T., Marquez, G. and Agace, W. W., CCL25 mediates the localization of recently activated CD8alphabeta(+) lymphocytes to the small‐intestinal mucosa. J. Clin. Invest. 2002. 110: 1113 – 1121.
dc.identifier.citedreferenceWendland, M., Czeloth, N., Mach, N., Malissen, B., Kremmer, E., Pabst, O. and Forster, R., CCR9 is a homing receptor for plasmacytoid dendritic cells to the small intestine. Proc. Natl. Acad. Sci. USA 2007. 104: 6347 – 6352.
dc.identifier.citedreferenceTrivedi, P. J., Bruns, T., Ward, S., Mai, M., Schmidt, C., Hirschfield, G. M., Weston, C. J. and Adams, D. H., Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity. J. Autoimmun. 2016. 68: 98 – 104.
dc.identifier.citedreferenceZheng, L., Zhang, X., Chen, J., Ichikawa, R., Wallace, K., Pothoulakis, C., Koon, H. W. et al., Sustained Tl1a (Tnfsf15) expression on both lymphoid and myeloid cells leads to mild spontaneous intestinal inflammation and fibrosis. Eur. J. Microbiol. Immunol. (Bp) 2013. 3: 11 – 20.
dc.identifier.citedreferenceZhang, Y., Han, J., Wu, M., Xu, L., Wang, Y., Yuan, W., Hua, F. et al., Toll‐like receptor 4 promotes Th17 lymphocyte infiltration via CCL25/CCR9 in pathogenesis of experimental autoimmune encephalomyelitis. J. Neuroimmune Pharmacol. 2019. 14: 493 – 502.
dc.identifier.citedreferenceWurbel, M. A., McIntire, M. G., Dwyer, P. and Fiebiger, E., CCL25/CCR9 interactions regulate large intestinal inflammation in a murine model of acute colitis. PLoS One 2011. 6: e16442.
dc.identifier.citedreferencePapadakis, K. A., Prehn, J., Moreno, S. T., Cheng, L., Kouroumalis, E. A., Deem, R., Breaverman, T. et al., CCR9‐positive lymphocytes and thymus‐expressed chemokine distinguish small bowel from colonic Crohn’s disease. Gastroenterology. 2001. 121: 246 – 254.
dc.identifier.citedreferenceSaruta, M., Yu, Q. T., Avanesyan, A., Fleshner, P. R., Targan, S. R. and Papadakis, K. A., Phenotype and effector function of CC chemokine receptor 9‐expressing lymphocytes in small intestinal Crohn’s disease. J. Immunol. 2007. 178: 3293 – 3300.
dc.identifier.citedreferenceMcGrory, K., Flaitz, C. M. and Klein, J. R., Chemokine changes during oral wound healing. Biochem. Biophys. Res. Commun. 2004. 324: 317 – 320.
dc.identifier.citedreferenceOtten, K., Dragoo, J., Wang, H. C. and Klein, J. R., Antigen‐induced chemokine activation in mouse buccal epithelium. Biochem. Biophys. Res. Commun. 2003. 304: 36 – 40.
dc.identifier.citedreferenceBlokland, S. L. M., Hillen, M. R., Kruize, A. A., Meller, S., Homey, B., Smithson, G. M., Radstake, T. et al., Increased CCL25 and T helper cells expressing CCR9 in the salivary glands of patients with primary Sjogren’s syndrome: potential new axis in lymphoid neogenesis. Arthritis Rheumatol. 2017. 69: 2038 – 2051.
dc.identifier.citedreferenceYokoyama, W., Kohsaka, H., Kaneko, K., Walters, M., Takayasu, A., Fukuda, S., Miyabe, C. et al., Abrogation of CC chemokine receptor 9 ameliorates collagen‐induced arthritis of mice. Arthritis Res. Ther. 2014. 16: 445.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.