Show simple item record

Unraveling the Li Penetration Mechanism in Polycrystalline Solid Electrolytes

dc.contributor.authorTantratian, Karnpiwat
dc.contributor.authorYan, Hanghang
dc.contributor.authorEllwood, Kevin
dc.contributor.authorHarrison, Elisa T.
dc.contributor.authorChen, Lei
dc.date.accessioned2021-05-12T17:22:24Z
dc.date.available2022-05-12 13:22:22en
dc.date.available2021-05-12T17:22:24Z
dc.date.issued2021-04
dc.identifier.citationTantratian, Karnpiwat; Yan, Hanghang; Ellwood, Kevin; Harrison, Elisa T.; Chen, Lei (2021). "Unraveling the Li Penetration Mechanism in Polycrystalline Solid Electrolytes." Advanced Energy Materials 11(13): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/167435
dc.description.abstractLithium dendrite penetration has been widely evidenced in ceramic solid electrolytes (SEs), which are expected to suppress Li dendrite formation due to their ultrahigh elastic modulus. This work aims to reveal the mechanism of Li penetration in polycrystalline SEs through electro‐chemo‐mechanical phase‐field model, using Li7La3Zr2O12 (LLZO) as the model material. The results show the Li penetration patterns are influenced by both mechanical and electronic properties of the microstructures, i.e., grain boundaries (GBs). Li nucleates at the GB junctions on the Li/SE interface and propagates along the GB, at which the interfacial compressive stress is small due to the GB softening. Moreover, the excess trapped electrons at the GB may trigger isolated Li nucleation sites, abruptly increasing the Li penetration depth. High‐throughput simulations yield a phase map of Li penetration patterns under different trapped electrons concentrations and GB/grain elastic modulus mismatch. The map can quantitatively inform whether the mechanical or electronic properties dominate Li penetration morphologies, providing a strategy for the design of improved SE materials.The mechanism of lithium penetration in polycrystalline solid electrolytes is revealed through the electro‐chemo‐mechanical phase‐field model. Lithium penetration behaviors are influenced by both mechanical and electronic properties of the grain boundaries (GBs). The GB softening controls lithium nucleation at the electrode surface and the growth mechanism, while the trapped electrons in the GB govern the isolated lithium nucleation.
dc.publisherWorld Scientific Publishing
dc.publisherWiley Periodicals, Inc.
dc.subject.otherphase‐field simulation
dc.subject.othersolid‐state electrolytes
dc.subject.otherlithium metal anodes
dc.subject.otherlithium dendrite penetration
dc.subject.otherLLZO
dc.titleUnraveling the Li Penetration Mechanism in Polycrystalline Solid Electrolytes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167435/1/aenm202003417_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167435/2/aenm202003417.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167435/3/aenm202003417-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/aenm.202003417
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceĖ. M. Gutman, Mechanochemistry of Solid Surfaces, World Scientific Publishing, Singapore 1994.
dc.identifier.citedreferenceT. Ohzuku, J. Electrochem. Soc. 2006, 140, 2490.
dc.identifier.citedreferenceC. Monroe, J. Newman, J. Electrochem. Soc. 2005, 152, A396.
dc.identifier.citedreferenceL. Fan, S. Wei, S. Li, Q. Li, Y. Lu, Adv. Energy Mater. 2018, 8, 1702657.
dc.identifier.citedreferenceF. Zhang, Q. A. Huang, Z. Tang, A. Li, Q. Shao, L. Zhang, X. Li, J. Zhang, Nano Energy 2020, 70, 104545.
dc.identifier.citedreferenceD. Cao, X. Sun, Q. Li, A. Natan, P. Xiang, H. Zhu, Matter 2020, 3, 57.
dc.identifier.citedreferenceE. J. Cheng, A. Sharafi, J. Sakamoto, Electrochim. Acta 2017, 223, 85.
dc.identifier.citedreferenceS. Ozkan, G. Cha, A. Mazare, P. Schmuki, Nanotechnology 2018, 29, 195402.
dc.identifier.citedreferenceE. Kazyak, R. Garcia‐Mendez, W. S. LePage, A. Sharafi, A. L. Davis, A. J. Sanchez, K.‐H. Chen, C. Haslam, J. Sakamoto, N. P. Dasgupta, Matter 2020, 2, 1025.
dc.identifier.citedreferenceH. Ye, S. Xin, Y. X. Yin, Y. G. Guo, Adv. Energy Mater. 2017, 7, 1700530.
dc.identifier.citedreferenceK. B. Hatzell, X. C. Chen, C. L. Cobb, N. P. Dasgupta, M. B. Dixit, L. E. Marbella, M. T. McDowell, P. P. Mukherjee, A. Verma, V. Viswanathan, A. S. Westover, W. G. Zeier, ACS Energy Lett. 2020, 5, 922.
dc.identifier.citedreferenceL. Porz, T. Swamy, B. W. Sheldon, D. Rettenwander, T. Frömling, H. L. Thaman, S. Berendts, R. Uecker, W. C. Carter, Y. M. Chiang, Adv. Energy Mater. 2017, 7, 1701003.
dc.identifier.citedreferenceA. S. Westover, N. J. Dudney, R. L. Sacci, S. Kalnaus, ACS Energy Lett. 2019, 4, 651.
dc.identifier.citedreferenceG. Bucci, J. Christensen, J. Power Sources 2019, 441, 227186.
dc.identifier.citedreferenceY. Qi, C. Ban, S. J. Harris, Joule 2020, 4, 2599.
dc.identifier.citedreferenceP. Barai, A. T. Ngo, B. Narayanan, K. Higa, L. A. Curtiss, V. Srinivasan, J. Electrochem. Soc. 2020, 167, 100537.
dc.identifier.citedreferenceP. Barai, K. Higa, A. T. Ngo, L. A. Curtiss, V. Srinivasan, J. Electrochem. Soc. 2019, 166, A1752.
dc.identifier.citedreferenceA. Mistry, P. P. Mukherjee, J. Electrochem. Soc. 2020, 167, 082510.
dc.identifier.citedreferenceS. Yu, D. J. Siegel, ACS Appl. Mater. Interfaces 2018, 10, 38151.
dc.identifier.citedreferenceF. Han, A. S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. N. Leonard, N. J. Dudney, H. Wang, C. Wang, Nat. Energy 2019, 4, 187.
dc.identifier.citedreferenceH. K. Tian, Z. Liu, Y. Ji, L. Q. Chen, Y. Qi, Chem. Mater. 2019, 31, 7351.
dc.identifier.citedreferenceH. K. Tian, B. Xu, Y. Qi, J. Power Sources 2018, 392, 79.
dc.identifier.citedreferenceY. Song, L. Yang, W. Zhao, Z. Wang, Y. Zhao, Z. Wang, Q. Zhao, H. Liu, F. Pan, Adv. Energy Mater. 2019, 9, 1900671.
dc.identifier.citedreferenceY. Chen, Z. Wang, X. Li, X. Yao, C. Wang, Y. Li, W. Xue, D. Yu, S. Y. Kim, F. Yang, A. Kushima, G. Zhang, H. Huang, N. Wu, Y. W. Mai, J. B. Goodenough, J. Li, Nature 2020, 578, 251.
dc.identifier.citedreferenceX. Zhang, Q. J. Wang, K. L. Harrison, S. A. Roberts, S. J. Harris, Cell Rep. Phys. Sci. 2020, 1, 100012.
dc.identifier.citedreferenceA. Ferrese, J. Newman, J. Electrochem. Soc. 2014, 161, A1350.
dc.identifier.citedreferenceM. Ganser, F. E. Hildebrand, M. Klinsmann, M. Hanauer, M. Kamlah, R. M. McMeeking, J. Electrochem. Soc. 2019, 166, H167.
dc.identifier.citedreferenceP. Barai, K. Higa, V. Srinivasan, Phys. Chem. Chem. Phys. 2017, 19, 20493.
dc.identifier.citedreferenceS. Sarkar, W. Aquino, Electrochim. Acta 2013, 111, 814.
dc.identifier.citedreferenceP. Wang, W. Qu, W. L. Song, H. Chen, R. Chen, D. Fang, Adv. Funct. Mater. 2019, 29, 1900950.
dc.identifier.citedreferenceW. S. LePage, Y. Chen, E. Kazyak, K.‐H. Chen, A. J. Sanchez, A. Poli, E. M. Arruda, M. D. Thouless, N. P. Dasgupta, J. Electrochem. Soc. 2019, 166, A89.
dc.identifier.citedreferenceX. Zhang, Q. Xiang, S. Tang, A. Wang, X. Liu, J. Luo, Nano Lett. 2020, 20, 2871.
dc.identifier.citedreferenceQ. Tu, L. Barroso‐Luque, T. Shi, G. Ceder, Cell Rep. Phys. Sci. 2020, 1, 100106.
dc.identifier.citedreferenceA. Verma, H. Kawkami, H. Wada, A. Hirowatari, N. Ikeda, Y. Mizuno, T. Kotaka, K. Aotani, Y. Tabuchi, P. Mukherjee, Cell Rep. Phys. Sci. 2021, 2, 100301.
dc.identifier.citedreferenceA. Sharafi, H. M. Meyer, J. Nanda, J. Wolfenstine, J. Sakamoto, J. Power Sources 2016, 302, 135.
dc.identifier.citedreferenceW. L. Huang, N. Zhao, Z. J. Bi, C. Shi, X. X. Guo, L. Z. Fan, C. W. Nan, Mater. Today Nano 2020, 10, 100075.
dc.identifier.citedreferenceF. Zheng, M. Kotobuki, S. Song, M. O. Lai, L. Lu, J. Power Sources 2018, 389, 198.
dc.identifier.citedreferenceM. Armand, J.‐M. Tarascon, Nature 2008, 451, 652.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.