Show simple item record

Comprehensive review of nonisolated bridgeless power factor converter topologies

dc.contributor.authorSingh, Ankit Kumar
dc.contributor.authorMishra, Anjanee Kumar
dc.contributor.authorGupta, Krishna Kumar
dc.contributor.authorKim, Taehyung
dc.date.accessioned2021-05-12T17:23:22Z
dc.date.available2022-06-12 13:23:20en
dc.date.available2021-05-12T17:23:22Z
dc.date.issued2021-05
dc.identifier.citationSingh, Ankit Kumar; Mishra, Anjanee Kumar; Gupta, Krishna Kumar; Kim, Taehyung (2021). "Comprehensive review of nonisolated bridgeless power factor converter topologies." IET Circuits, Devices & Systems 15(3): 197-208.
dc.identifier.issn1751-858X
dc.identifier.issn1751-8598
dc.identifier.urihttps://hdl.handle.net/2027.42/167457
dc.description.abstractThe intention of this study is to provide a critical review of single‐phase nonisolated bridgeless power factor converter topologies, which will be useful for novice researchers in the power electronics field. The bridgeless nature of the converter reduces the number of switching devices in the current path and achieves higher efficiency. Nonisolated topologies are considered in this review due to the inherent advantages they offer such as lower cost, weight and size and higher efficiency, which are desirable for systems such as on‐board electric vehicle battery chargers, direct current power supplies and variable speed drives. These topologies are derived from conventional boost, buck and buck/boost converters. Moreover, the topologies can be operated in continuous or discontinuous conduction modes subject to their applications. Each topology is described in terms of its advantages and limitations. In addition, a comparative study is conducted for each group (boost, buck and buck/boost).
dc.publisherIEEE
dc.publisherWiley Periodicals, Inc.
dc.titleComprehensive review of nonisolated bridgeless power factor converter topologies
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelComputer Science
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167457/1/cds212046_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167457/2/cds212046.pdf
dc.identifier.doi10.1049/cds2.12046
dc.identifier.sourceIET Circuits, Devices & Systems
dc.identifier.citedreferencede Souza, A.F., Barbi, I.: A new ZCS quasi‐resonant unity power factor rectifier with reduced conduction losses. Proceedings of PESC ’95‐ power electronics specialist conference, vol. 2, pp. 1171 – 1177. IEEE, Atlanta ( 1995 )
dc.identifier.citedreferenceYang, J.W., Do, H.L.: Bridgeless SEPIC converter with a ripple‐free input current. IEEE Trans. Power Electron. 28 ( 7 ), 3388 – 3394 ( 2013 )
dc.identifier.citedreferenceBist, V., Singh, B.: An adjustable‐speed PFC bridgeless buck‐boost converter‐fed BLDC motor drive. IEEE Trans. Ind. Electron. 61 ( 6 ), 2665 – 2677. Johor ( 2014 )
dc.identifier.citedreferenceKong, P.Y., et al.: A bridgeless PFC converter for on‐board battery charger. In: IEEE conference on energy conversion, pp. 383 – 388. CENCON. IEEE, Johor Bahru ( 2014 )
dc.identifier.citedreferenceDusmez, S., Khaligh, A.: A charge‐nonlinear‐carrier‐controlled reduced‐part single‐stage integrated power electronics interface for automotive applications. IEEE Trans. Veh. Technol. 63 ( 3 ), 1091 – 1103 ( 2014 )
dc.identifier.citedreferenceKong, P., Wang, S., Lee, F.C.: Common mode EMI noise suppression for bridgeless PFC converters. IEEE Trans. Power Electron. 23 ( 1 ), 291 – 297 ( 2008 )
dc.identifier.citedreferenceSingh, B., et al.: Comprehensive study of single‐phase AC‐DC power factor corrected converters with high‐frequency isolation. IEEE Trans. Industr. Inform. 7 ( 4 ), 540 – 556 ( 2011 ). Haddad
dc.identifier.citedreferencede Souza, A.F., Barbi, I.: A new ZVS‐PWM unity power factor rectifier with reduced conduction losses. IEEE Trans. Power Electron. 10 ( 6 ), 746 – 752 ( 1995 )
dc.identifier.citedreferenceWang, C.M.: A novel zero‐voltage‐switching PWM boost rectifier with high power factor and low conduction losses. IEEE Trans. Ind. Electron. 52 ( 2 ), 427 – 435 ( 2005 )
dc.identifier.citedreferenceWang, C.M.: A novel ZCS‐PWM power‐factor preregulator with reduced conduction losses. IEEE Trans. Indus. Electron. 52 ( 3 ), 689 – 700 ( 2005 )
dc.identifier.citedreferenceKim, I., Bose, B.K.: New ZCS turn‐on and ZVS turn‐off unity power factor PWM rectifier with reduced conduction loss and no auxiliary switches. IEE Proc. – Electr. Power Appl. 147 ( 2 ), 146 – 152. Fukuoka ( 2000 )
dc.identifier.citedreferenceZhao, B., Abramovitz, A., Smedley, K.: Family of bridgeless buck‐boost PFC rectifiers. IEEE Trans. Power Electron. 30 ( 12 ), 6524 – 6527 ( 2015 )
dc.identifier.citedreferenceTse, C.K., Chow, M.H.L.: New single‐stage power‐factor‐corrected regulators operating in discontinuous capacitor voltage mode. 28th Annual IEEE power electronics specialists conference. Formerly power conditioning specialists conference 1970‐71. Power processing and electronic specialists conference 1972, vol. 1, pp. 371 – 377. IEEE, St. Louis ( 1997 ). vol.1
dc.identifier.citedreferenceGrigore, V., Kyyra, J.: High power factor rectifier based on buck converter operating in discontinuous capacitor voltage mode. IEEE Trans. Power Electron. 15 ( 6 ), 1241 – 1249 ( 2000 )
dc.identifier.citedreferencede Melo, P.F., Gules, R., Romaneli, E.F.R., Annunziato, R.C.: A modified SEPIC converter for high‐power‐factor rectifier and universal input voltage applications. IEEE Trans. Power Electron. 25 ( 2 ), 310 – 321 ( 2010 )
dc.identifier.citedreferenceDo, H.L.: Soft‐switching SEPIC converter with ripple‐free input current. IEEE Trans. Power Electron. 27 ( 6 ), 2879 – 2887 ( 2012 )
dc.identifier.citedreferenceZhao, Y., Li, W., Deng, Y., He, X.: Analysis, design, and experimentation of an isolated ZVT boost converter with coupled inductors. IEEE Trans. Power Electron. 26 ( 2 ), 541 – 550 ( 2011 )
dc.identifier.citedreferenceKotny, J.L., Margueron, X., Idir, N.: High‐frequency model of the coupled inductors used in EMI filters. IEEE Trans. Power Electron. 27 ( 6 ), 2805 – 2812 ( 2012 )
dc.identifier.citedreferenceInternational Electrotechnical Commission: Electromagnetic compatibility (EMC)‐part 3‐2: Limits‐ limits for harmonic current emissions (equipment input current 16 A per phase), ( 2018 )
dc.identifier.citedreferenceSingh, A.K., Pathak, M.K., Rao, Y.S.: A multi‐device front‐end power factor converter for EV battery charger. In: 3rd International conference on computational intelligence communication technology (CICT), pp. 1 – 6. IEEE, Ghaziabad ( 2017 )
dc.identifier.citedreferenceMarxgut, C., et al.: Ultraflat interleaved triangular current mode (TCM) single‐phase PFC rectifier. IEEE Trans. Power Electron. 29 ( 2 ), 873 – 882 ( 2014 )
dc.identifier.citedreferenceMusavi, F., et al.: Evaluation and efficiency comparison of front end AC‐DC plug‐in hybrid charger topologies. IEEE Trans. Smart Grid. 3 ( 1 ), 413 – 421 ( 2012 )
dc.identifier.citedreferenceJang, Y., Jovanovic, M.M.: Interleaved boost converter with intrinsic voltage‐doubler characteristic for universal‐line PFC front end. IEEE Trans. Power Electron. 22 ( 4 ), 1394 – 1401 ( 2007 )
dc.identifier.citedreferenceSingh, A.K., Pathak, M.K.: Single‐phase bidirectional AC/DC converter for plug‐in electric vehicles with reduced conduction losses. IET Power Electron. 11 ( 1 ), 140 – 148 ( 2018 )
dc.identifier.citedreferencePahlevaninezhad, M., et al.: A ZVS interleaved boost AC/DC converter used in plug‐in electric vehicles. IEEE Trans. Power Electron. 27 ( 8 ), 3513 – 3529 ( 2012 )
dc.identifier.citedreferenceSuzdalenko, A., Zakis, J.: Single‐loop current sensorless control for half‐bridge based AC/DC converter. IETE Tech. Rev. 33 ( 6 ), 662 – 673 ( 2016 )
dc.identifier.citedreferenceAggeler, D., et al.: Ultra‐fast DC‐charge infrastructures for EV‐mobility and future smart grids. In: IEEE PES innovative smart grid technologies conference Europe (ISGT Europe), pp. 1 – 8. IEEE, Gothenburg ( 2010 )
dc.identifier.citedreferenceChen, J., Maksimovic, D., Erickson, R.W.: Analysis and design of a low‐stress buck‐boost converter in universal‐input PFC applications. IEEE Trans. Power Electron. 21 ( 2 ), 320 – 329 ( 2006 )
dc.identifier.citedreferenceZane, R., Maksimovic, D.: Nonlinear‐carrier control for high‐power‐factor rectifiers based on up‐down switching converters. IEEE Trans. Power Electron. 13 ( 2 ), 213 – 221 ( 1998 )
dc.identifier.citedreferenceTang, Y., et al.: A three‐level quasi‐two‐stage single‐phase PFC converter with flexible output voltage and improved conversion efficiency. IEEE Trans. Power Electron. 30 ( 2 ), 717 – 726 ( 2015 )
dc.identifier.citedreferenceHuber, L., Jang, Y., Jovanovic, M.M.: Performance evaluation of bridgeless PFC boost rectifiers. In: APEC 07 ‐ twenty‐second annual IEEE applied power electronics conference and exposition, pp. 165 – 171. Anaheim ( 2007 )
dc.identifier.citedreferenceChoi, W.Y., et al.: Bridgeless boost rectifier with low conduction losses and reduced diode reverse‐recovery problems. IEEE Trans. Ind. Electron. 54 ( 2 ), 769 – 780 ( 2007 )
dc.identifier.citedreferenceMusavi, F., Eberle, W., Dunford, W.G.: A high‐performance single‐phase bridgeless interleaved PFC converter for plug‐in hybrid electric vehicle battery chargers. IEEE Trans. Ind. Appl. 47 ( 4 ), 1833 – 1843 ( 2011 )
dc.identifier.citedreferenceWei, W., et al.: A novel bridgeless buck‐boost PFC converter. In: IEEE power electronics specialists conference, pp. 1304 – 1308. IEEE, Rhodes ( 2008 )
dc.identifier.citedreferenceSabzali, A.J., et al.: New bridgeless DCM SEPIC and Cuk PFC rectifiers with low conduction and switching losses. IEEE Trans. Ind. Appl. 47 ( 2 ), 873 – 881 ( 2011 ). Saffar
dc.identifier.citedreferenceAlam, M., et al.: A soft‐switching bridgeless AC‐DC power factor correction converter. IEEE Trans. Power Electron. 32 ( 10 ), 7716 – 7726 ( 2017 )
dc.identifier.citedreferenceLiu, Y., Smedley, K.: A new passive soft‐switching dual‐boost topology for power factor correction. In: Power electronics specialist conference, 2003. PESC ’03. 2003 IEEE 34th Annual, vol. 2, pp. 669 – 676. IEEE, Acapulco ( 2003 )
dc.identifier.citedreferenceIsmail, E.H.: Bridgeless SEPIC rectifier with unity power factor and reduced conduction losses. IEEE Trans. Ind. Electron. 56 ( 4 ), 1147 – 1157 ( 2009 )
dc.identifier.citedreferenceFardoun, A.A., et al.: Bridgeless high‐power‐factor buck‐converter operating in discontinuous capacitor voltage mode. IEEE Trans. Ind. Appl. 50 ( 5 ), 3457 – 3467 ( 2014 )
dc.identifier.citedreferenceJang, Y., Jovanović, M.M.: Bridgeless high‐power‐factor buck converter. IEEE Trans. Power Electron. 26 ( 2 ), 602 – 611 ( 2011 )
dc.identifier.citedreferenceGabri, A.M.A., Fardoun, A.A., Ismail, E.H.: Bridgeless PFC‐modified SEPIC rectifier with extended gain for universal input voltage applications. IEEE Trans. Power Electron. 30 ( 8 ), 4272 – 4282 ( 2015 )
dc.identifier.citedreferenceMahdavi, M., Farzanehfard, H.: Bridgeless SEPIC PFC rectifier with reduced components and conduction losses. IEEE Trans. Ind. Electron. 58 ( 9 ), 4153 – 4160 ( 2011 )
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.