Show simple item record

High Throughput Risk and Impact Screening of Chemicals in Consumer Products

dc.contributor.authorJolliet, Olivier
dc.contributor.authorHuang, Lei
dc.contributor.authorHou, Ping
dc.contributor.authorFantke, Peter
dc.date.accessioned2021-05-12T17:23:32Z
dc.date.available2022-05-12 13:23:30en
dc.date.available2021-05-12T17:23:32Z
dc.date.issued2021-04
dc.identifier.citationJolliet, Olivier; Huang, Lei; Hou, Ping; Fantke, Peter (2021). "High Throughput Risk and Impact Screening of Chemicals in Consumer Products." Risk Analysis 41(4): 627-644.
dc.identifier.issn0272-4332
dc.identifier.issn1539-6924
dc.identifier.urihttps://hdl.handle.net/2027.42/167461
dc.description.abstractThe ubiquitous presence of more than 80,000 chemicals in thousands of consumer products used on a daily basis stresses the need for screening a broader set of chemicals than the traditional well‐studied suspect chemicals. This high‐throughput screening combines stochastic chemical‐product usage with mass balance‐based exposure models and toxicity data to prioritize risks associated with household products. We first characterize product usage using the stochastic SHEDS‐HT model and chemical content in common household products from the CPDat database, the chemical amounts applied daily varying over more than six orders of magnitude, from mg to kg. We then estimate multi‐pathways near‐ and far‐field exposures for 5,500 chemical‐product combinations, applying an extended USEtox model to calculate product intake fractions ranging from 0.001 to ∼1, and exposure doses varying over more than nine orders of magnitude. Combining exposure doses with chemical‐specific dose–responses and reference doses shows that risks can be substantial for multiple home maintenance products, such as paints or paint strippers, for some home‐applied pesticides, leave‐on personal care products, and cleaning products. Sixty percent of the chemical‐product combinations have hazard quotients exceeding 1, and 9% of the combinations have lifetime cancer risks exceeding 10−4. Population‐level impacts of household products ingredients can be substantial, representing 5 to 100 minutes of healthy life lost per day, with users’ exposures up to 103 minutes per day. To address this issue, present mass balance‐based models are already able to provide exposure estimates for both users and populations. This screening study shows large variations of up to 10 orders of magnitude in impact across both chemicals and product combinations, demonstrating that prioritization based on hazard only is not acceptable, since it would neglect orders of magnitude variations in both product usage and exposure that need to be quantified. To address this, the USEtox suite of mass balance‐based models is already able to provide exposure estimates for thousands of product‐chemical combinations for both users and populations. The present study calls for more scrutiny of most impacting chemical‐product combinations, fully ensuring from a regulatory perspective consumer product safety for high‐end users and using protective measures for users.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherChemical ingredients
dc.subject.otherhousehold products
dc.subject.otherhigh throughput exposure and risk screening
dc.titleHigh Throughput Risk and Impact Screening of Chemicals in Consumer Products
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBusiness (General)
dc.subject.hlbtoplevelBusiness and Economics
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167461/1/risa13604_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167461/2/risa13604.pdf
dc.identifier.doi10.1111/risa.13604
dc.identifier.sourceRisk Analysis
dc.identifier.citedreferencePhillips, K. A., Wambaugh, J. F., Grulke, C. M., Dionisio, K. L., & Isaacs, K. K. ( 2017 ). High‐throughput screening of chemicals as functional substitutes using structure‐based classification models. Green Chemistry, 19, 1063 – 1074. https://doi.org/10.1039/C6GC02744J
dc.identifier.citedreferenceHuang, L., & Jolliet, O. ( 2019a ). A quantitative structure‐property relationship (QSPR) for estimating solid material‐air partition coefficients of organic compounds. Indoor Air, 29, 79 – 88. https://doi.org/10.1111/ina.12510
dc.identifier.citedreferenceHuang, L., & Jolliet, O. ( 2019b ). A combined quantitative property‐property relationship (QPPR) for estimating packaging‐food and solid material‐water partition coefficients of organic compounds. Science of The Total Environment, 658, 493 – 500. https://doi.org/10.1016/j.scitotenv.2018.12.062
dc.identifier.citedreferenceHuijbregts, M. A. J., Rombouts, L. J. A., Ragas, A. M. J., & Van de Meent, D. ( 2005 ). Human‐toxicological effect and damage factors of carcinogenic and non carcinogenic chemicals for life cycle impact assessment. Integrated Environmental Assessment and Management, 1 ( 3 ), 181 – 192. https://doi.org/10.1897/2004-007R.1
dc.identifier.citedreferenceIsaacs, K. ( 2019 ). SHEDS‐HT Beta Version 0.1.7. Source Documentation: Consumer Product Inputs. U.S. Environmental Protection Agency.
dc.identifier.citedreferenceIsaacs, K. K., Glen, W. G., Egeghy, P., Goldsmith, M. R., Smith, L., Vallero, D., … Ozkaynak, H. ( 2014 ). SHEDS‐HT: An integrated probabilistic exposure model for prioritizing exposures to chemicals with near‐field and dietary sources. Environmental Science & Technology, 48, 12750 – 12759. https://doi.org/10.1021/es502513w
dc.identifier.citedreferenceIsaacs, K. K., Phillips, K. A., Biryol, D., Dionisio, K. L., & Price, P. S. ( 2018 ). Consumer product chemical weight fractions from ingredient lists. Journal of Exposure Science & Environmental Epidemiology, 28, 216 – 222. https://doi.org/10.1038/jes.2017.29
dc.identifier.citedreferenceJolliet, O., Ernstoff, A. S., Csiszar, S. A., & Fantke, P. ( 2015 ). Defining product intake fraction to quantify and compare exposure to consumer products. Environmental Science & Technology, 49, 8924 – 8931. https://doi.org/10.1021/acs.est.5b01083
dc.identifier.citedreferenceKijko, G., Margni, M., Partovi Nia, V., & Jolliet, O. ( 2015 ). Impact of occupational exposure to organic chemicals in life cycle assessment: A new framework based on measured concentrations and labor hours per functional unit. Environmental Science & Technology, 49 ( 14 ), 8741 – 8750. https://doi.org/10.1021/acs.est.5b00078
dc.identifier.citedreferenceKirchhübel, N., & Fantke, P. ( 2019 ). Getting the chemicals right: Toward characterizing toxicity and ecotoxicity impacts of inorganic substances. Journal of Cleaner Production, 227, 554 – 565. https://doi.org/10.1016/j.jclepro.2019.04.204
dc.identifier.citedreferenceMansouri, K., Grulke, C. M., Judson, R. S., & Williams, A. J. ( 2018 ). OPERA models for predicting physicochemical properties and environmental fate endpoints. Journal of Cheminformatics, 10 ( 10 ), https://doi.org/10.1186/s13321-018-0263-1
dc.identifier.citedreferenceRing, C. L., Arnot, J., Bennett, D. H., Egeghy, P. P., Fantke, P., Huang, L., … Wambaugh, J. F. ( 2019 ). Chemical exposure pathway prediction for screening and priority‐setting. Environmental Science & Technology, 53 ( 2 ), 719 – 732. https://doi.org/10.1021/acs.est.8b04056
dc.identifier.citedreferenceRosenbaum, R. K., Bachmann, T., Huijbregts, M. A. J., Jolliet, O., Juraske, R., Köhler, A., … Hauschild, M. ( 2008 ). USEtox—The UNEP‐SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. International Journal of Life Cycle Assessment, 13 ( 7 ), 532 – 546. https://doi.org/10.1007/s11367-008-0038-4
dc.identifier.citedreferenceRosenbaum, R. K., Huijbregts, M. A. J., Henderson, A., Margni, M., McKone, T. E., van de Meent, D., … Jolliet, O. ( 2011 ). USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in Life Cycle Analysis: Sensitivity to key chemical properties. International Journal of Life Cycle Assessment, 16 ( 8 ), 710 – 727. https://doi.org/10.1007/s11367-011-0316-4
dc.identifier.citedreferenceStylianou, K. S., Heller, M., Fulgoni, III, V. L., Ernstoff, A., Keoleian, G., & Jolliet, O. ( 2016 ). A Life cycle Assessment Framework Combining Nutritional and Environmen.tal Health Impacts of Diet: A case study on milk. International Journal of Life Cycle Assessment, 21, 734 – 746. https://doi.org/10.1007/s11367-015-0961-0
dc.identifier.citedreferenceStylianou, K. S., Fulgoni, III, V. L., & Jolliet, O.. Identifying healthy and sustainable foods: Small dietary changes bring large benefits. Submitted to Nature foods.
dc.identifier.citedreferenceten Berge, W. ( 2009 ). A simple dermal absorption model: Derivation and application. Chemosphere, 75, 1440 – 1445. http://doi.org/10.1016/j.chemosphere.2009.02.043
dc.identifier.citedreferenceTickner, J., Simon, R., Jacobs, M., Rudisill, C., Tanir, J., Heine, L., … Zhou, X. ( 2019 ). Lessons from the 2018 international symposium on alternatives assessment: Advances and reflections on practice and ongoing needs to build the field. Integrated Environmental Assessment and Management, 15, 909 – 916. http://doi.org/10.1002/ieam.4213
dc.identifier.citedreferenceUSEPA ( 2011 ). U.S. EPA. exposure factors handbook 2011 edition (Final report). EPA/600/R‐09/052F. U.S. Environmental Protection Agency, Washington, DC. Retrieved from https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=522996&Lab=NCEA
dc.identifier.citedreferenceWambaugh, J. F., Wang, A., Dionisio, K. L., Frame, A., Egeghy, P., Judson, R., & Setzer, R. W. ( 2014 ). High throughput heuristics for prioritizing human exposure to environmental chemicals. Environmental Science & Technology, 48, 12760 – 12767. https://doi.org/10.1021/es503583j
dc.identifier.citedreferenceWang, G., Huang, ( 2016 ). L., Nguyen, V., & Jolliet, O. Human exposure to household cleaning products: Application of a two‐field model, The International Society of Exposure Science 26th Annual Meeting, 9–13 October, 2016, Utrecht, the Netherlands, 825 – 826.
dc.identifier.citedreferenceWignall, J. A., Muratov, E., Sedykh, A., Guyton, K. Z., Tropsha, A., Rusyn, I., & Chiu, W. A. ( 2018 ). Conditional toxicity value (CTV) predictor: An in silico approach for generating quantitative risk estimates for chemicals. Environmental Health Perspectives, 126, 057008. https://doi.org/10.1289/EHP2998
dc.identifier.citedreferenceAurisano, N., Huang, L., Mila I Canals, L., Jolliet, O., & Fantke, P. ( 2020 ). Chemicals of concern in plastic toys. Environment International. https://doi.org/10.1016/j.envint.2020.106194
dc.identifier.citedreferenceCsiszar, S. A., Ernstoff, A. S., Fantke, P., Meyer, D. E., & Jolliet, O. ( 2016 ). High‐throughput exposure modeling to support prioritization of chemicals in personal care products. Chemosphere, 163, 490 – 498. https://doi.org/10.1016/j.chemosphere.2016.07.065
dc.identifier.citedreferenceCsiszar, S. A., Ernstoff, A. S., Fantke, P., & Jolliet, O. ( 2017 ). Stochastic modeling of near‐field exposure to parabens in personal care products. Journal of Exposure Science & Environmental Epidemiology, 27, 152 – 159. https://doi.org/10.1038/jes.2015.85
dc.identifier.citedreferenceDionisio, K. L., Phillips, K., Price, P. S. A., Biryol, D., & Isaacs, K. K. ( 2018 ). The chemical and products database, a resource for exposure‐relevant data on chemicals in consumer products. Scientific Data, 5, 180125. https://doi.org/10.1038/sdata.2018.125
dc.identifier.citedreferenceEarnest, C. M., & Corsi, R. L. ( 2013 ). Inhalation exposure to cleaning products: Application of a two‐zone model. Journal of Occupational and Environmental Hygiene, 10, 328 – 335. https://doi.org/10.1080/15459624.2013.782198
dc.identifier.citedreferenceErnstoff, A. S., Fantke, P., Csiszar, S. A., Henderson, A. D., Chung, S., & Jolliet, O. ( 2016 ). Multi‐pathway exposure modelling of chemicals in cosmetics with application to shampoo. Environment International, 92–93, 87 – 96. https://doi.org/10.1016/j.envint.2016.03.014
dc.identifier.citedreferenceFantke, Friedrich, & Jolliet, O. ( 2012 ). Health impact and damage cost assessment of pesticides in Europe. Environment International, 49, 9 – 17. https://doi.org/10.1016/j.envint.2012.08.001
dc.identifier.citedreferenceFantke, P., Ernstoff, A. S., Huang, L., Csiszar, S. A., & Jolliet, O. ( 2016 ). Coupled near‐field and far‐field exposure assessment framework for chemicals in consumer products. Environment International, 94, 508 – 518. https://doi.org/10.1016/j.envint.2016.06.010
dc.identifier.citedreferenceFantke, P., Aylward, L., Bare, J., Chiu, W. A., Dodson, R., Dwyer, R., … McKone, T. E. ( 2018 ). Advancements in life cycle human exposure and toxicity characterization. Environmental Health Perspectives, 126, 125001. http://doi.org/10.1289/EHP3871
dc.identifier.citedreferenceFantke, P., & Illner, N. ( 2019 ). Goods that are good enough: Introducing an absolute sustainability perspective for managing chemicals in consumer products. Current Opinion in Green and Sustainable Chemistry, 15, 91 – 97. http://doi.org/10.1016/j.cogsc.2018.12.001
dc.identifier.citedreferenceFantke, P., Aurisano, N., Provoost, J., Karamertzanis, P. G., & Hauschild, M. ( 2020 ). Toward effective use of REACH data for science and policy. Environment International, 135, 105336. http://doi.org/10.1016/j.envint.2019.105336
dc.identifier.citedreferenceFantke, P., Huang, L., Overcash, O., Griffing, E., & Jolliet, O. ( 2020 ). Life cycle based alternatives assessment (LCAA) for chemical substitution. Green Chemistry, 22 ( 18 ), 6008 – 6024. https://doi.org/10.1039/D0GC01544J.
dc.identifier.citedreferenceGreggs, B., Burns, T., Egeghy, P., Embry, M., Fantke, P., Gaborek, B., … Whittaker, M. ( 2019 ). Qualitative approach to comparative exposure in alternatives assessment. Integrated Environmental Assessment and Management, 15, 880 – 894. http://doi.org/10.1002/ieam.4070
dc.identifier.citedreferenceHenderson, A., Hauschild, M., Van de Meent, D., Huijbregts, M. A. J., Larsen, H. F., Margni, M., … Jolliet, O. ( 2011 ). USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle assessment: Sensitivity to key chemical properties. International Journal of Life Cycle Assessment, 16 ( 8 ), 701 – 709. https://doi.org/10.1007/s11367-011-0294-6
dc.identifier.citedreferenceHuang, L., & Jolliet, O. ( 2016 ). A parsimonious model for the release of chemicals encapsulated in products. Atmospheric Environment, 127, 223 – 235. https://doi.org/10.1016/j.atmosenv.2015.12.001
dc.identifier.citedreferenceHuang, L., Fantke, P., Ernstoff, A., & Jolliet, O. ( 2017 ). A quantitative property‐property relationship for the internal diffusion coefficients of organic compounds in solid materials. Indoor Air, 27, 1128 – 1140. https://doi.org/10.1111/ina.12395
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.