Show simple item record

Single nucleotide polymorphism array and cytogenetic analyses of ovarian teratomas in children

dc.contributor.authorShao, Lina
dc.contributor.authorHeider, Amer
dc.contributor.authorRabah, Raja
dc.date.accessioned2021-05-12T17:25:11Z
dc.date.available2022-07-12 13:25:10en
dc.date.available2021-05-12T17:25:11Z
dc.date.issued2021-06
dc.identifier.citationShao, Lina; Heider, Amer; Rabah, Raja (2021). "Single nucleotide polymorphism array and cytogenetic analyses of ovarian teratomas in children." Genes, Chromosomes and Cancer 60(6): 418-425.
dc.identifier.issn1045-2257
dc.identifier.issn1098-2264
dc.identifier.urihttps://hdl.handle.net/2027.42/167503
dc.description.abstractTeratomas are the most common tumors in the ovary during childhood. Previous studies suggested that they may be derived from germ cells at any developmental stage from premeiotic oogonia through meiotic oocytes to post‐meiotic ova. The majority of mature teratomas reveal normal karyotypes and immature teratomas show higher frequency of chromosomal abnormalities. We analyzed fresh tissue samples from 25 primary ovarian teratomas and three extraovarian deposits using whole genome single nucleotide polymorphism (SNP) array and karyotype. SNP array detected five patterns of copy neutral loss of heterozygosity (CN‐LOH): failure of meiosis I (type I) in 12 tumors, failure of meiosis II (type II) in six tumors, endoreduplication of a haploid ovum (type III) in two tumors, premeiotic error (type IV) in four tumors, and both meiotic I and meiotic II errors in one tumor (type V). Three tumors with type I error had a single chromosome showing meiotic II error, and two tumors with type II error had a single chromosome showing premature sister‐chromatid separation in meiosis I. Lack of recombination in multiple chromosomes in meiosis I were common, chromosomes 17, 7, 8, 21, and 22 were most commonly involved. Abnormal karyotypes were observed in four teratomas including +3, del(3q), +7, +8, +12, and i(18q). The extraovarian deposits revealed the same CN‐LOH pattern as the primary teratoma. In summary, SNP array reveals the origin of ovarian teratoma and we propose a new mechanism that consecutive meiotic I and II errors occur frequently in ovarian teratomas.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherovarian teratoma
dc.subject.otherkaryotype
dc.subject.otherSNP array
dc.titleSingle nucleotide polymorphism array and cytogenetic analyses of ovarian teratomas in children
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167503/1/gcc22934_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167503/2/gcc22934.pdf
dc.identifier.doi10.1002/gcc.22934
dc.identifier.sourceGenes, Chromosomes and Cancer
dc.identifier.citedreferenceSnir OL, DeJoseph M, Wu X, et al. Lack of genetic homozygosity in prepubertal teratomas: divergent pathogenesis distinct from that of teratomas in adolescents. Lab Invest. 2020; 100: 1447 ‐ 1454.
dc.identifier.citedreferenceBussey KJ, Lawce HJ, Olson SB, et al. Chromosome abnormalities of eighty‐one pediatric germ cell tumors: sex‐, age‐, site‐, and histopathology‐related differences–a Children’s cancer group study. Genes Chromosomes Cancer. 1999; 25 ( 2 ): 134 ‐ 146.
dc.identifier.citedreferenceKato N, Sakamoto K, Murakami K, Iwasaki Y, Kamataki A, Kurose A. Genetic zygosity of mature ovarian teratomas, struma ovarii, and ovarian carcinoids. Virchows Arch. 2018; 473 ( 2 ): 177 ‐ 182.
dc.identifier.citedreferenceTamura D, Maeda D, Sato T, et al. An extragonadal yolk sac tumor presumed to be of postmeiotic germ cell origin by genetic zygosity analysis via single nucleotide polymorphism array. Genes Chromosomes Cancer. 2020; 59 ( 3 ): 209 ‐ 213.
dc.identifier.citedreferenceUsui H, Nakabayashi K, Kaku H, Maehara K, Hata K, Shozu M. Elucidation of the developmental mechanism of ovarian mature cystic teratomas using B allele‐frequency plots of single nucleotide polymorphism array data. Genes Chromosomes Cancer. 2018; 57 ( 8 ): 409 ‐ 419.
dc.identifier.citedreferenceHenderson BB, Chaubey A, Roth LM, et al. Whole‐genome and segmental homozygosity confirm errors in meiosis as etiology of struma ovarii. Cytogenet Genome Res. 2020; 160 ( 1 ): 2 ‐ 10.
dc.identifier.citedreferenceHeskett MB, Sanborn JZ, Boniface C, et al. Multiregion exome sequencing of ovarian immature teratomas reveals 2N near‐diploid genomes, paucity of somatic mutations, and extensive allelic imbalances shared across mature, immature, and disseminated components. Mod Pathol. 2020; 33 ( 6 ): 1193 ‐ 1206.
dc.identifier.citedreferenceMcGowan‐Jordan J, Simons A, Schmid M. eds. ISCN (2016): An International System for Human Cytogenomic Nomenclature. Basel: S Karger; 2016.
dc.identifier.citedreferenceShaffer LG, McGowan‐Jordan J, Schmid M. eds. ISCN (2013): An International System for Human Cytogenetic Nomenclature. S Karger: Basel; 2012.
dc.identifier.citedreferenceWang Y, Miller S, Roulston D, Bixby D, Shao L. Genome‐wide single‐nucleotide polymorphism array analysis improves prognostication of acute lymphoblastic leukemia/lymphoma. J Mol Diagn. 2016; 18 ( 4 ): 595 ‐ 603.
dc.identifier.citedreferenceKuliev A, Verlinsky Y. Meiotic and mitotic nondisjunction: lessons from preimplantation genetic diagnosis. Hum Reprod Update. 2004; 10 ( 5 ): 401 ‐ 407.
dc.identifier.citedreferenceOttolini CS, Newnham L, Capalbo A, et al. Genome‐wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat Genet. 2015; 47 ( 7 ): 727 ‐ 735.
dc.identifier.citedreferenceMunday WR, Hui P. Heterozygous bone marrow in a homozygous mature ovarian teratoma: a challenge to the germ cell theory or incidental somatic heterotopia? J Clin Pathol. 2015; 68 ( 8 ): 666 ‐ 669.
dc.identifier.citedreferenceNussbaum RL MI, Roderick R. W, Huntington F. Thompson & Thompson Genetics in Medicine. 8th ed. Philadelphia, PA: Elsevier; 2016.
dc.identifier.citedreferenceOhama K, Nomura K, Okamoto E, Fukuda Y, Ihara T, Fujiwara A. Origin of immature teratoma of the ovary. Am J Obstet Gynecol. 1985; 152 ( 7 ): 896 ‐ 900.
dc.identifier.citedreferenceHoffner L, Shen‐Schwarz S, Deka R, Chakravarti A, Surti U. Genetics and biology of human ovarian teratomas. III. Cytogenetics and origins of malignant ovarian germ cell tumors. Cancer Genet Cytogenet. 1992; 62 ( 1 ): 58 ‐ 65.
dc.identifier.citedreferenceMertens F, Kullendorff CM, Hjorth L, Alumets J, Mandahl N. Trisomy 3 as the sole karyotypic change in a pediatric immature teratoma. Cancer Genet Cytogenet. 1998; 102 ( 1 ): 83 ‐ 85.
dc.identifier.citedreferenceKubosawa H, Iwasaki H, Kuzuta N, Suzuki H, Iura H. Adenocarcinoma with peritoneal dissemination secondary to multiple mature teratomas of the omentum. Gynecol Oncol. 2006; 101 ( 3 ): 534 ‐ 536.
dc.identifier.citedreferenceKwan MY, Kalle W, Lau GT, Chan JK. Is gliomatosis peritonei derived from the associated ovarian teratoma? Hum Pathol. 2004; 35 ( 6 ): 685 ‐ 688.
dc.identifier.citedreferenceMunne S, Bahce M, Sandalinas M, et al. Differences in chromosome susceptibility to aneuploidy and survival to first trimester. Reprod Biomed Online. 2004; 8 ( 1 ): 81 ‐ 90.
dc.identifier.citedreferenceScott F, Bonifacio M, Sandow R, Ellis K, Smet ME, McLennan A. Rare autosomal trisomies: important and not so rare. Prenat Diagn. 2018; 38 ( 10 ): 765 ‐ 771.
dc.identifier.citedreferencePertile MD, Halks‐Miller M, Flowers N, et al. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto‐placental disease. Sci Transl Med. 2017; 9 ( 405 ): 1240.
dc.identifier.citedreferenceRoth LM, Talerman A. Recent advances in the pathology and classification of ovarian germ cell tumors. Int J Gynecol Pathol. 2006; 25 ( 4 ): 305 ‐ 320.
dc.identifier.citedreferenceStang A, Trabert B, Wentzensen N, et al. Gonadal and extragonadal germ cell tumours in the United States, 1973‐2007. Int J Androl. 2012; 35 ( 4 ): 616 ‐ 625.
dc.identifier.citedreferenceUlbright TM. Gonadal teratomas: a review and speculation. Adv Anat Pathol. 2004; 11 ( 1 ): 10 ‐ 23.
dc.identifier.citedreferenceBraungart S, Collaborators CS, Craigie RJ, Farrelly P, Losty PD. Ovarian tumors in children: how common are lesion recurrence and metachronous disease? A UKCCLG surgeons cancer group nationwide study. J Pediatr Surg. 2020; 55 ( 10 ): 2026 – 2029.
dc.identifier.citedreferenceHashimoto N, Watanabe N, Furuta Y, et al. Parthenogenetic activation of oocytes in c‐Mos‐deficient mice. Nature. 1994; 370 ( 6484 ): 68 ‐ 71.
dc.identifier.citedreferenceLinder D, McCaw BK, Hecht F. Parthenogenic origin of benign ovarian teratomas. N Engl J Med. 1975; 292 ( 2 ): 63 ‐ 66.
dc.identifier.citedreferenceChakravarti A, Majumder PP, Slaugenhaupt SA, et al. Gene‐centromere mapping and the study of non‐disjunction in autosomal trisomies and ovarian teratomas. Prog Clin Biol Res. 1989; 311: 45 ‐ 79.
dc.identifier.citedreferenceDeka R, Chakravarti A, Surti U, et al. Genetics and biology of human ovarian teratomas. II. Molecular analysis of origin of nondisjunction and gene‐centromere mapping of chromosome I markers. Am J Hum Genet. 1990; 47 ( 4 ): 644 ‐ 655.
dc.identifier.citedreferenceSurti U, Hoffner L, Chakravarti A, Ferrell RE. Genetics and biology of human ovarian teratomas. I. Cytogenetic analysis and mechanism of origin. Am J Hum Genet. 1990; 47 ( 4 ): 635 ‐ 643.
dc.identifier.citedreferenceKaku H, Usui H, Qu J, Shozu M. Mature cystic teratomas arise from meiotic oocytes, but not from pre‐meiotic oogonia. Genes Chromosomes Cancer. 2016; 55 ( 4 ): 355 ‐ 364.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.