Show simple item record

Benzoic acid derivatives as luminescent sublimation dyes in cyanoacrylate fuming of latent fingerprints

dc.contributor.authorAzaldegui, Christopher
dc.contributor.authorAguilar, Guadalupe
dc.contributor.authorEnriquez, Sarahi
dc.contributor.authorMadonna, Chris
dc.contributor.authorParish Fisher, Casie
dc.contributor.authorBurks, Raychelle
dc.date.accessioned2021-05-12T17:25:19Z
dc.date.available2022-06-12 13:25:17en
dc.date.available2021-05-12T17:25:19Z
dc.date.issued2021-05
dc.identifier.citationAzaldegui, Christopher; Aguilar, Guadalupe; Enriquez, Sarahi; Madonna, Chris; Parish Fisher, Casie; Burks, Raychelle (2021). "Benzoic acid derivatives as luminescent sublimation dyes in cyanoacrylate fuming of latent fingerprints." Journal of Forensic Sciences (3): 1085-1093.
dc.identifier.issn0022-1198
dc.identifier.issn1556-4029
dc.identifier.urihttps://hdl.handle.net/2027.42/167506
dc.description.abstractDevelopment of latent prints employing cyanoacrylate ester (CA) can be a multistep process including CA fuming and subsequent fluorescent staining to produce fingerprints of sufficient contrast for comparison work. To enable a single‐step CA fuming—staining process, a selection of fluorophores have been developed as sublimation dyes in CA fuming. A greater array of such luminescent sublimation dyes would allow users greater flexibility in selecting a particular dye—CA combination to best suit their processing needs. Toward this end, six benzoic acid derivatives were evaluated for use as luminescent sublimation dyes under elementary CA fuming conditions using a single non‐porous surface type and an inexpensive handheld UV lamp for excitation. Two benzoic acid derivatives, 2‐hydroxybenzoic acid (salicylic acid) and 2‐aminobenzoic acid (anthranilic acid), were identified as new potential luminescent sublimation dyes with stained fingerprints excited at 254 nm. The fluorescence intensity and stability of prints produced via the sublimation of CA with 2‐hydroxybenzoic acid and 2‐aminobenzoic acid were evaluated over approximately six weeks using image and statistical analysis.
dc.publisherWiley Periodicals, Inc.
dc.publisherNational Institute of Justice
dc.subject.othersublimation
dc.subject.otherluminescent
dc.subject.otherimage analysis
dc.subject.otherbenzoic acid derivatives
dc.subject.othercyanoacrylate fuming
dc.subject.otherlatent fingerprint
dc.titleBenzoic acid derivatives as luminescent sublimation dyes in cyanoacrylate fuming of latent fingerprints
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelScience (General)
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167506/1/jfo14678_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167506/2/jfo14678.pdf
dc.identifier.doi10.1111/1556-4029.14678
dc.identifier.sourceJournal of Forensic Sciences
dc.identifier.citedreferenceZhu Y, Liu X, Zhang Y, Wang Z, Lasanajak Y, Song X. Anthranilic acid as a versatile fluorescent tag and linker for functional glycomics. Bioconjug Chem. 2018; 29 ( 11 ): 3847 – 55. https://doi.org/10.1021/acs.bioconjchem.8b00678.
dc.identifier.citedreferenceZaugg S, Zhang X, Sweedler J, Thormann W. Determination of salicylate, gentisic acid and salicyluric acid in human urine by capillary electrophoresis with laser‐induced fluorescence detection. J Chromatogr B Biomed Sci Appl. 2001; 752 ( 1 ): 17 – 31. https://doi.org/10.1016/s0378‐4347(00)00507‐7.
dc.identifier.citedreferenceStreet KW, Schenk GH. Spectrofluorometric determination of acetylsalicylic acid, salicylamide, and salicylic acid as an impurity in pharmaceutical preparations. J Pharm Sci. 1981; 70 ( 6 ): 641 – 6. https://doi.org/10.1002/jps.2600700617.
dc.identifier.citedreferenceGuo H‐B, He F, Gu B, Liang L, Smith JC. Time‐dependent density functional theory assessment of UV absorption of benzoic acid derivatives. J Phys Chem A. 2012; 116 ( 48 ): 11870 – 9. https://doi.org/10.1021/jp3084293.
dc.identifier.citedreferenceReichardt C, Welton T. Solvents and solvent effects in organic chemistry. In: Reichardt C, Welton T, editors. Solvent effects on the absorption spectra of organic compounds. Weinheim, DE: Wiley; 2010. p. 359 – 424.
dc.identifier.citedreferenceStalin T, Shanthi B, Rani PV, Rajendiran N. Solvatochromism, prototropism and complexation of para‐aminobenzoic acid. J Incl Phenom Macrocycl Chem. 2006; 55 ( 1–2 ): 21 – 9. https://doi.org/10.1007/s10847‐005‐9013‐x.
dc.identifier.citedreferenceAcharya S, Soni R. Interaction of p‐amino benzoic acid (PABA) with ionic and nonionic micelles by fluorescence. RASĀYAN Journal of Chemistry. 2013; 6 ( 1 ): 24 – 8.
dc.identifier.citedreferenceTanojo H, Junginger HE, Boddé HE. Influence of pH on the intensity and stability of the fluorescence of p‐aminobenzoic acid in aqueous solutions. Eur J Pharm Sci. 1997; 5 ( 1 ): 31 – 5. https://doi.org/10.1016/S0928‐0987(96)00253‐9.
dc.identifier.citedreferenceAbou‐Zied OK, Al‐Busaidi BY, Husband J. Solvent effect on anthranilic acid spectroscopy. J Phys Chem A. 2014; 118 ( 1 ): 103 – 9. https://doi.org/10.1021/jp4087317.
dc.identifier.citedreferenceCulf AS, Yin H, Monro S, Ghosh A, Barnett DA, Ouellette RJ, et al. A spectroscopic study of substituted anthranilic acids as sensitive environmental probes for detecting cancer cells. Bioorg Med Chem. 2016; 24 ( 5 ): 929 – 37. https://doi.org/10.1016/j.bmc.2015.12.044.
dc.identifier.citedreferenceSouthern CA, Levy DH, Florio GM, Longarte A, Zwier TS. Electronic and infrared spectroscopy of anthranilic acid in a supersonic jet. J Phys Chem A. 2003; 107 ( 20 ): 4032 – 40. https://doi.org/10.1021/jp027041x.
dc.identifier.citedreferenceSobolewski AL, Domcke W. Intramolecular hydrogen bonding in the S1(ππ*) excited state of anthranilic acid and salicylic acid: TDDFT calculation of excited‐state geometries and infrared spectra. J Phys Chem A. 2004; 108 ( 49 ): 10917 – 22. https://doi.org/10.1021/jp046428s.
dc.identifier.citedreferenceLennard C. Fingerprint identification: how far have we come? Aust J Forensic Sci. 2013; 45 ( 4 ): 356 – 67. https://doi.org/10.1080/00450618.2012.752037.
dc.identifier.citedreferenceCoburn C, Allman E, Mahanti P, Benedetto A, Cabreiro F, Pincus Z, et al. Anthranilate fluorescence marks a calcium‐propagated necrotic wave that promotes organismal death in C. elegans. PLoS Biol. 2013; 11 ( 7 ): e1001613.
dc.identifier.citedreferenceGagarinskyi EL, Vekshin NL. Blue death of nematodes. Adv Gerontol. 2018; 8 ( 2 ): 163 – 9. https://doi.org/10.1134/S2079057018020042.
dc.identifier.citedreferenceWeaver DE. Co‐polymerization of sublimation dyes and expanding the micro‐crystalline vapors of cyanoacrylate in fingerprint development. Research Report Submitted to the US Department of Justice. Washington, DC: Office of Justice Programs, National Institute of Justice, 2009. Report Number: NCJ‐ 227937.
dc.identifier.citedreferenceCostley DB. Efforts to improve latent fingerprint impression processing using fluorescent and colored superglues [master thesis]. Boston, MA: Boston University; 2014.
dc.identifier.citedreferenceKrelil S, Henrot D, Ledroit P, Desbrosse X, Malo M. Temperature of the superglue fuming process under the scope of accreditation. Can Soc Forensic Sci J. 2019; 52 ( 3 ): 106 – 21. https://doi.org/10.1080/00085030.2019.1627990.
dc.identifier.citedreferenceDavies M, Ifor JJ. The sublimation pressures and heats of sublimation of some carboxylic acids. Trans Faraday Soc. 1954; 50: 1042 – 7. https://doi.org/10.1039/TF9545001042.
dc.identifier.citedreferencede Kruif CG, de Kruif CG, Voogd J, Offringa JCA. Enthalpies of sublimation and vapour pressures of 14 amino acids and peptides. J Chem Thermodyn. 1979; 11 ( 7 ): 651 – 6. https://doi.org/10.1016/0021‐9614(79)90030‐2.
dc.identifier.citedreferenceRaju PDR, Neelima G. Image segmentation by using histogram thresholding. Int J Computer Sci Eng Technol. 2012; 2 ( 1 ): 776 – 9.
dc.identifier.citedreferenceMaurissen JP, Vidmar TJ. Repeated‐measure analyses: Which one? A survey of statistical models and recommendations for reporting. Neurotoxicol Teratol. 2017; 59: 78 – 84. https://doi.org/10.1016/j.ntt.2016.10.003.
dc.identifier.citedreferenceMartin R, Clarke GA. Fluorescence of benzoic acid in aqueous acidic media. J Phys Chem. 1978; 82 ( 1 ): 81 – 6. https://doi.org/10.1021/j100490a020.
dc.identifier.citedreferenceHall A, Ballantyne J. Characterization of UVC‐induced DNA damage in bloodstains: Forensic implications. Anal Bioanal Chem. 2004; 380 ( 1 ): 72 – 83. https://doi.org/10.1007/s00216‐004‐2681‐3.
dc.identifier.citedreferenceHall A, Sims LM, Ballantyne J. Assessment of DNA damage induced by terrestrial UV irradiation of dried bloodstains: forensic implications. Forensic Sci Int Genet. 2014; 8 ( 1 ): 24 – 32. https://doi.org/10.1016/j.fsigen.2013.06.010.
dc.identifier.citedreferenceKim A. The evaluation of the RapidHITTM 200 on degraded biological samples [master thesis]. Morgantown, WV: West Virginia University; 2019.
dc.identifier.citedreferenceUchigasaki S, Tie J, Sobashima E, Shimada N. Genotyping DNA isolated from UV irradiated human bloodstains using whole genome amplification. Mol Biol Rep. 2018; 45 ( 5 ): 925 – 9. https://doi.org/10.1007/s11033‐018‐4240‐6.
dc.identifier.citedreferenceBleay S, Sears V, Downham R, Bandey H, Gibson A, Bowman V, et al. Fingerprint source book, 2 nd rev edn. Croydon, UK: UK Home Office, Centre for Applied Science and Technology; 2018.
dc.identifier.citedreferenceBumbrah GS. Cyanoacrylate fuming method for detection of latent fingermarks: a review. Egypt J Forensic Sci. 2017; 7 ( 1 ): 4. https://doi.org/10.1186/s41935‐017‐0009‐7.
dc.identifier.citedreferenceYamashita B, French M, Bleay S, Cantu A, Inlow V, Ramotowski R, et al. Latent print development. In: McRoberts A, editor. The fingerprint sourcebook. Washington, DC: National Institute of Justice; 2011. p. 1 – 67.
dc.identifier.citedreferenceTakatsu M, Shimoda O, Teranishi H. Vapor‐phase staining of cyanoacrylate‐fumed latent fingerprints using p‐dimethylaminobenzaldehyde. J Forensic Sci. 2012; 57 ( 2 ): 515 – 20. https://doi.org/10.1111/j.1556‐4029.2011.01976.x.
dc.identifier.citedreferenceStewart V, Deacon P, Farrugia KJ. A review of one‐step fluorescent cyanoacrylate techniques. Fingerprint Whorld. 2016; 41 ( 162 ): 1 – 24.
dc.identifier.citedreferencePrete C, Galmiche L, Quenum‐Possy‐Berry F‐G, Allain C, Thiburce N, Colard T. Lumicyano TM: a new fluorescent cyanoacrylate for a one‐step luminescent latent fingermark development. Forensic Sci Int. 2013; 233 ( 1–3 ): 104 – 12. https://doi.org/10.1016/j.forsciint.2013.07.008.
dc.identifier.citedreferenceKhuu A, Chadwick S, Spindler X, Lam R, Moret S, Roux C. Evaluation of one‐step luminescent cyanoacrylate fuming. Forensic Sci Int. 2016; 263: 126 – 31. https://doi.org/10.1016/j.forsciint.2016.04.007.
dc.identifier.citedreferenceChadwick S, Xiao L, Maynard P, Lennard C, Spindler X, Roux C. PolyCyano UV: an investigation into a one‐step luminescent cyanoacrylate fuming process. Aust J Forensic Sci. 2014; 46 ( 4 ): 471 – 84. https://doi.org/10.1080/00450618.2014.891654.
dc.identifier.citedreferenceGalmiche L, Allain C, Clavier G. Use of light in fingerprint detection. In: Zloh M, Stair J, Miolo G, editors. Light in forensic science: Issues and applications. London, UK: Royal Society of Chemistry; 2018. p. 83 – 110.
dc.identifier.citedreferenceBurks RM, Pacquette SE, Guericke MA, Wilson MV, Symonsbergen DJ, Lucas KA, et al. DETECHIP®: a sensor for drugs of abuse. J Forensic Sci. 2010; 55 ( 3 ): 723 – 7. https://doi.org/10.1111/j.1556‐4029.2010.01323.x.
dc.identifier.citedreferenceAbounassif M, Saleem MM. Salicylic acid. In: Brittain H, editor. Analytical profiles of drug substances and excipients. San Diego, CA: Academic Press; 1994. p. 421 – 70.
dc.identifier.citedreferenceTiwari AK, Sathyamurthy N. Structure and stability of salicylic acid‐water complexes and the effect of molecular hydration on the spectral properties of salicylic acid. J Phys Chem A. 2006; 110 ( 17 ): 5960 – 4. https://doi.org/10.1021/jp060851e.
dc.identifier.citedreferenceKaur G, Rai SB. Cool white light emission in dysprosium and salicylic acid doped poly vinyl alcohol film under UV excitation. J Fluoresc. 2012; 22 ( 1 ): 475 – 83. https://doi.org/10.1007/s10895‐011‐0981‐5.
dc.identifier.citedreferenceLahmani F, Zehnacker‐Rentien A. Effect of substitution on the photoinduced intramolecular proton transfer in salicylic acid. J Phys Chem A. 1997; 101 ( 35 ): 6141 – 7. https://doi.org/10.1021/jp9712516.
dc.identifier.citedreferenceSingh R, Tiwari MK, Gangopadhyay D, Mishra PC, Mishra H, Srivastava A, et al. Detection and monitoring of in vitro formation of salicylic acid from aspirin using fluorescence spectroscopic technique and DFT calculations. J Photochem Photobiol B. 2018; 189: 292 – 7. https://doi.org/10.1016/j.jphotobiol.2018.11.004.
dc.identifier.citedreferencePozdnyakov IP, Pigliucci A, Tkachenko N, Plyusnin VF, Vauthey E, Lemmetyinen H. The photophysics of salicylic acid derivatives in aqueous solution. J Phys Org Chem. 2009; 22 ( 5 ): 449 – 54. https://doi.org/10.1002/poc.1489.
dc.identifier.citedreferenceMiles CI, Schenk GH. Fluorescence of acetylsalicylic acid in solution and its measurement in presence of salicylic acid. Anal Chem. 1970; 42 ( 6 ): 656 – 9. https://doi.org/10.1021/ac60288a032.
dc.identifier.citedreferenceVenema DP, Hollman PCH, Janssen KPLTM, Katan MB. Determination of acetylsalicylic acid and salicylic acid in foods, using HPLC with fluorescence detection. J Agric Food Chem. 1996; 44 ( 7 ): 1762 – 7. https://doi.org/10.1021/jf950458y.
dc.identifier.citedreferenceHobl E‐L, Jilma B, Ebner J, Schmid RW. Simultaneous determination of acetylsalicylic acid and salicylic acid in human plasma by isocratic high‐pressure liquid chromatography with post‐column hydrolysis and fluorescence detection. Biomed Chromatogr. 2013; 27 ( 6 ): 695 – 8. https://doi.org/10.1002/bmc.2846.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.