Show simple item record

Hemispheric Asymmetries in the Mid‐latitude Ionosphere During the September 7–8, 2017 Storm: Multi‐instrument Observations

dc.contributor.authorWang, Zihan
dc.contributor.authorZou, Shasha
dc.contributor.authorLiu, Lei
dc.contributor.authorRen, Jiaen
dc.contributor.authorAa, Ercha
dc.date.accessioned2021-05-12T17:26:18Z
dc.date.available2022-05-12 13:26:14en
dc.date.available2021-05-12T17:26:18Z
dc.date.issued2021-04
dc.identifier.citationWang, Zihan; Zou, Shasha; Liu, Lei; Ren, Jiaen; Aa, Ercha (2021). "Hemispheric Asymmetries in the Mid‐latitude Ionosphere During the September 7–8, 2017 Storm: Multi‐instrument Observations." Journal of Geophysical Research: Space Physics 126(4): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/167525
dc.description.abstractHemispheric asymmetries of the Vertical Total Electron Content (VTEC) were observed during the first recovery phase of the geomagnetic storm on September 7–8, 2017. These asymmetries occurred at the mid latitudes at two different local times simultaneously: In the European‐African sector (early morning), the storm time VTEC in the southern/northern hemisphere was higher/lower than the quiet time value, suggesting the southern/northern hemisphere entered the positive/negative phase (N−S+). In the East Asian‐Australian sector (afternoon), the storm time VTEC change was positive in the northern hemisphere, but negative in the southern hemisphere (N+S−). The electron density profiles from digisondes demonstrated that the asymmetries appeared in the F region density as well. The plasma drifts data from digisondes, the column‐integrated [O]/[N2] ratio from GUVI onboard the TIMED satellite, and the detrended VTEC were utilized to study the drivers of the asymmetries. Traveling Ionospheric Disturbance (TID) signatures were identified in the digisonde drift and detrended VTEC data before the appearance of the asymmetry. The magnitude of TIDs was larger in the hemisphere where the negative phase occurred later. The storm time [O]/[N2] ratio change was positive in Africa (S+) and negative in Europe (N−). However, the [O]/[N2] measurements were not available in the East Asian‐Australian sector during the focused period. The hemispheric differences in the vertical drifts were also observed in both sectors. Therefore, the observed hemispheric asymmetries in both sectors are suggested to be due to the hemispheric asymmetries in the thermospheric composition change, vertical drift, and TID activity.Key PointsHemispheric asymmetries of the mid‐latitude ionosphere were observed during the first recovery phase of the September 7–8, 2017 stormHemispheric asymmetries were opposite over the European‐African and East Asian‐Australian sectors simultaneouslyTheir formation is likely due to the asymmetries of the thermospheric composition change, vertical plasma drift, and Traveling Ionospheric Disturbance activity
dc.publisherUniversity of Massachusetts
dc.publisherWiley Periodicals, Inc.
dc.titleHemispheric Asymmetries in the Mid‐latitude Ionosphere During the September 7–8, 2017 Storm: Multi‐instrument Observations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167525/1/jgra56400.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167525/2/2020JA028829-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167525/3/jgra56400_am.pdf
dc.identifier.doi10.1029/2020JA028829
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceStrickland, D., Meier, R., Walterscheid, R., Craven, J., Christensen, A., Paxton, L., et al. ( 2004 ). Quiet‐time seasonal behavior of the thermosphere seen in the far ultraviolet dayglow. Journal of Geophysical Research: Space Physics, 109 ( A1 ). https://doi.org/10.1029/2003ja010220
dc.identifier.citedreferenceRout, D., Pandey, K., Chakrabarty, D., Sekar, R., & Lu, X. ( 2019 ). Significant electric field perturbations in low latitude ionosphere due to the passage of two consecutive ICMEs during 6–8 September 2017. Journal of Geophysical Research: Space Physics, 124 ( 11 ), 9494 – 9510. https://doi.org/10.1029/2019JA027133
dc.identifier.citedreferenceScali, J. L., Reinisch, B. W., Heinselman, C. J., & Bullett, T. W. ( 1995 ). Coordinated digisonde and incoherent scatter radar F region drift measurements at Sondre Stromfjord. Radio Science, 30 ( 5 ), 1481 – 1498. https://doi.org/10.1029/95rs01730
dc.identifier.citedreferenceSchlesier, A. C., & Buonsanto, M. J. ( 1999 ). The Millstone Hill ionospheric model and its application to the May 26–27, 1990, ionospheric storm. Journal of Geophysical Research: Space Physics, 104 ( A10 ), 22453 – 22468. https://doi.org/10.1029/1999ja900250
dc.identifier.citedreferenceSchunk, R., & Nagy, A. ( 2009 ). Ionospheres: Physics, plasma physics, and chemistry. Cambridge University Press.
dc.identifier.citedreferenceShen, C., Xu, M., Wang, Y., Chi, Y., & Luo, B. ( 2018 ). Why the shock‐ICME complex structure is important: learning from the early 2017 September CMEs. The Astrophysical Journal, 861 ( 1 ), 28. https://doi.org/10.3847/1538-4357/aac204
dc.identifier.citedreferenceStrickland, D. J., Bishop, J., Evans, J. S., Majeed, T., Shen, P. M., Cox, R. J., et al. ( 1999 ). Atmospheric ultraviolet radiance integrated code (AURIC): Theory, software architecture, inputs, and selected results. Journal of Quantitative Spectroscopy and Radiative Transfer, 62 ( 6 ), 689 – 742. https://doi.org/10.1016/s0022-4073(98)00098-3
dc.identifier.citedreferenceStrickland, D. J., Daniell, R. E., & Craven, J. D. ( 2001 ). Negative ionospheric storm coincident with DE 1‐observed thermospheric disturbance on October 14, 1981. Journal of Geophysical Research, 106 ( A10 ), 21049 – 21062. https://doi.org/10.1029/2000JA000209
dc.identifier.citedreferenceStrickland, D. J., Evans, J. S., & Paxton, L. J. ( 1995 ). Satellite remote sensing of thermospheric O/N2 and solar EUV: 1. Theory. Journal of Geophysical Research, 100 ( A7 ), 12217 – 12226. https://doi.org/10.1029/95ja00574
dc.identifier.citedreferenceWang, Z., Zou, S., Coppeans, T., Ren, J., Ridley, A., & Gombosi, T. ( 2019 ). Segmentation of SED by boundary flows associated with Westward drifting partial ring current. Geophysical Research Letters, 46 ( 14 ), 7920 – 7928. https://doi.org/10.1029/2019GL084041
dc.identifier.citedreferenceWoodman, R. F., Chau, J. L., & Ilma, R. R. ( 2006 ). Comparison of ionosonde and incoherent scatter drift measurements at the magnetic equator. Geophysical Research Letters, 33 ( 1 ). https://doi.org/10.1029/2005GL023692
dc.identifier.citedreferenceXiong, C., Lühr, H., & Yamazaki, Y. ( 2019 ). An opposite response of the low‐latitude ionosphere at Asian and American sectors during storm recovery phases: Drivers from below or above. Journal of Geophysical Research: Space Physics, 124 ( 7 ), 6266 – 6280. https://doi.org/10.1029/2019JA026917
dc.identifier.citedreferenceYao, Y., Zhai, C., Kong, J., Zhao, C., Luo, Y., & Liu, L. ( 2020 ). An improved constrained simultaneous iterative reconstruction technique for ionospheric tomography. GPS Solutions, 24, 1 – 19. https://doi.org/10.1007/s10291-020-00981-4
dc.identifier.citedreferenceYue, X., Wang, W., Lei, J., Burns, A., Zhang, Y., Wan, W., et al. ( 2016 ). Long‐lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm. Journal of Geophysical Research: Space Physics, 121 ( 9 ), 9234 – 9249. https://doi.org/10.1002/2016JA022984
dc.identifier.citedreferenceZhang, S. R., Erickson, P. J., Coster, A. J., Rideout, W., Vierinen, J., Jonah, O., & Goncharenko, L. P. ( 2019 ). Subauroral and polar traveling ionospheric disturbances during the 7–9 September 2017 Storms. Space Weather, 17 ( 12 ), 1748 – 1764. https://doi.org/10.1029/2019SW002325
dc.identifier.citedreferenceZhang, Y., Paxton, L. J., Morrison, D., Wolven, B., Kil, H., Meng, C. I., et al. ( 2004 ). O/N2changes during 1–4 October 2002 storms: IMAGE SI‐13 and TIMED/GUVI observations. Journal of Geophysical Research, 109 ( A10 ). https://doi.org/10.1029/2004JA010441
dc.identifier.citedreferenceZhao, B., Wan, W., Liu, L., Igarashi, K., Yumoto, K., & Ning, B. ( 2009 ). Ionospheric response to the geomagnetic storm on 13–17 April 2006 in the West Pacific region. Journal of Atmospheric and Solar‐Terrestrial Physics, 71 ( 1 ), 88 – 100. https://doi.org/10.1016/j.jastp.2008.09.029
dc.identifier.citedreferenceZhou, Y. L., Lühr, H., Xiong, C., & Pfaff, R. F. ( 2016 ). Ionospheric storm effects and equatorial plasma irregularities during the 17–18 March 2015 event. Journal of Geophysical Research: Space Physics, 121 ( 9 ), 9146 – 9163. https://doi.org/10.1002/2016JA023122
dc.identifier.citedreferenceZou, S., Moldwin, M. B., Ridley, A. J., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2014 ). On the generation/decay of the storm‐enhanced density plumes: Role of the convection flow and field‐aligned ion flow. Journal of Geophysical Research: Space Physics, 119 ( 2005 ), 8543 – 8559. https://doi.org/10.1002/2014JA01988710.1002/2014ja020408
dc.identifier.citedreferenceZou, S., & Ridley, A. J. ( 2016 ). Modeling of the evolution of storm‐enhanced density plume during the 24 to 25 October 2011 geomagnetic storm. In C. Chappell, R. Schunk, P. Banks, J. Burch, & R. Thorne (Eds.), Magnetosphere‐ionosphere coupling in the solar system (pp. 205 – 213 ). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119066880.ch16
dc.identifier.citedreferenceZou, S., Ridley, A. J., Moldwin, M. B., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2013 ). Multi‐instrument observations of SED during 24–25 October 2011 storm: Implications for SED formation processes. Journal of Geophysical Research: Space Physics, 118 ( 12 ), 7798 – 7809. https://doi.org/10.1002/2013JA018860
dc.identifier.citedreferenceKil, H., Kwak, Y.‐S., Paxton, L. J., Meier, R. R., & Zhang, Y. ( 2011 ). O and N2 disturbances in the F region during the 20 November 2003 storm seen from TIMED/GUVI. Journal of Geophysical Research: Space Physics, 116 ( 2 ). https://doi.org/10.1029/2010JA016227
dc.identifier.citedreferenceWolf, R. A., Spiro, R. W., Sazykin, S., & Toffoletto, F. R. ( 2007 ). How the Earth’s inner magnetosphere works: An evolving picture. Journal of Atmospheric and Solar‐Terrestrial Physics, 69 ( 3 ), 288 – 302. https://doi.org/10.1016/j.jastp.2006.07.026
dc.identifier.citedreferenceAa, E., Huang, W., Liu, S., Ridley, A., Zou, S., Shi, L., et al. ( 2018 ). Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017. Space Weather, 16 ( 3 ), 321 – 331. https://doi.org/10.1002/2017SW001776
dc.identifier.citedreferenceAa, E., Zou, S., Ridley, A., Zhang, S., Coster, A. J., Erickson, P. J., et al. ( 2019 ). Merging of storm time midlatitude traveling ionospheric disturbances and equatorial plasma bubbles. Space Weather, 17 ( 2 ), 285 – 298. https://doi.org/10.1029/2018SW002101
dc.identifier.citedreferenceAstafyeva, E., Bagiya, M. S., Förster, M., & Nishitani, N. ( 2020 ). Unprecedented hemispheric asymmetries during a surprise ionospheric storm: A game of drivers. Journal of Geophysical Research: Space Physics, 125, 35 – 39. https://doi.org/10.1029/2019JA027261
dc.identifier.citedreferenceAstafyeva, E., Zakharenkova, I., & Doornbos, E. ( 2015 ). Opposite hemispheric asymmetries during the ionospheric storm of 29–31 August 2004. Journal of Geophysical Research: Space Physics, 120 ( 1 ), 697 – 714. https://doi.org/10.1002/2014JA020710
dc.identifier.citedreferenceAstafyeva, E., Zakharenkova, I., & Förster, M. ( 2015 ). Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi‐instrumental overview. Journal of Geophysical Research: Space Physics, 120 ( 10 ), 9023 – 9037. https://doi.org/10.1002/2015ja021629
dc.identifier.citedreferenceBullett, T. W. ( 1994 ). Mid‐latitude ionospheric plasma drift: A comparison of digital ionosonde and incoherent scatter radar measurements at Millstone Hill (Doctoral dissertation). Retrieved from ProQuest Dissertations & theses global. (304103954). University of Massachusetts.
dc.identifier.citedreferenceDuncan, R. A. ( 1969 ). F‐region seasonal and magnetic‐storm behavior. Journal of Atmospheric and Terrestrial Physics, 31 ( 1 ), 59 – 70. https://doi.org/10.1016/0021-9169(69)90081-6
dc.identifier.citedreferenceGoncharenko, L. P., Foster, J., Coster, A., Huang, C., Aponte, N., & Paxton, L. ( 2007 ). Observations of a positive storm phase on September 10, 2005. Journal of Atmospheric and Solar‐Terrestrial Physics, 69 ( 10–11 ), 1253 – 1272. https://doi.org/10.1016/j.jastp.2006.09.011
dc.identifier.citedreferenceGonzales, C. A., Behnke, R. A., & Woodman, R. F. ( 1982 ). Doppler measurements with a digital ionosonde: Technique and comparison of results with incoherent scatter data. Radio Science, 17 ( 5 ), 1327 – 1333. https://doi.org/10.1029/rs017i005p01327
dc.identifier.citedreferenceHabarulema, J. B., Katamzi‐Joseph, Z. T., Bureov, D., Nndanganeni, R., Matamba, T., Tshisaphungo, M., et al. ( 2020 ). Ionospheric response at conjugate locations during the 7–8 September 2017 geomagnetic storm over the Europe‐African longitude sector. Journal of Geophysical Research: Space Physics, 125 ( 10 ), e2020JA028307. https://doi.org/10.1029/2020ja028307
dc.identifier.citedreferenceHeelis, R. A., Sojka, J. J., David, M., & Schunk, R. W. ( 2009 ). Storm time density enhancements in the middle‐latitude dayside ionosphere. Journal of Geophysical Research: Space Physics, 114 ( A3 ). https://doi.org/10.1029/2008JA013690
dc.identifier.citedreferenceHuang, X., & Reinisch, B. W. ( 1996 ). Vertical electron density profiles from the digisonde network. Advances in Space Research, 18 ( 6 ), 121 – 129. https://doi.org/10.1016/0273-1177(95)00912-4
dc.identifier.citedreferenceImtiaz, N., Younas, W., & Khan, M. ( 2020 ). Response of the low‐ to mid‐latitude ionosphere to the geomagnetic storm of September 2017. Annales Geophysicae, 38 ( 2 ), 359 – 372. https://doi.org/10.5194/angeo-38-359-2020
dc.identifier.citedreferenceJimoh, O., Lei, J., Zhong, J., Owolabi, C., Luan, X., & Dou, X. ( 2019 ). Topside ionospheric conditions during the 7–8 September 2017 geomagnetic storm. Journal of Geophysical Research: Space Physics, 124, 9381 – 9404. https://doi.org/10.1029/2019JA026590
dc.identifier.citedreferenceJin, H., Zou, S., Chen, G., Yan, C., Zhang, S., & Yang, G. ( 2018 ). Formation and evolution of low‐latitude F region field‐aligned irregularities during the 7–8 September 2017 storm: Hainan Coherent scatter phased array radar and digisonde observations. Space Weather, 16 ( 6 ), 648 – 659. https://doi.org/10.1029/2018SW001865
dc.identifier.citedreferenceKelley, M. C. ( 2009 ). The Earth’s ionosphere: Plasma physics and electrodynamics. Academic Press.
dc.identifier.citedreferenceLei, J., Huang, F., Chen, X., Zhong, J., Ren, D., Wang, W., et al. ( 2018 ). Was magnetic storm the only driver of the long‐duration enhancements of daytime total electron content in the Asian‐Australian sector between 7 and 12 September 2017? Journal of Geophysical Research: Space Physics, 123 ( 4 ), 3217 – 3232. https://doi.org/10.1029/2017JA025166
dc.identifier.citedreferenceLiu, J., Wang, W., Burns, A., Solomon, S. C., Zhang, S., Zhang, Y., & Huang, C. ( 2016 ). Relative importance of horizontal and vertical transports to the formation of ionospheric storm‐enhanced density and polar tongue of ionization. Journal of Geophysical Research: Space Physics, 121 ( 8 ), 8121 – 8133. https://doi.org/10.1002/2016JA022882
dc.identifier.citedreferenceLu, G., Goncharenko, L., Nicolls, M. J., Maute, A., Coster, A., & Paxton, L. J. ( 2012 ). Ionospheric and thermospheric variations associated with prompt penetration electric fields. Journal of Geophysical Research: Space Physics, 117 ( 8 ). https://doi.org/10.1029/2012JA017769
dc.identifier.citedreferenceMannucci, A. J., Tsurutani, B. T., Kelley, M. C., Iijima, B. A., & Komjathy, A. ( 2009 ). Local time dependence of the prompt ionospheric response for the 7, 9, and 10 November 2004 superstorms. Journal of Geophysical Research: Space Physics, 114 ( 10 ). https://doi.org/10.1029/2009JA014043
dc.identifier.citedreferenceMaruyama, N., Richmond, A. D., Fuller‐Rowell, T. J., Codrescu, M. V., Sazykin, S., Toffoletto, F. R., et al. ( 2005 ). Interaction between direct penetration and disturbance dynamo electric fields in the storm‐time equatorial ionosphere. Geophysical Research Letters, 32 ( 17 ), 2 – 5. https://doi.org/10.1029/2005gl023763
dc.identifier.citedreferenceMendillo, M. ( 2006 ). Storms in the ionosphere: Patterns and processes for total electron content. Reviews of Geophysics, 44 ( 4 ), 1 – 47. https://doi.org/10.1029/2005RG000193
dc.identifier.citedreferenceMosna, Z., Kouba, D., Knizova, P. K., Buresova, D., Chum, J., Sindelarova, T., et al. ( 2020 ). Ionospheric storm of September 2017 observed at ionospheric station Pruhonice, the Czech Republic. Advances in Space Research, 65 ( 1 ), 115 – 128. https://doi.org/10.1016/j.asr.2019.09.024
dc.identifier.citedreferencePrölss, G. ( 1993 ). On explaining the local time variation of ionospheric storm effects. Annales Geophysicae, 11, 1 – 9.
dc.identifier.citedreferencePrölss, G. W. ( 1980 ). Magnetic storm associated perturbations of the upper atmosphere: Recent results obtained by satellite‐borne gas analyzers. Reviews of Geophysics, 18 ( 1 ), 183 – 202. https://doi.org/10.1029/rg018i001p00183
dc.identifier.citedreferencePrölss, G. W. ( 1995 ). Ionospheric F‐region storms. In H. Volland, (Ed.), Handbook of atmospheric electrodynamics (1995) (Vol. II, (pp. 195 – 235 ). CRC Press.
dc.identifier.citedreferenceReinisch, B. W., Scali, L., & Haines, D. M. ( 1998 ). Ionospheric Drfit measurements with digisondes (Vol. 41 ). Annali Di Geofisca.
dc.identifier.citedreferenceRideout, W., & Coster, A. ( 2006 ). Automated gps processing for global total electron content data. GPS Solutions, 10 ( 3 ), 219 – 228. https://doi.org/10.1007/s10291-006-0029-5
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.