Show simple item record

A test for rate‐coupling of trophic and cranial evolutionary dynamics in New World bats

dc.contributor.authorShi, Jeff J.
dc.contributor.authorWesteen, Erin P.
dc.contributor.authorRabosky, Daniel L.
dc.date.accessioned2021-05-12T17:26:30Z
dc.date.available2022-05-12 13:26:28en
dc.date.available2021-05-12T17:26:30Z
dc.date.issued2021-04
dc.identifier.citationShi, Jeff J.; Westeen, Erin P.; Rabosky, Daniel L. (2021). "A test for rate‐coupling of trophic and cranial evolutionary dynamics in New World bats." Evolution 75(4): 861-875.
dc.identifier.issn0014-3820
dc.identifier.issn1558-5646
dc.identifier.urihttps://hdl.handle.net/2027.42/167529
dc.description.abstractMorphological evolution is often assumed to be causally related to underlying patterns of ecological trait evolution. However, few studies have directly tested whether evolutionary dynamics of—and major shifts in—ecological resource use are coupled with morphological shifts that may facilitate trophic innovation. Using diet and multivariate cranial (microCT) data, we tested whether rates of trophic and cranial evolution are coupled in the radiation of New World bats. We developed a generalizable information‐theoretic method for describing evolutionary rate heterogeneity across large candidate sets of multirate evolutionary models, without relying on a single best‐fitting model. We found considerable variation in trophic evolutionary dynamics, in sharp contrast to a largely homogeneous cranial evolutionary process. This dichotomy is surprising given established functional associations between overall skull morphology and trophic ecology. We suggest that assigning discrete trophic states may underestimate trophic generalism and opportunism, and that this radiation could be characterized by labile crania and a homogeneous dynamic of generally high morphological rates. Overall, we discuss how trophic classifications could substantively impact our interpretation of how these dynamics covary in adaptive radiations.
dc.publisherUniv. of Chicago Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othertrophic evolution
dc.subject.othershape evolution
dc.subject.otherChiroptera
dc.subject.otherecological evolution
dc.subject.othermicroCT
dc.titleA test for rate‐coupling of trophic and cranial evolutionary dynamics in New World bats
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167529/1/evo14188.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167529/2/evo14188_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167529/3/evo14188-sup-0001-FigureS8.pdf
dc.identifier.doi10.1111/evo.14188
dc.identifier.sourceEvolution
dc.identifier.citedreferenceRojas, D., M. J. Ramos Pereira, C. Fonseca, and L. M. Dávalos. 2018. Eating down the food chain: generalism is not an evolutionary dead end for herbivores. Ecol. Lett. 21: 402 – 410.
dc.identifier.citedreferenceAdams, D. C. 2014c. Quantifying and comparing phylogenetic evolutionary rates for shape and other high‐dimensional phenotypic data. Syst. Biol. 63: 166 – 177.
dc.identifier.citedreferenceAdams, D. C., and M. L. Collyer. 2018. Multivariate phylogenetic comparative methods: evaluations, comparisons, and recommendations. Syst. Biol. 67: 14 – 31.
dc.identifier.citedreferenceAdams, D. C., and M. L. Collyer 2015. Permutation tests for phylogenetic comparative analyses of high‐dimensional shape data: what you shuffle matters. Evolution 69: 823 – 829.
dc.identifier.citedreferenceAdams, D. C., M. L. Collyer, A. Kaliontzopoulou, and E. Sherratt. 2017. Geomorph: software for geometric morphometric analyses. Version 3.0.6.
dc.identifier.citedreferenceArbour, J. H., A. A. Curtis, and S. E. Santana. 2019. Signatures of echolocation and dietary ecology in the adaptive radiation of skull shape in bats. Nat. Comm. 10: 2036.
dc.identifier.citedreferenceArnold, S. J. 1983. Morphology, performance, and fitness. Am. Zool. 23: 347 – 361.
dc.identifier.citedreferenceHarmon, L. J., and H. Harrison. 2015. Species diversity is dynamic and unbounded at local and continental scales. Am. Nat. 185: 584 – 593.
dc.identifier.citedreferenceRohlf, F. J., and D. Slice. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39: 40 – 59.
dc.identifier.citedreferenceRojas, D., O. M. Warsi, and L. M. Dávalos. 2016. Bats (Chiroptera: Noctilionoidea) challenge a recent origin of extant Neotropical diversity. Syst. Biol. 65: 432 – 448.
dc.identifier.citedreferenceSantana, S. E., and E. R. Dumont. 2009. Connecting behaviour and performance: the evolution of biting behaviour and bite performance in bats. J. Evol. Biol. 22: 2131 – 2145.
dc.identifier.citedreferenceSantana, S. E., and S. E. Lofgren. 2013. Does nasal echolocation influence the modularity of the mammal skull? J. Evol. Biol. 26: 2520 – 2526.
dc.identifier.citedreferenceSantana, S. E., E. R. Dumont, and J. L. Davis. 2010. Mechanics of bite force production and its relationship to diet in bats. Funct. Ecol. 24: 776 – 784.
dc.identifier.citedreferenceSantana, S. E., I. R. Grosse, and E. R. Dumont. 2012. Dietary hardness, loading behavior, and the evolution of skull form in bats. Evolution 66: 2587 – 2598.
dc.identifier.citedreferenceSchluter, D. 1996. Ecological causes of adaptive radiation. Am. Nat. 148: S40 – S64.
dc.identifier.citedreference———. 2000. The ecology of adaptive radiation. Oxford Univ. Press, Oxford, U.K.
dc.identifier.citedreferenceSerb, J. M., E. Sherratt, A. Alejandrino, and D. C. Adams. 2017. Phylogenetic convergence and multiple shell shape optima for gliding scallops (Bivalvia: Pectinidae). J. Evol. Biol. 30: 1736 – 1747.
dc.identifier.citedreferenceSherratt, E., D. J. Gower, C. P. Klingenberg, and M. Wilkinson. 2014. Evolution of cranial shape in caecilians (Amphibia: Gymnophiona). Evol. Biol. 41: 528 – 545.
dc.identifier.citedreferenceShi, J. J., and D. L. Rabosky. 2015. Speciation dynamics during the global radiation of extant bats. Evolution 69: 1528 – 1545.
dc.identifier.citedreferenceShi, J. J., E. P. Westeen, N. T. Katlein, E. R. Dumont, and D. L. Rabosky. 2018a. Ecomorphological and phylogenetic controls on sympatry across extant bats. J. Biogeog. 45: 1560 – 1570.
dc.identifier.citedreferenceShi, J. J., E. P. Westeen, and D. L. Rabosky. 2018b. Digitizing extant bat diversity: an open‐access repository of 3D, μCT‐scanned skulls for research and education. PLoS ONE 13: e0203022.
dc.identifier.citedreferenceSimmons, N. B. 2005. Order Chiroptera. Pp. 312 – 529 in D. E. Wilson and D. M. Reeder, eds. Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins Univ. Press, Baltimore, MD.
dc.identifier.citedreferenceSimmons, N. B., and T. M. Conway. 2003. Evolution of ecological diversity in bats. Pp. 493 – 535 in Bat ecology, ed. Univ. of Chicago Press, Chicago.
dc.identifier.citedreferenceSimpson, G. G. 1953. The major features of evolution. Columbia City Press, New York.
dc.identifier.citedreferenceStebbins, G. L. 1970. Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Annu. Rev. Ecol. Syst. 1: 307 – 326.
dc.identifier.citedreferenceSturmbauer, C. 1998. Explosive speciation in cichlid fishes of the African Great Lakes: a dynamic model of adaptive radiation. J. Fish Biol. 53: 18 – 36.
dc.identifier.citedreferenceTeeling, E. C., M. S. Springer, O. Madsen, P. Bates, S. J. O’Brien, and W. J. Murphy. 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307: 580 – 584.
dc.identifier.citedreferenceVoigt, C. C., and D. H. Kelm. 2006. Host preference of the common vampire bat ( Desmodus rotundus; Chiroptera) assessed by stable isotopes. J. Mammal. 87: 1 – 6.
dc.identifier.citedreferenceWagner, C. E., L. J. Harmon, and O. Seehausen. 2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487: 366 – 369.
dc.identifier.citedreferenceWinter, Y., and O. von Helversen. 2003. Operational tongue length in phyllostomid nectar‐feeding bats. J. Mammal. 84: 886 – 896.
dc.identifier.citedreferenceYang, A. S. 2001. Modularity, evolvability, and adaptive radiations: a comparison of the hemi‐and holometabolous insects. Evol. Dev. 3: 59 – 72.
dc.identifier.citedreferenceZanno, L. E., and P. J. Makovicky. 2011. Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution. Proc. Natl. Acad. Sci. USA 108: 232 – 237.
dc.identifier.citedreferenceZelditch, M. L., J. Ye, J. S. Mitchell, and D. L. Swiderski. 2017. Rare ecomorphological convergence on a complex adaptive landscape: body size and diet mediate evolution of jaw shape in squirrels (Sciuridae). Evolution 71: 633 – 649.
dc.identifier.citedreferenceAdams, D. C. 2014a. A generalized K statistic for estimating phylogenetic signal from shape and other high‐dimensional multivariate data. Syst. Biol. 63: 685 – 697.
dc.identifier.citedreferenceBarros, M. A. S., A. M. Rui, and M. E. Fabian. 2013. Seasonal variation in the diet of the bat Anoura caudifer (Phyllostomidae: Glossophaginae) at the southern limit of its geographic range. Acta Chiropterol. 15: 77 – 84.
dc.identifier.citedreferenceBell, G. P. 1982. Behavioral and ecological aspects of gleaning by a desert insectivorous bat Antrozous pallidus (Chiroptera: Vespertilionidae). Behav. Ecol. Sociobiol. 10: 217 – 223.
dc.identifier.citedreferenceBellwood, D. R., P. C. Wainwright, C. J. Fulton, and A. S. Hoey. 2006. Functional versatility supports coral reef biodiversity. Proc. R. Soc. Lond. B Biol. Sci. 273: 101 – 107.
dc.identifier.citedreferenceBerwaerts, K., H. Van Dyck, and P. Aerts. 2002. Does flight morphology relate to flight performance? An experimental test with the butterfly Pararge aegeria. Funct. Ecol. 16: 484 – 491.
dc.identifier.citedreferenceBlankers, T., D. C. Adams, and J. J. Wiens. 2012. Ecological radiation with limited morphological diversification in salamanders. J. Evol. Biol. 25: 634 – 646.
dc.identifier.citedreferenceBlomberg, S. P., T. Garland, Jr., and A. R. Ives. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57: 717 – 745.
dc.identifier.citedreferenceBurin, G., W. D. Kissling, P. R. Guimarães, Ç. H. Şekercioğlu, and T. B. Quental. 2016. Omnivory in birds is a macroevolutionary sink. Nat. Comm. 7: 11250.
dc.identifier.citedreferenceCalsbeek, R., and D. J. Irschick. 2007. The quick and the dead: correlational selection on morphology, performance, and habitat use in island lizards. Evolution 61: 2493 – 2503.
dc.identifier.citedreferenceCarter, G. G., C. E. Coen, L. M. Stenzler, and I. J. Lovette. 2006. Avian host DNA isolated from the feces of white‐winged vampire bats ( Diaemus youngi ). Acta Chiropterol. 8: 255 – 258.
dc.identifier.citedreferenceClavel, J., and H. Morlon. 2020. Reliable phylogenetic regressions for multivariate comparative data: illustration with the MANOVA and application to the effect of diet on mandible morphology in phyllostomid bats. Syst. Biol. 69: 927 – 943.
dc.identifier.citedreferenceClavel, J., G. Escarguel, and G. Merceron. 2015. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6: 1311 – 1319.
dc.identifier.citedreferenceCooney, C. R., and G. H. Thomas. 2020. Heterogeneous relationships between rates of speciation and body size evolution across vertebrate clades. Nat. Ecol. Evol. 5: 101 – 110.
dc.identifier.citedreferenceCozzolino, S., and A. Widmer. 2005. Orchid diversity: an evolutionary consequence of deception? Trends Ecol. Evol. 20: 487 – 494.
dc.identifier.citedreferenceCurtis, A. A., and N. B. Simmons. 2017. Unique turbinal morphology in horseshoe bats (Chiroptera: Rhinolophidae). Anat. Rec. 300: 309 – 325.
dc.identifier.citedreferenceDavis Rabosky, A. R., C. L. Cox, D. L. Rabosky, P. O. Title, I. A. Holmes, A. Feldman, and J. A. McGuire. 2016. Coral snakes predict the evolution of mimicry across New World snakes. Nat. Comm. 7: 11484.
dc.identifier.citedreferenceDawideit, B. A., A. B. Phillimore, I. Laube, B. Leisler, and K. Böhning‐Gaese. 2009. Ecomorphological predictors of natal dispersal distances in birds. J. Anim. Ecol. 78: 388 – 395.
dc.identifier.citedreferenceDenton, J. S. S., and D. C. Adams. 2015. A new phylogenetic test for comparing multiple high‐dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; Myctophidae). Evolution 69: 2425 – 2440.
dc.identifier.citedreferenceDumont, E. R., I. R. Grosse, and G. J. Slater. 2009. Requirements for comparing the performance of finite element models of biological structures. J. Theor. Biol. 256: 96 – 103.
dc.identifier.citedreferenceDumont, E. R., L. M. Dávalos, A. Goldberg, S. E. Santana, K. Rex, and C. C. Voigt. 2012. Morphological innovation, diversification and invasion of a new adaptive zone. Proc. R. Soc. Lond. B Biol. Sci. 279: 1797 – 1805.
dc.identifier.citedreferenceFeilich, K. L., and H. López‐Fernández. 2019. When does form reflect function? Acknowledging and supporting ecomorphological assumptions. Integr. Comp. Biol. 59: 358 – 370.
dc.identifier.citedreferenceFitzJohn, R. G. 2012. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3: 1084 – 1092.
dc.identifier.citedreferenceFleming, T., and W. Kress. 2013. The ornaments of life: coevolution and conservation in the tropics. Univ. of Chicago Press, Chicago.
dc.identifier.citedreferenceGillespie, R. 2004. Community assembly through adaptive radiation in Hawaiian spiders. Science 303: 356 – 359.
dc.identifier.citedreferenceGoswami, A. 2006. Cranial modularity shifts during mammalian evolution. Am. Nat. 168: 270 – 280.
dc.identifier.citedreferenceGould, S. J., and N. Eldredge. 1993. Punctuated equilibrium comes of age. Nature 366: 223 – 227.
dc.identifier.citedreferenceGunz, P., P. Mitteroecker, S. Neubauer, G. W. Weber, and F. L. Bookstein. 2009. Principles for the virtual reconstruction of hominin crania. J. Hum. Evol. 57: 48 – 62.
dc.identifier.citedreferenceGrundler, M. C., and D. L. Rabosky. 2020a. Complex ecological phenotypes on phylogenetic trees: a Markov process model for comparative analysis of multivariate count data. Syst. Biol. https://doi.org/10.1093/sysbio/syaa031.
dc.identifier.citedreference———. 2020b. Macroevolutionary analysis of discrete traits with rate heterogeneity. BioRxiv https://doi.org/10.1101/2020.01.07.897777.
dc.identifier.citedreferenceHoffmann, F. G., S. R. Hoofer, and R. J. Baker. 2008. Molecular dating of the diversification of Phyllostominae bats based on nuclear and mitochondrial DNA sequences. Mol. Phylogenet. Evol. 49: 653 – 658.
dc.identifier.citedreferenceJones, K. E., O. R. P. Bininda‐Emonds, and J. L. Gittleman. 2005. Bats, clocks, and rocks: diversification patterns in Chiroptera. Evolution 59: 2243 – 2255.
dc.identifier.citedreferenceKingsolver, J. G., and R. B. Huey. 2003. Introduction: the evolution of morphology, performance, and fitness. Integr. Comp. Biol. 43: 361 – 366.
dc.identifier.citedreferenceKlingenberg, C. P., and J. Marugán‐Lobón. 2013. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 62: 591 – 610.
dc.identifier.citedreferenceKosnik, M. A., D. Jablonski, R. Lockwood, and P. M. Novack‐Gottshall. 2006. Quantifying molluscan body size in evolutionary and ecological analyses: maximizing the return on data‐collection efforts. Palaios 21: 588 – 597.
dc.identifier.citedreferenceLenhart, P. A., V. Mata‐Silva, and J. D. Johnson. 2010. Foods of the pallid bat, Antrozous pallidus (Chiroptera: Vespertilionidae), in the Chihuahuan desert of western Texas. Southwest. Nat. 55: 110 – 115.
dc.identifier.citedreferenceLinde‐Medina, M., J. C. Boughner, S. E. Santana, and R. Diogo. 2016. Are more diverse parts of the mammalian skull more labile? Ecol. Evol. 6: 2318 – 2324.
dc.identifier.citedreferenceLópez‐Aguirre, C., J. Pérez‐Torres, and L. A. B. Wilson. 2015. Cranial and mandibular shape variation in the genus Carollia (Mammalia: Chiroptera) from Colombia: biogeographic patterns and morphological modularity. PeerJ 3: e1197.
dc.identifier.citedreferenceLosos, J. B. 1990. The evolution of form and function: morphology and locomotor performance in West Indian Anolis lizards. Evolution 44: 1189 – 1203.
dc.identifier.citedreferenceLosos, J. B., and D. L. Mahler. 2010. Adaptive radiation: the interaction of ecological opportunity, adaptation, and speciation. Pp. 381 – 420 in M. Bell, D. Futuyma, W. Eanes, and J. Levinton, eds. Evolution since Darwin: The first 150 years. Sinauer Associates, Sunderland, MA.
dc.identifier.citedreferenceMachado, M., E. M. dos Santos Schmidt, T. C. Margarido, and F. Montiani‐Ferreira. 2007. A unique intraorbital osseous structure in the large fruit‐eating bat ( Artibeus lituratus ). Vet. Ophthalmol. 10: 100 – 105.
dc.identifier.citedreferenceMcGuire, J. L. 2010. Geometric morphometrics of vole ( Microtus californicus ) dentition as a new paleoclimate proxy: shape change along geographic and climatic clines. Quat. Int. 212: 198 – 205.
dc.identifier.citedreferenceMiles, D. B., and R. E. Ricklefs. 1984. The correlation between ecology and morphology in deciduous forest passerine birds. Ecology 65: 1629 – 1640.
dc.identifier.citedreferenceMonteiro, L. R., and M. R. Nogueira. 2011. Evolutionary patterns and processes in the radiation of phyllostomid bats. BMC Evol. Biol. 11: 137.
dc.identifier.citedreferenceNowak, M. D. 1994. Walker’s bats of the world. Johns Hopkins University Press, Baltimore, MD.
dc.identifier.citedreferenceOelbaum, P. J., M. B. Fenton, N. B. Simmons, and H. G. Broders. 2019. Community structure of a Neotropical bat fauna as revealed by stable isotope analysis: not all species fit neatly into predicted guilds. Biotropica 51: 719 – 730.
dc.identifier.citedreferenceOlson, D. M., E. Dinerstein, E. D. Wikramanayake, N. D. Burgess, G. V. N. Powell, E. C. Underwood, J. A. D’amico, I. Itoua, H. E. Strand, J. C. Morrison, et al. 2001. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51: 933 – 938.
dc.identifier.citedreferenceOsborn, H. F. 1902. The law of adaptive radiation. Am. Nat. 36: 353 – 363.
dc.identifier.citedreferenceRabosky, D. L. 2009. Ecological limits on clade diversification in higher taxa. Am. Nat. 173: 662 – 674.
dc.identifier.citedreferenceRabosky, D. L., F. Santini, J. Eastman, S. A. Smith, B. Sidlauskas, J. Chang, and M. E. Alfaro. 2013. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Comm. 4: 1958.
dc.identifier.citedreferenceRabosky, D. L., S. C. Donellan, M. C. Grundler, and I. J. Lovette. 2014a. Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. Syst. Biol. 63: 610 – 627.
dc.identifier.citedreferenceRabosky, D. L., M. C. Grundler, C. J. R. Anderson, P. O. Title, J. J. Shi, J. W. Brown, H. Huang, and J. G. Larson. 2014b. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5: 701 – 707.
dc.identifier.citedreferenceRevell, L. J., and D. C. Collar. 2009. Phylogenetic of the evolutionary correlation using likelihood. Evolution 63: 1090 – 1100.
dc.identifier.citedreferenceRevell, L. J., and L. J. Harmon. 2008. Testing quantitative genetic hypotheses about the evolutionary rate matrix for continuous characters. Evol. Ecol. Res. 10: 311 – 331.
dc.identifier.citedreferenceRex, K., B. I. Czaczkes, R. Michener, T. H. Kunz, and C. C. Voigt. 2010. Specialization and omnivory in diverse mammalian assemblages. Ecoscience 17: 37 – 46.
dc.identifier.citedreferenceRicklefs, R. E. 2004. Cladogenesis and morphological diversification in passerine birds. Nature 430: 338 – 341.
dc.identifier.citedreferenceRobinson, B. W., and D. S. Wilson. 1998. Optimal foraging, specialization, and a solution to Liem’s paradox. Am. Nat. 151: 223 – 235.
dc.identifier.citedreferenceRohlf, F. J. 2010. tpsRelw: relative warps analysis. Version 1.49.
dc.identifier.citedreferenceAdams, D. C. 2014b. A method for assessing phylogenetic least squares models for shape and other high‐dimensional multivariate data. Evolution 68: 2675 – 2688.
dc.identifier.citedreferenceRundell, R. J., and T. D. Price. 2009. Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol. Evol. 24: 394 – 399.
dc.identifier.citedreferenceSantana, S. E., and E. Cheung. 2016. Go big or go fish: morphological specializations in carnivorous bats. Proc. R. Soc. Lond. B Biol. Sci. 283: 20160615.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.