Show simple item record

Across- vendor standardization of semi- LASER for single- voxel MRS at 3T

dc.contributor.authorDeelchand, Dinesh K.
dc.contributor.authorBerrington, Adam
dc.contributor.authorNoeske, Ralph
dc.contributor.authorJoers, James M.
dc.contributor.authorArani, Arvin
dc.contributor.authorGillen, Joseph
dc.contributor.authorSchär, Michael
dc.contributor.authorNielsen, Jon‐fredrik
dc.contributor.authorPeltier, Scott
dc.contributor.authorSeraji‐bozorgzad, Navid
dc.contributor.authorLandheer, Karl
dc.contributor.authorJuchem, Christoph
dc.contributor.authorSoher, Brian J.
dc.contributor.authorNoll, Douglas C.
dc.contributor.authorKantarci, Kejal
dc.contributor.authorRatai, Eva M.
dc.contributor.authorMareci, Thomas H.
dc.contributor.authorBarker, Peter B.
dc.contributor.authorÖz, Gülin
dc.date.accessioned2021-05-12T17:26:33Z
dc.date.available2022-06-12 13:26:31en
dc.date.available2021-05-12T17:26:33Z
dc.date.issued2021-05
dc.identifier.citationDeelchand, Dinesh K.; Berrington, Adam; Noeske, Ralph; Joers, James M.; Arani, Arvin; Gillen, Joseph; Schär, Michael ; Nielsen, Jon‐fredrik ; Peltier, Scott; Seraji‐bozorgzad, Navid ; Landheer, Karl; Juchem, Christoph; Soher, Brian J.; Noll, Douglas C.; Kantarci, Kejal; Ratai, Eva M.; Mareci, Thomas H.; Barker, Peter B.; Öz, Gülin (2021). "Across- vendor standardization of semi- LASER for single- voxel MRS at 3T." NMR in Biomedicine 34(5): n/a-n/a.
dc.identifier.issn0952-3480
dc.identifier.issn1099-1492
dc.identifier.urihttps://hdl.handle.net/2027.42/167530
dc.description.abstractThe semi- adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single- shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at high- and ultra- high fields. Across- vendor standardization of the sLASER sequence at 3 tesla has been challenging due to the B1 requirements of the adiabatic inversion pulses and maximum B1 limitations on some platforms. The aims of this study were to design a short- echo sLASER sequence that can be executed within a B1 limit of 15 μT by taking advantage of gradient- modulated RF pulses, to implement it on three major platforms and to evaluate the between- vendor reproducibility of its perfomance with phantoms and in vivo. In addition, voxel- based first and second order B0 shimming and voxel- based B1 adjustments of RF pulses were implemented on all platforms. Amongst the gradient- modulated pulses considered (GOIA, FOCI and BASSI), GOIA- WURST was identified as the optimal refocusing pulse that provides good voxel selection within a maximum B1 of 15 μT based on localization efficiency, contamination error and ripple artifacts of the inversion profile. An sLASER sequence (30 ms echo time) that incorporates VAPOR water suppression and 3D outer volume suppression was implemented with identical parameters (RF pulse type and duration, spoiler gradients and inter- pulse delays) on GE, Philips and Siemens and generated identical spectra on the GE - Braino- phantom between vendors. High- quality spectra were consistently obtained in multiple regions (cerebellar white matter, hippocampus, pons, posterior cingulate cortex and putamen) in the human brain across vendors (5 subjects scanned per vendor per region; mean signal- to- noise ratio > 33; mean water linewidth between 6.5 Hz to 11.4 Hz). The harmonized sLASER protocol is expected to produce high reproducibility of MRS across sites thereby allowing large multi- site studies with clinical cohorts.Harmonization of the single- voxel sLASER sequence on three major MR vendors (GE, Philips and Siemens) has resulted in high quality and reproducible spectra in multiple brain regions (cerebellar white matter, hippocampus, posterior cingulate cortex, pons and putamen) at 3 T.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherclinical
dc.subject.otherharmonization
dc.subject.otherMR spectroscopy
dc.subject.otherGOIA- WURST
dc.subject.othergradient- modulated
dc.subject.otherhuman
dc.subject.otherbrain
dc.titleAcross- vendor standardization of semi- LASER for single- voxel MRS at 3T
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167530/1/nbm4218_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167530/2/nbm4218.pdf
dc.identifier.doi10.1002/nbm.4218
dc.identifier.sourceNMR in Biomedicine
dc.identifier.citedreferenceProvencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993; 30 ( 6 ): 672 - 679.
dc.identifier.citedreferenceà z G, Tkac I. Short- echo, single- shot, full- intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem. Magn Reson Med. 2011; 65 ( 4 ): 901 - 910.
dc.identifier.citedreferenceCarr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954; 94 ( 3 ): 630 - 638.
dc.identifier.citedreferenceDeelchand DK, Henry P- G, MarjaÅ ska M. Effect of Carr- Purcell refocusing pulse trains on transverse relaxation times of metabolites in rat brain at 9.4 tesla. Magn Reson Med. 2015; 73 ( 1 ): 13 - 20.
dc.identifier.citedreferenceMichaeli S, Garwood M, Zhu XH, et al. Proton T 2 relaxation study of water, N- acetylaspartate, and creatine in human brain using Hahn and Carr- Purcell spin echoes at 4T and 7T. Magn Reson Med. 2002; 47 ( 4 ): 629 - 633.
dc.identifier.citedreferenceDeelchand DK, Kantarci K, Ã z G. Improved localization, spectral quality, and repeatability with advanced MRS methodology in the clinical setting. Magn Reson Med. 2018; 79 ( 3 ): 1241 - 1250.
dc.identifier.citedreferenceTerpstra M, Cheong I, Lyu T, et al. Test- retest reproducibility of neurochemical profiles with short- echo, single- voxel MR spectroscopy at 3T and 7T. Magn Reson Med. 2016; 76 ( 4 ): 1083 - 1091.
dc.identifier.citedreferencevan de Bank BL, Emir UE, Boer VO, et al. Multi- center reproducibility of short Echo time single voxel 1H MRS of the human brain at 7T with adiabatic slice- selective refocusing pulses. Proc Intl Soc Mag Reson Med 2013:3982.
dc.identifier.citedreferenceMRspa: Magnetic Resonance signal processing and analysis https://www.cmrr.umn.edu/downloads/mrspa/ Aug 2018.
dc.identifier.citedreferenceDeelchand DK, Auerbach EJ, Kobayashi N, MarjaÅ ska M. Transverse relaxation time constants of the five major metabolites in human brain measured in vivo using LASER and PRESS at 3 T. Magn Reson Med. 2018; 79 ( 3 ): 1260 - 1265.
dc.identifier.citedreferenceScheenen TWJ, Klomp DWJ, Wijnen JP, Heerschap A. Short echo time 1H- MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magn Reson Med. 2008; 59 ( 1 ): 1 - 6.
dc.identifier.citedreferenceNatt O, Bezkorovaynyy V, Michaelis T, Frahm J. Use of phased array coils for a determination of absolute metabolite concentrations. Magn Reson Med. 2005; 53 ( 1 ): 3 - 8.
dc.identifier.citedreferenceWarnking JM, Pike GB. Bandwidth- modulated adiabatic RF pulses for uniform selective saturation and inversion. Magn Reson Med. 2004; 52 ( 5 ): 1190 - 1199.
dc.identifier.citedreferenceGarwood M, DelaBarre L. The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson. 2001; 153 ( 2 ): 155 - 177.
dc.identifier.citedreferenceAndronesi OC, Ramadan S, Ratai E- M, Jennings D, Mountford CE, Sorensen AG. Spectroscopic imaging with improved gradient modulated constant adiabaticity pulses on high- field clinical scanners. J Magn Reson. 2010; 203 ( 2 ): 283 - 293.
dc.identifier.citedreferencevan de Bank BL, Emir UE, Boer VO, et al. Multi- center reproducibility of neurochemical profiles in the human brain at 7 tesla. NMR Biomed. 2015; 28 ( 3 ): 306 - 316.
dc.identifier.citedreferenceDeelchand DK, Adanyeguh IM, Emir UE, et al. Two- site reproducibility of cerebellar and brainstem neurochemical profiles with short- echo, single- voxel MRS at 3T. Magn Reson Med. 2015; 73 ( 5 ): 1718 - 1725.
dc.identifier.citedreferenceBednaŠík P, Moheet A, Deelchand DK, et al. Feasibility and reproducibility of neurochemical profile quantification in the human hippocampus at 3- T. NMR Biomed. 2015; 28 ( 6 ): 685 - 693.
dc.identifier.citedreferenceà z G, Alger J, Barker P, et al. The MRS consensus group. Clinical proton MR spectroscopy in central nervous system disorders. Radiology. 2014; 270 ( 3 ): 658 - 679.
dc.identifier.citedreferenceBottomley PA. Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci. 1987; 508 ( 1 ): 333 - 348.
dc.identifier.citedreferenceWilson M, Andronesi O, Barker PB, et al. Methodological consensus on clinical proton MRS of the brain: review and recommendations. Magn Reson Med. 2019; 82 ( 2 ): 527 - 550.
dc.identifier.citedreferenceCMRR Spectroscopy Package. https://www.cmrr.umn.edu/spectro/.
dc.identifier.citedreferenceCarlson JW, Kramer DM. Rapid radiofrequency calibration in MRI. Magn Reson Med. 1990; 15 ( 3 ): 438 - 445.
dc.identifier.citedreferenceNoeske R, Toncelli A, Hlavata H, Tosetti M. Voxel Based Transmit Gain Calibration using Bloch- Siegert semi- LASER at 7T. Proc Intl Soc Mag Reson Med. 2017; 25: 5509.
dc.identifier.citedreferenceOrdidge RJ, Wylezinska M, Hugg JW, Butterworth E, Franconi F. Frequency offset corrected inversion (FOCI) pulses for use in localized spectroscopy. Magn Reson Med. 1996; 36 ( 4 ): 562 - 566.
dc.identifier.citedreferenceLandheer K, Juchem C. FAMASITO - FASTMAP Shim Tool for Efficient B0 Shimming. 2018;Columbia Tech Ventures (CTV) License CU18208(innovation.columbia.edu/technologies/CU18208_famasito).
dc.identifier.citedreferenceLandheer K, Juchem C. FAMASITO - FASTMAP shim tool towards user- friendly single- step B0 homogenization. Proc Intl Soc Mag Reson Med. 2019; 27:0216.
dc.identifier.citedreferenceGruetter R, Tkac I. Field mapping without reference scan using asymmetric echo- planar techniques. Magn Reson Med. 2000; 43 ( 2 ): 319 - 323.
dc.identifier.citedreferenceGruetter R. Automatic, localized in vivo adjustment of all first- and second- order shim coils. Magn Reson Med. 1993; 29 ( 6 ): 804 - 811.
dc.identifier.citedreferencePark YW, Deelchand DK, Joers JM, et al. AutoVOI: real- time automatic prescription of volume- of- interest for single voxel spectroscopy. Magn Reson Med. 2018; 80 ( 5 ): 1787 - 1798.
dc.identifier.citedreferenceSchirmer T, Auer DP. On the reliability of quantitative clinical magnetic resonance spectroscopy of the human brain. NMR Biomed. 2000; 13 ( 1 ): 28 - 36.
dc.identifier.citedreferenceTkÃ¡Ä I, StarÄ uk Z, Choi IY, Gruetter R. In vivo 1 H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med. 1999; 41 ( 4 ): 649 - 656.
dc.identifier.citedreferenceTannus A, Garwood M. Adiabatic pulses. NMR Biomed. 1997; 10 ( 8 ): 423 - 434.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.