Show simple item record

Hybrid Three‐Dimensional–Printed Ear Tissue Scaffold With Autologous Cartilage Mitigates Soft Tissue Complications

dc.contributor.authorChang, Brian
dc.contributor.authorCornett, Ashley
dc.contributor.authorNourmohammadi, Zahra
dc.contributor.authorLaw, Jadan
dc.contributor.authorWeld, Blaine
dc.contributor.authorCrotts, Sarah J.
dc.contributor.authorHollister, Scott J.
dc.contributor.authorLombaert, Isabelle M. A.
dc.contributor.authorZopf, David A.
dc.date.accessioned2021-05-12T17:26:52Z
dc.date.available2022-06-12 13:26:50en
dc.date.available2021-05-12T17:26:52Z
dc.date.issued2021-05
dc.identifier.citationChang, Brian; Cornett, Ashley; Nourmohammadi, Zahra; Law, Jadan; Weld, Blaine; Crotts, Sarah J.; Hollister, Scott J.; Lombaert, Isabelle M. A.; Zopf, David A. (2021). "Hybrid Three‐Dimensional–Printed Ear Tissue Scaffold With Autologous Cartilage Mitigates Soft Tissue Complications." The Laryngoscope 131(5): 1008-1015.
dc.identifier.issn0023-852X
dc.identifier.issn1531-4995
dc.identifier.urihttps://hdl.handle.net/2027.42/167536
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherauricular reconstruction
dc.subject.otherThree‐dimensional printing
dc.subject.othertissue engineering
dc.titleHybrid Three‐Dimensional–Printed Ear Tissue Scaffold With Autologous Cartilage Mitigates Soft Tissue Complications
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOtolaryngology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167536/1/lary29114_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167536/2/lary29114.pdf
dc.identifier.doi10.1002/lary.29114
dc.identifier.sourceThe Laryngoscope
dc.identifier.citedreferenceShergold OA, Fleck NA. Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin. J Biomech Eng 2005; 127: 838 – 848.
dc.identifier.citedreferenceCubitt JJ, Chang LY, Liang D, Vandervord J, Marucci DD. Auricular reconstruction. J Paediatr Child Health 2019; 55: 512 – 517.
dc.identifier.citedreferenceOlshinka A, Louis M, Truong TA. Autologous ear reconstruction. Semin Plast Surg 2017; 31: 146 – 151.
dc.identifier.citedreferenceCenzi R, Farina A, Zuccarino L, Carinci F. Clinical outcome of 285 Medpor grafts used for craniofacial reconstruction. J Craniofac Surg 2005; 16: 526 – 530.
dc.identifier.citedreferenceConstantine KK, Gilmore J, Lee K, Leach J Jr. Comparison of microtia reconstruction outcomes using rib cartilage vs porous polyethylene implant. JAMA Facial Plast Surg 2014; 16: 240 – 244.
dc.identifier.citedreferenceReiffel AJ, Kafka C, Hernandez KA, et al. High‐fidelity tissue engineering of patient‐specific auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS One 2013; 8: e56506.
dc.identifier.citedreferenceBichara DA, O’Sullivan NA, Pomerantseva I, et al. The tissue‐engineered auricle: past, present, and future. Tissue Eng Part B Rev 2012; 18: 51 – 61.
dc.identifier.citedreferenceTack P, Victor J, Gemmel P, Annemans L. 3D‐printing techniques in a medical setting: a systematic literature review. Biomed Eng Online 2016; 15: 115.
dc.identifier.citedreferenceJung CS, Kim BK, Lee J, Min BH, Park SH. Development of printable natural cartilage matrix bioink for 3D printing of irregular tissue shape. Tissue Eng Regen Med 2018; 15: 155 – 162.
dc.identifier.citedreferenceZopf DA, Flanagan CL, Mitsak AG, Brennan JR, Hollister SJ. Pore architecture effects on chondrogenic potential of patient‐specific 3‐dimensionally printed porous tissue bioscaffolds for auricular tissue engineering. Int J Pediatr Otorhinolaryngol 2018; 114: 170 – 174.
dc.identifier.citedreferenceZopf DA, Mitsak AG, Flanagan CL, Wheeler M, Green GE, Holliser SJ. Computer aided‐designed, 3‐dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. Otolaryngol Head Neck Surg 2015; 152: 57 – 62.
dc.identifier.citedreferenceZopf DA, Hollister SJ, Nelson ME, Ohye ERG, Green GE. Bioresporbable airway spint created with a three‐dimensional printer. N Engl J Med 2013; 368: 2043 – 2045.
dc.identifier.citedreferenceMaas SA, Ellis BJ, Ateshian GA, Weiss JA. FEBio: finite elements for biomechanics. J Biomech Eng 2012; 134: 011005.
dc.identifier.citedreferenceZopf DA, Flanagan CL, Nasser HB, et al. Biomechanical evaluation of human and porcine auricular cartilage. Laryngoscope 2015; 125: E262 – E268.
dc.identifier.citedreferenceSafranin. Conduct Science website. Available at: https://conductscience.com/lab/safranin/. Accessed April 22, 2020.
dc.identifier.citedreferenceStephan S, Reinisch J. Auricular reconstruction using porous polyethylene implant technique. Facial Plast Surg Clinics of North Am 2018; 26: 69 – 85.
dc.identifier.citedreferenceSchroeder MJ, Lloyd MS. Tissue engineering strategies for auricular reconstruction. J Craniofac Surg 2017; 28: 2007 – 2011.
dc.identifier.citedreferenceTogo T, Utani A, Naitoh M, et al. Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction. Lab Invest 2006; 86: 445 – 457.
dc.identifier.citedreferenceCohen BP, Bernstein JL, Morrison KA, Spector JA, Bonassar LJ. Tissue engineering the human auricle by auricular chondrocyte‐mesenchymal stem cell co‐implantation. PLoS One 2018; 13: e0202356.
dc.identifier.citedreferenceKim HY, Jung SY, Lee SJ, Lee HJ, Truong MD, Kim HS. Fabrication and characterization of 3D‐printed elastic auricular scaffolds: a pilot study. Laryngoscope 2019; 129: 351 – 357.
dc.identifier.citedreferenceZhou G, Jiang H, Yin Z, et al. In vitro regeneration of patient‐specific ear‐shaped cartilage and its first clinical application for auricular reconstruction. EBioMedicine 2018; 28: 287 – 302.
dc.identifier.citedreferenceLiao J, Chen Y, Chen J, et al. Auricle shaping using 3D printing and autologous diced cartilage. Laryngoscope 2019; 129: 2467 – 2474.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.