Show simple item record

Constraints on the Latitudinal Profile of Jupiter’s Deep Jets

dc.contributor.authorGalanti, Eli
dc.contributor.authorKaspi, Yohai
dc.contributor.authorDuer, Keren
dc.contributor.authorFletcher, Leigh
dc.contributor.authorIngersoll, Andrew P.
dc.contributor.authorLi, Cheng
dc.contributor.authorOrton, Glenn S.
dc.contributor.authorGuillot, Tristan
dc.contributor.authorLevin, Steven M.
dc.contributor.authorBolton, Scott J.
dc.date.accessioned2021-06-02T21:04:51Z
dc.date.available2022-06-02 17:04:50en
dc.date.available2021-06-02T21:04:51Z
dc.date.issued2021-05-16
dc.identifier.citationGalanti, Eli; Kaspi, Yohai; Duer, Keren; Fletcher, Leigh; Ingersoll, Andrew P.; Li, Cheng; Orton, Glenn S.; Guillot, Tristan; Levin, Steven M.; Bolton, Scott J. (2021). "Constraints on the Latitudinal Profile of Jupiter’s Deep Jets." Geophysical Research Letters 48(9): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/167748
dc.description.abstractThe observed zonal winds at Jupiter’s cloud tops have been shown to be closely linked to the asymmetric part of the planet’s measured gravity field. Here, we examine to what extent, and at which latitudes, must the flows at depth resemble those at the cloud level to match the gravity signal. We show, using both the symmetric and asymmetric parts of the measured gravity field, that the observed cloud‐level wind profile between 25°S and 25°N must extend unaltered to depths of thousands of kilometers. Poleward, the midlatitude deep jets also contribute to the gravity signal, but might differ somewhat from the cloud‐level winds. We analyze the likelihood of this difference and give bounds to its strength. We also find that to match the gravity measurements, the winds must project inward in the direction parallel to Jupiter’s spin axis, and decay inward in the radial direction.Plain Language SummaryObservations of Jupiter’s cloud‐tops reveal very strong atmospheric winds reaching 500 km/hr. Using very accurate measurements of the planet’s gravity field, provided by NASA’s Juno spacecraft, the cloud‐level winds were found to extend thousands of kilometers into the interior of Jupiter, with a wind profile similar to that observed at the clouds level. However, analysis of various measurements suggested that at some latitudinal regions the flow below the clouds might be different to some extent. Here we explore the constraints posed by the Juno gravity measurements on the latitudinal profile of the zonal flow in Jupiter below the cloud level. We find that to explain the detailed latitudinal structure of the wind‐attributed gravity field, the cloud‐level winds in the 60°S–60°N range have to extend deep into the planet, approximately keeping their observed latitudinal profile. With that, we find that most of the wind‐induced gravity signal comes from the 25°S to 25°N region, where the strongest jets reside, suggesting that in the midlatitudes the observed jets at the cloud level might be somewhat different at depth.Key PointsJupiter’s cloud‐level wind profile extended to depth, matches in sign and amplitude both the measured odd and residual‐even gravity harmonicsThe majority of the signal comes from the wind profile between 25°S and 25°N, which must extend unaltered thousands of kilometers deepThe gravity signal also implies that from the cloud‐tops downward the flow must be organized in a columnar structure and also decay radially
dc.publisherSpringer‐Verlag
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMWR
dc.subject.otherJupiter
dc.subject.otherJuno
dc.subject.othergravity
dc.subject.otherwinds
dc.titleConstraints on the Latitudinal Profile of Jupiter’s Deep Jets
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167748/1/2021GL092912-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167748/2/grl62308_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167748/3/grl62308.pdf
dc.identifier.doi10.1029/2021GL092912
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceKaspi, Y., Flierl, G. R., & Showman, A. P. ( 2009 ). The deep wind structure of the giant planets: Results from an anelastic general circulation model. Icarus, 202 ( 2 ), 525 – 542. https://doi.org/10.1016/j.icarus.2009.03.026
dc.identifier.citedreferenceDurante, D., Parisi, M., Serra, D., Zannoni, M., Notaro, V., Racioppa, P., et al. ( 2020 ). Jupiter’s gravity field halfway through the Juno mission. Geophysical Research Letters, 47 ( 4 ), e86572. https://doi.org/10.1029/2019GL086572
dc.identifier.citedreferenceFletcher, L. N., Kaspi, Y., Guillot, T., & Showman, A. P. ( 2020 ). How well do we understand the belt/zone circulation of giant planet atmospheres? Space Science Reviews, 216 ( 2 ), 30. https://doi.org/10.1007/s11214-019-0631-9
dc.identifier.citedreferenceFletcher, L. N., Oyafuso, F. A., Allison, M. D., Ingersoll, A., Li, L., Kaspi, Y., et al. ( 2021 ). Jupiter’s temperate belt/zone contrasts revealed at depth by Juno microwave observations. Earth and Space Science Open Archive, 35. https://doi.org/10.1002/essoar.10506297.1
dc.identifier.citedreferenceFrench, M., Becker, A., Lorenzen, W., Nettelmann, N., Bethkenhagen, M., Wicht, J., & Redmer, R. ( 2012 ). Ab initio simulations for material properties along the Jupiter adiabat. Astrophysical Journal Supplement, 202 ( 1 ), 5. https://doi.org/10.1088/0067-0049/202/1/5
dc.identifier.citedreferenceGalanti, E., Cao, H., & Kaspi, Y. ( 2017 ). Constraining Jupiter’s internal flows using Juno magnetic and gravity measurements. Geophysical Research Letters, 44 ( 16 ), 8173 – 8181. https://doi.org/10.1002/2017GL074903
dc.identifier.citedreferenceGalanti, E., & Kaspi, Y. ( 2016 ). An adjoint‐based method for the inversion of the Juno and Cassini gravity measurements into wind fields. Acta Pathologica Japonica, 820 ( 2 ), 91. https://doi.org/10.3847/0004-637X/820/2/91
dc.identifier.citedreferenceGalanti, E., & Kaspi, Y. ( 2021 ). Combined magnetic and gravity measurements probe the deep zonal flows of the gas giants. Monthly Notices of the Royal Astronomical Society, 501 ( 2 ), 2352 – 2362. https://doi.org/10.1093/mnras/staa3722
dc.identifier.citedreferenceGalanti, E., Kaspi, Y., & Tziperman, E. ( 2017 ). A full, self‐consistent treatment of thermal wind balance on oblate fluid planets. Journal of Fluid Mechanics, 810, 175 – 195. https://doi.org/10.1017/jfm.2016.687
dc.identifier.citedreferenceGuillot, A. P., Adumitroaie, V., Allison, M. D., Atreya, S., Bellotti, A. A., Bolton, S. J., et al. ( 2017 ). Implications of the ammonia distribution on Jupiter from 1 to 100 bars as measured by the Juno microwave radiometer. Geophysical Research Letters, 44 ( 15 ), 7676 – 7685. https://doi.org/10.1002/2017GL074277
dc.identifier.citedreferenceGuillot, T., Miguel, Y., Militzer, B., Hubbard, W. B., Kaspi, Y., Galanti, E., et al. ( 2018 ). A suppression of differential rotation in Jupiter’s deep interior. Nature, 555, 227 – 230. https://doi.org/10.1038/nature25775
dc.identifier.citedreferenceHeimpel, M. H., Gastine, T., & Wicht, J. ( 2016 ). Simulation of deep‐seated zonal jets and shallow vortices in gas giant atmospheres. Nature Geoscience, 9, 19 – 23. https://doi.org/10.1038/ngeo2601
dc.identifier.citedreferenceIess, L., Folkner, W. M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., et al. ( 2018 ). Measurement of Jupiter’s asymmetric gravity field. Nature, 555, 220 – 222. https://doi.org/10.1038/nature25776
dc.identifier.citedreferenceJanssen, M. A., Oswald, J. E., Brown, S. T., Gulkis, S., Levin, S. M., Bolton, S. J., et al. ( 2017 ). MWR: Microwave radiometer for the Juno mission to Jupiter. Space Science Reviews, 213 ( 1–4 ), 139 – 185. https://doi.org/10.1007/s11214-017-0349-5
dc.identifier.citedreferenceKaspi, Y. ( 2013 ). Inferring the depth of the zonal jets on Jupiter and Saturn from odd gravity harmonics. Geophysical Research Letters, 40, 676 – 680. https://doi.org/10.1029/2012GL053873
dc.identifier.citedreferenceKaspi, Y., Davighi, J. E., Galanti, E., & Hubbard, W. B. ( 2016 ). The gravitational signature of internal flows in giant planets: Comparing the thermal wind approach with barotropic potential‐surface methods. Icarus, 276, 170 – 181. https://doi.org/10.1016/j.icarus.2016.04.001
dc.identifier.citedreferenceKaspi, Y., Galanti, E., Hubbard, W. B., Stevenson, D. J., Bolton, S. J., Iess, L., et al. ( 2018 ). Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Nature, 555, 223 – 226. https://doi.org/10.1038/nature25793
dc.identifier.citedreferenceKaspi, Y., Galanti, E., Showman, A. P., Stevenson, D. J., Guillot, T., Iess, L., & Bolton, S. J. ( 2020 ). Comparison of the deep atmospheric dynamics of Jupiter and Saturn in light of the Juno and Cassini gravity measurements. Space Science Reviews, 216 ( 5 ), 84. https://doi.org/10.1007/s11214-020-00705-7
dc.identifier.citedreferenceKaspi, Y., Hubbard, W. B., Showman, A. P., & Flierl, G. R. ( 2010 ). Gravitational signature of Jupiter’s internal dynamics. Geophysical Research Letters, 37. https://doi.org/10.1029/2009GL041385
dc.identifier.citedreferenceKong, D., Zhang, K., Schubert, G., & Anderson, J. D. ( 2018 ). Origin of Jupiter’s cloud‐level zonal winds remains a puzzle even after Juno. Proceedings of the National Academy of Sciences of the United States of America, 115 ( 34 ), 8499 – 8504. https://doi.org/10.1073/pnas.1805927115
dc.identifier.citedreferenceLi, C., Ingersoll, A., Bolton, S., Levin, S., Janssen, M., Atreya, S., et al. ( 2020 ). The water abundance in Jupiter’s equatorial zone. Nature Astronomy, 4, 609 – 616. https://doi.org/10.1038/s41550-020-1009-3
dc.identifier.citedreferenceLi, C., Ingersoll, A., Janssen, M., Levin, S., Bolton, S., Adumitroaie, V., et al. ( 2017 ). The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophysical Research Letters, 44 ( 11 ), 5317 – 5325. https://doi.org/10.1002/2017GL073159
dc.identifier.citedreferenceLi, L., Ingersoll, A. P., Vasavada, A. R., Simon‐Miller, A. A., Del Genio, A. D., Ewald, S. P., et al. ( 2006 ). Vertical wind shear on Jupiter from Cassini images. Journal of Geophysical Research, 111 ( E4 ), E04004. https://doi.org/10.1029/2005JE002556
dc.identifier.citedreferenceLiu, J., Goldreich, P., & Stevenson, D. ( 2008 ). Constraints on deep‐seated zonal winds inside Jupiter and Saturn. Icarus, 196, 653 – 664. https://doi.org/10.1016/j.icarus.2007.11.036
dc.identifier.citedreferenceMoore, K. M., Cao, H., Bloxham, J., Stevenson, D. J., Connerney, J. E. P., & Bolton, S. J. ( 2019 ). Time variation of Jupiter’s internal magnetic field consistent with zonal wind advection. Nature Astronomy, 3, 730 – 735. https://doi.org/10.1038/s41550-019-0772-5
dc.identifier.citedreferenceOrton, G. S., Fisher, B. M., Baines, K. H., Stewart, S. T., Friedson, A. J., Ortiz, J. L., et al. ( 1998 ). Characteristics of the Galileo probe entry site from Earth‐based remote sensing observations. Journal of Geophysical Research, 103, 22791 – 22814. https://doi.org/10.1029/98JE02380
dc.identifier.citedreferenceTollefson, J., Wong, M. H., de Pater, I., Simon, A. A., Orton, G. S., Rogers, J. H., et al. ( 2017 ). Changes in Jupiter’s zonal wind profile preceding and during the Juno mission. Icarus, 296, 163 – 178. https://doi.org/10.1016/j.icarus.2017.06.007
dc.identifier.citedreferenceWicht, J., Gastine, T., Duarte, L. D. V., & Dietrich, W. ( 2019 ). Dynamo action of the zonal winds in Jupiter. Astronomy & Astrophysics, 629, A125. https://doi.org/10.1051/0004-6361/201935682
dc.identifier.citedreferenceLiu, J., Schneider, T., & Kaspi, Y. ( 2013 ). Predictions of thermal and gravitational signals of Jupiter’s deep zonal winds. Icarus, 224, 114 – 125. https://doi.org/10.1016/j.icarus.2013.01.025
dc.identifier.citedreferencePedlosky, J. ( 1987 ). Geophysical fluid dynamics (p. 710 ). Springer‐Verlag.
dc.identifier.citedreferenceZhang, K., Kong, D., & Schubert, G. ( 2015 ). Thermal‐gravitational wind equation for the wind‐induced gravitational signature of giant gaseous planets: Mathematical derivation, numerical method, and illustrative solutions. Acta Pathologica Japonica, 806 ( 2 ), 270. https://doi.org/10.1088/0004-637X/806/2/270
dc.identifier.citedreferenceAtkinson, D. H., Pollack, J. B., & Seiff, A. ( 1998 ). The Galileo probe doppler wind experiment: Measurement of the deep zonal winds on Jupiter. Journal of Geophysical Research, 103, 22911 – 22928. https://doi.org/10.1029/98JE00060
dc.identifier.citedreferenceBolton, S. J., Adriani, A., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S., et al. ( 2017 ). Jupiter’s interior and deep atmosphere: The initial pole‐to‐pole passes with the Juno spacecraft. Science, 356, 821 – 825. https://doi.org/10.1126/science.aal2108
dc.identifier.citedreferenceBusse, F. H. ( 1970 ). Thermal instabilities in rapidly rotating systems. Journal of Fluid Mechanics, 44, 441 – 460. https://doi.org/10.1017/S0022112070001921
dc.identifier.citedreferenceBusse, F. H. ( 1976 ). A simple model of convection in the Jovian atmosphere. Icarus, 29, 255 – 260. https://doi.org/10.1016/0019-1035(76)90053-1
dc.identifier.citedreferenceBusse, F. H. ( 1994 ). Convection driven zonal flows and vortices in the major planets. Chaos, 4 ( 2 ), 123 – 134. https://doi.org/10.1063/1.165999
dc.identifier.citedreferenceCao, H., & Stevenson, D. J. ( 2017 ). Zonal flow magnetic field interaction in the semi‐conducting region of giant planets. Icarus, 296, 59 – 72. https://doi.org/10.1016/j.icarus.2017.05.015
dc.identifier.citedreferenceChoi, D. S., Showman, A. P., Vasavada, A. R., & Simon‐Miller, A. A. ( 2013 ). Meteorology of Jupiter’s equatorial hot spots and plumes from Cassini. Icarus, 223 ( 2 ), 832 – 843. https://doi.org/10.1016/j.icarus.2013.02.001
dc.identifier.citedreferenceChristensen, U. R. ( 2001 ). Zonal flow driven by deep convection in the major planets. Geophysical Research Letters, 28, 2553 – 2556. https://doi.org/10.1029/2000GL012643
dc.identifier.citedreferenceChristensen, U. R., Wicht, J., & Dietrich, W. ( 2020 ). Mechanisms for limiting the depth of zonal winds in the gas giant planets. Acta Pathologica Japonica, 890 ( 1 ), 61. https://doi.org/10.3847/1538-4357/ab698c
dc.identifier.citedreferenceDebras, F., & Chabrier, G. ( 2019 ). New models of Jupiter in the context of Juno and Galileo. Acta Pathologica Japonica, 872, 100. https://doi.org/10.3847/1538-4357/aaff65
dc.identifier.citedreferenceDowling, T. E. ( 1995 ). Estimate of Jupiter’s deep zonal‐wind profile from shoemaker‐levy 9 data and Arnol’d’s second stability criterion. Icarus, 117, 439 – 442. https://doi.org/10.1006/icar.1995.1169
dc.identifier.citedreferenceDowling, T. E. ( 2020 ). Jupiter‐style jet stability. Planetary Science Journal, 1, 6. https://doi.org/10.3847/PSJ/ab789d
dc.identifier.citedreferenceDuer, K., Galanti, E., & Kaspi, Y. ( 2019 ). Analysis of Jupiter’s deep jets combining Juno gravity and time‐varying magnetic field measurements. Acta Pathologica Japonica, 879 ( 2 ), L22. https://doi.org/10.3847/2041-8213/ab288e
dc.identifier.citedreferenceDuer, K., Galanti, E., & Kaspi, Y. ( 2020 ). The range of Jupiter’s flow structures that fit the Juno asymmetric gravity measurements. Journal of Geophysical Research: Planets, 125 ( 8 ), e06292. https://doi.org/10.1029/2019JE006292
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.