Show simple item record

Past connections with the mainland structure patterns of insular species richness in a continental‐shelf archipelago (Aegean Sea, Greece)

dc.contributor.authorHammoud, Cyril
dc.contributor.authorKougioumoutzis, Konstantinos
dc.contributor.authorRijsdijk, Kenneth F.
dc.contributor.authorSimaiakis, Stylianos M.
dc.contributor.authorNorder, Sietze J.
dc.contributor.authorFoufopoulos, Johannes
dc.contributor.authorGeorgopoulou, Elisavet
dc.contributor.authorLoon, Emiel E.
dc.date.accessioned2021-06-02T21:04:56Z
dc.date.available2022-06-02 17:04:53en
dc.date.available2021-06-02T21:04:56Z
dc.date.issued2021-05
dc.identifier.citationHammoud, Cyril; Kougioumoutzis, Konstantinos; Rijsdijk, Kenneth F.; Simaiakis, Stylianos M.; Norder, Sietze J.; Foufopoulos, Johannes; Georgopoulou, Elisavet; Loon, Emiel E. (2021). "Past connections with the mainland structure patterns of insular species richness in a continental‐shelf archipelago (Aegean Sea, Greece)." Ecology and Evolution 11(10): 5441-5458.
dc.identifier.issn2045-7758
dc.identifier.issn2045-7758
dc.identifier.urihttps://hdl.handle.net/2027.42/167749
dc.description.abstractRecent research in island biogeography has highlighted the important role of late Quaternary sea‐level fluctuations in shaping biogeographic patterns in insular systems but focused on oceanic systems. Through this study, we aim investigate how late Quaternary sea‐level fluctuations shaped species richness patterns in continental‐shelf island systems. Focusing on the Aegean archipelago, we first compiled maps of the area’s geography using published data, under three sea‐level stands: (a) current; (b) median sea‐level over the last nine glacial–interglacial cycles (MSL); and (c) Last Glacial Maximum (LGM). We gathered taxon–island occurrences for multiple chorotypes of angiosperms, butterflies, centipedes, and reptiles. We investigated the impact of present‐day and past geographic settings on chorological groups by analyzing island species–area relationships (ISARs) and using generalized linear mixed models (GLMMs) selection based on multiple metrics of goodness of fit. Our results confirm that the Aegean’s geography has changed dramatically since the LGM, whereas the MSL only modestly differs from the present configuration. Apart for centipedes, paleogeographic changes affected both native and endemic species diversity through altering connections between land‐bridge islands and the mainland. On land‐bridge islands, we detected over‐representation of native species and under‐representation of endemics. Unlike oceanic islands, sea‐level‐driven increase of isolation and area contraction did not strongly shape patterns of species richness. Furthermore, the LGM configurations rather than the MSL configuration shaped patterns of endemic species richness. This suggests that even short episodes of increased connectivity with continental populations are sufficient to counteract the genetic differentiation of insular populations. On the other hand, the over‐representation of native nonendemic species on land‐bridge islands reflected MSL rather than LGM mainland connections. Our study shows that in terms of processes affecting species richness patterns, continental archipelagos differ fundamentally from oceanic systems because episodic connections with the mainland have profound effects on the biota of land‐bridge islands.In the Aegean archipelago, the shorter lasting configurations of the Late Glacial Maximum promoted increased connectivity with the mainland, thereby counteracting processes promoting endemism. This result contrasts strongly with observations made on oceanic island, where longer lasting configurations largely shaped the current species diversity. This highlights that, in terms of processes affecting species richness patterns, continental archipelagos differ fundamentally from oceanic systems.
dc.publisherOxford University Press Inc
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAegean archipelago
dc.subject.otherangiosperms
dc.subject.otherbiogeography
dc.subject.otherbutterflies
dc.subject.othercentipedes
dc.subject.otherland‐bridge island
dc.subject.otherlast glacial maximum
dc.subject.otherPleistocene
dc.subject.otherreptiles
dc.titlePast connections with the mainland structure patterns of insular species richness in a continental‐shelf archipelago (Aegean Sea, Greece)
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167749/1/ece37438-sup-0002-A3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167749/2/ece37438-sup-0010-A3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167749/3/ece37438-sup-0008-A3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167749/4/ece37438-sup-0003-A3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167749/5/ece37438_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167749/6/ece37438-sup-0004-A3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167749/7/ece37438-sup-0009-A3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167749/8/ece37438.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167749/9/ece37438-sup-0011-A3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167749/10/ece37438-sup-0007-A3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167749/11/ece37438-sup-0006-A3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167749/12/ece37438-sup-0005-A3.pdf
dc.identifier.doi10.1002/ece3.7438
dc.identifier.sourceEcology and Evolution
dc.identifier.citedreferencePoulakakis, N., Kapli, P., Lymberakis, P., Trichas, A., Vardinoyiannis, K., Sfenthourakis, S., & Mylonas, M. ( 2015 ). A review of phylogeographic analyses of animal taxa from the Aegean and surrounding regions. Journal of Zoological Systematics and Evolutionary Research, 53, 18 – 32. https://doi.org/10.1111/jzs.12071
dc.identifier.citedreferencePanitsa, M., Kagiampaki, A., & Kougioumoutzis, K. ( 2018 ). Plant diversity and biogeography of the Aegean Archipelago: A new synthesis. In S. Sfenthourakis (Ed.), Biogeography and biodiversity of the Aegean (pp. 279 – 290 ). Broken Hill Publishers Ltd.
dc.identifier.citedreferencePanitsa, M., Trigas, P., Iatrou, G., & Sfenthourakis, S. ( 2010 ). Factors affecting plant species richness and endemism on land‐bridge islands – an example from the East Aegean archipelago. Acta Oecologica, 36, 431 – 437. https://doi.org/10.1016/j.actao.2010.04.004
dc.identifier.citedreferencePanitsa, M., & Tzanoudakis, D. ( 2010 ). Floristic diversity on small islands and islets: Leros islets’ group (East Aegean area, Greece). Phytologia Balcanica, 16, 271 – 284.
dc.identifier.citedreferencePorter, S. C. ( 1989 ). Some geological implications of average Quaternary glacial conditions. Quaternary Research, 32, 245 – 261. https://doi.org/10.1016/0033‐5894(89)90092‐6
dc.identifier.citedreferenceAli, J. R. ( 2017 ). Islands as biological substrates: Classification of the biological assemblage components and the physical island types. Journal of Biogeography, 44, 984 – 994.
dc.identifier.citedreferenceR Core Team ( 2018 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/
dc.identifier.citedreferenceRicklefs, R., & Lovette, I. ( 1999 ). The roles of island area per se and habitat diversity in the species‐area relationships of four lesser antillean faunal groups. Journal of Animal Ecology, 68 ( 6 ), 1142 – 1160.
dc.identifier.citedreferenceRijsdijk, K. F., Hengl, T., Norder, S. J., Otto, R., Emerson, B. C., Ávila, S. P., López, H., van Loon, E. E., Tjørve, E., & Fernández‐Palacios, J. M. ( 2014 ). Quantifying surface‐area changes of volcanic islands driven by Pleistocene sea‐level cycles: Biogeographical implications for the Macaronesian archipelagos. Journal of Biogeography, 41, 1242 – 1254. https://doi.org/10.1111/jbi.12336
dc.identifier.citedreferenceRunemark, H. ( 1969 ). Reproductive drift, a neglected principle in reproductive biology. Botaniska Notiser, 122, 90 – 129.
dc.identifier.citedreferenceRunemark, H. ( 1971 ). The phytogeography of the central Aegean. In A. Strid (Ed.), Evolution in the Aegean (pp. 20 – 28 ). Opera botanica.
dc.identifier.citedreferenceSakellariou, D., & Galanidou, N. ( 2016 ). Pleistocene submerged landscapes and Palaeolithic archaeology in the tectonically active Aegean region. Geological Society London Special Publications, 411, 145 – 178.
dc.identifier.citedreferenceSfenthourakis, S., & Triantis, K. A. ( 2017 ). The Aegean archipelago: A natural laboratory of evolution, ecology and civilisations. Journal of Biological Research‐Thessaloniki, 24 ( 4 ), 1 – 13.
dc.identifier.citedreferenceSimaiakis, S., & Martinez‐Morales, M. ( 2005 ). Nestedness in centipede (Chilopoda) assemblages on continental islands (Aegean, Greece). Acta Oecologica, 36 ( 3 ), 282 – 290.
dc.identifier.citedreferenceSimaiakis, S., Minelli, A., & Mylonas, M. ( 2004 ). The centipede fauna (Chilopoda) of Crete and its satellite islands (Greece, Eastern Mediterranean). Israel Journal of Zoology, 50, 367 – 418.
dc.identifier.citedreferenceSimaiakis, S., Minelli, A., & Mylonas, M. ( 2005 ). The centipede fauna (Chilopoda) of the South Aegean archipelago (Greece, Eastern Mediterranean). Israel Journal of Zoology, 51, 241 – 307.
dc.identifier.citedreferenceSimaiakis, S. M., Rijsdijk, K. F., Koene, E. F. M., Norder, S. J., Van Boxel, J. H., Stocchi, P., Hammoud, C., Kougioumoutzis, K., Georgopoulou, E., van Loon, E., Tjørve, K. M. C., & Tjørve, E. ( 2017 ). Geographic changes in the Aegean Sea since the Last Glacial Maximum: Postulating biogeographic effects of sea‐level rise on islands. Paleogeography Paleoclimatology, Paleoecology, 471, 108 – 119. https://doi.org/10.1016/j.palaeo.2017.02.002
dc.identifier.citedreferenceSpilani, L., Bougiouri, K., Antoniou, A., Psonis, N., Poursanidis, D., Lymberakis, P., & Poulakakis, N. ( 2019 ). Multigene phylogeny, phylogeography and population structure of Podarcis cretensis species group in south Balkans. Molecular Phylogenetics and Evolution, 138, 193 – 204. https://doi.org/10.1016/j.ympev.2019.05.026
dc.identifier.citedreferenceStrid, A. ( 2016 ). Atlas of the Aegean flora. Botanic Garden and Botanical Museum Berlin.
dc.identifier.citedreferenceStrid, A., & Tan, K. ( 1997 ). Flora Hellinica. Koeltz Scientific Books.
dc.identifier.citedreferenceThanou, E., Kornilios, P., Lymberakis, P., & Leaché, A. D. ( 2020 ). Genomic and mitochondrial evidence of ancient isolations and extreme introgression in the four‐lined snake. Current Zoology, 66 ( 1 ), 99 – 111. https://doi.org/10.1093/cz/zoz018
dc.identifier.citedreferenceTriantis, K. A., Guilhaumon, F., & Whittaker, R. J. ( 2012 ). The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215 – 231. https://doi.org/10.1111/j.1365‐2699.2011.02652.x
dc.identifier.citedreferenceTriantis, K. A., Kougioumoutzis, K., Legakis, A., Anastasiou, I., Andriopoulos, P., Georgiadis, C. H., Lymberakis, P., Oikonomou, A., Probonas, N., Proios, K., Spaneli, V., Simaiakis, S. M., Trichas, A., Trigas, P., Vardinoyiannis, K., & Sfenthourakis, S. ( 2018 ). The zoogeographic regions of the Aegean Sea: A multi‐taxon approach. In S. Sfenthourakis (Ed.), Biogeography and Biodiversity of the Aegean (pp. 279 – 290 ). Broken Hill Publishers Ltd.
dc.identifier.citedreferenceTriantis, K. A., Mylonas, M., Weiser, M. D., Lika, K., & Vardinoyiannis, K. ( 2005 ). Species richness, environmental heterogeneity and area: A case study based on land snails in Skyros archipelago (Aegean Sea, Greece). Journal of Biogeography, 32, 1727 – 1735. https://doi.org/10.1111/j.1365‐2699.2005.01322.x
dc.identifier.citedreferenceTriantis, K. A., Mylonas, M., & Whittaker, R. J. ( 2008 ). Evolutionary species‐area curves as revealed by single‐island endemics: Insights for the inter‐provincial species‐area relationship. Ecography, 31, 401 – 407. https://doi.org/10.1111/j.0906‐7590.2007.05323.x
dc.identifier.citedreferenceTzedakis, P. C., Channell, J. E. T., Hodell, D. A., Kleiven, H. F., & Skinner, L. C. ( 2012 ). Determining the natural length of the current interglacial. Nature Geoscience, 5, 138 – 141.
dc.identifier.citedreferenceValakos, E., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P., & Foufopoulos, J. ( 2008 ). The Amphibians and Reptiles of Greece. Edition Chimaira.
dc.identifier.citedreferenceValli, A.‐T., Kougioumoutzis, K., Iliadou, E., Panitsa, M., & Trigas, P. ( 2019 ). Determinants of alpha and beta vascular plant diversity in Mediterranean island systems: The Ionian islands, Greece. Nordic Journal of Botany, 37, e02156. https://doi.org/10.1111/njb.02156
dc.identifier.citedreferenceVeron, S., Haevermans, T., Govaerts, R., Mouchet, M., & Pellens, R. ( 2019 ). Distribution and relative age of endemism across islands worldwide. Scientific Reports, 9, 11693. https://doi.org/10.1038/s41598‐019‐47951‐6
dc.identifier.citedreferenceWeigelt, P., & Kreft, H. ( 2013 ). Quantifying island isolation – insights from global patterns of insular plant species richness. Ecography, 36, 417 – 429.
dc.identifier.citedreferenceWeigelt, P., Steinbauer, M. J., Cabral, J. S., & Kreft, H. ( 2016 ). Late Quaternary climate change shapes island biodiversity. Nature, 532, 99 – 102.
dc.identifier.citedreferenceWhittaker, R. J., Fernández‐Palacios, J. M., Matthews, T. J., Borregaard, M. K., & Triantis, K. A. ( 2017 ). Island biogeography: Taking the long view of nature’s laboratories. Science, 357, 6354. https://doi.org/10.1126/science.aam8326
dc.identifier.citedreferenceWhittaker, R. J., Triantis, K. A., & Ladle, R. J. ( 2008 ). A general dynamic theory of oceanic island biogeography. Journal of Biogeography, 35, 977 – 994.
dc.identifier.citedreferenceAguilée, R., Claessen, D., & Lambert, A. ( 2009 ). Allele fixation in a dynamic metapopulation: Founder effects vs refuge effects. Theoretical Population Biology, 76, 105 – 117.
dc.identifier.citedreferenceAli, J. R., & Aitchison, J. C. ( 2014 ). Exploring the combined role of eustasy and oceanic island thermal subsidence in shaping biodiversity on the Galápagos. Journal of Biogeography, 41, 1227 – 1241.
dc.identifier.citedreferenceÁvila, S. P., Cordeiro, R., Madeira, P., Silva, L., Medeiros, A., Rebelo, A. C., & Johnson, M. E. ( 2018 ). Global change impacts on large‐scale biogeographic patterns of marine organisms on Atlantic oceanic islands. Marine Pollution Bulletin, 126, 101 – 112.
dc.identifier.citedreferenceÁvila, S. P., Melo, C., Berning, B., Nuno, S., Quartau, R., Rijsdijk, K. F., & Johnson, M. E. ( 2019 ). Towards a ‘Sea‐Level Sensitive’ dynamic model: Impact of island ontogeny and glacio‐eustasy on global patterns of marine island biogeography. Biological Reviews of the Cambridge Philosophical Society, 94, 1116 – 1142.
dc.identifier.citedreferenceBarton, K. ( 2017 ). Mu‐MIn: Multi‐model inference. R Package Version 0.12.2/r18.
dc.identifier.citedreferenceBellati, A., Carranza, S., Garcia‐Porta, J., Fasola, M., & Sindaco, R. ( 2015 ). Cryptic diversity within the Anatololacerta species complex (Squamata: Lacertidae) in the Anatolian Peninsula: Evidence from a multi‐locus approach. Molecular Phylogenetics and Evolution, 82, 219 – 233.
dc.identifier.citedreferenceBintanja, R., van de Wal, R. S. W., & Oerlemans, J. ( 2005 ). Modelled atmospheric temperatures and global sea levels over the past million years. Nature, 437, 125 – 128.
dc.identifier.citedreferenceBittkau, C., & Comes, H. P. ( 2005 ). Evolutionary processes in a continental island system: Molecular phylogeography of the Aegean Nigella arvensis alliance (Ranunculaceae) inferred from chloroplast DNA. Molecular Ecology, 14, 4065 – 4083.
dc.identifier.citedreferenceBittkau, C., & Comes, H. P. ( 2009 ). Molecular inference of a Late Pleistocene diversification shift in Nigella s. lat. (Ranunculaceae) resulting from increased speciation in the Aegean archipelago. Journal of Biogeography, 36, 1346 – 1360.
dc.identifier.citedreferenceBlondel, J., Aronson, J., Bodiou, J.‐Y., & Boeuf, G. ( 2010 ). The mediterranean region. Biological diversity in space and time. Oxford University Press Inc.
dc.identifier.citedreferenceCapula, M., Luiselli, L., Bologna, M. A., & Ceccarelli, A. ( 2002 ). The decline of the Aeolian wall lizard, Podarcis raffonei: Causes and conservation proposals. Oryx, 36 ( 1 ), 66 – 72.
dc.identifier.citedreferenceCardillo, M., Gittleman, J., & Purvis, A. ( 2008 ). Global patterns in the phylogenetic structure of island mammal assemblages. Proceedings of the Royal Society B: Biological Sciences., 275, 1549 – 1556. https://doi.org/10.1098/rspb.2008.0262
dc.identifier.citedreferenceCarey, M., Boland, J., Weigelt, P., & Keppel, G. ( 2020 ). Towards an extended framework for the general dynamic theory of biogeography. Journal of Biogeography, 47, 2554 – 2566. https://doi.org/10.1111/jbi.13944
dc.identifier.citedreferenceChristodoulakis, D. ( 1996 ). The phytogeographical distribution patterns of the flora of Ikaria (E. Aegean, Greece) within the E. Mediterranean. Flora, 191, 393 – 399.
dc.identifier.citedreferenceChristodoulakis, D. ( 1996 ). The E. Aegean flora of Ikaria (Greece islands). Phyton, 36, 63 – 91.
dc.identifier.citedreferenceClark, P., Dyke, A., Shakun, J., Carlson, A., Clark, J., Wohlfarth, B., Mitrovica, J., Hostetler, S., McCabe, M. T. & Maximum, L. G. ( 2009 ). The last glacial maximum. Science, 325 ( 5941 ), 710 – 714. https://doi.org/10.1126/science.1172873
dc.identifier.citedreferenceComes, H. P., Tribsch, A., & Bittkau, C. ( 2008 ). Plant speciation in continental island floras as exemplified by Nigella in the Aegean Archipelago. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 27, 3083 – 3096.
dc.identifier.citedreferenceDennis, R. L. H., Shreeve, T. G., Olivier, A., & Coutsis, J. G. ( 2000 ). Contemporary geography dominates butterfly diversity gradients within the Aegean archipelago (Lepidoptera: Papilionoidea, Hesperioidea). Journal of Biogeography, 27 ( 6 ), 1365 – 1383. https://doi.org/10.1046/j.1365‐2699.2000.00514.x
dc.identifier.citedreferenceDiamond, J. ( 1972 ). Biogeographic kinetics: Estimation of relaxation times for Avifaunas of Southwest Pacific Islands. Proceedings of the National Academy of Sciences of the United States of America, 69, 3199 – 3203. https://doi.org/10.1073/pnas.69.11.3199
dc.identifier.citedreferenceDormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. ( 2013 ). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27 – 46. https://doi.org/10.1111/j.1600‐0587.2012.07348.x
dc.identifier.citedreferenceFattorini, S., Borges, P. A., Dapporto, L., & Strona, G. ( 2017 ). What can the parameters of the species–area relationship (SAR) tell us? Insights from Mediterranean islands. Journal of Biogeography, 44 ( 5 ), 1018 – 1028.
dc.identifier.citedreferenceFernández‐Palacios, J. M., Rijsdijk, K. F., Norder, S. J., Otto, R., Nascimento, L., Fernández‐Lugo, S., Tjørve, E., Whittaker, R. J., & Santos, A. ( 2015 ). Towards a glacial‐sensitive model of island biogeography. Global Ecology and Biogeography, 25, 817 – 830. https://doi.org/10.1111/geb.12320
dc.identifier.citedreferenceFlantua, S., & Hooghiemstra, H. ( 2018 ). Historical connectivity and mountain biodiversity. In Mountains, Climate and Biodiversity (pp. 171 ‐ 185 ). Wiley Blackwell.
dc.identifier.citedreferenceFoufopoulos, J., & Ives, A. R. ( 1999 ). Reptile extinctions on land‐bridge islands: Life‐history attributes and vulnerability to extinction. The American Naturalist, 153 ( 1 ), 1 – 25.
dc.identifier.citedreferenceFoufopoulos, J., Kilpatrick, A. M., & Ives, A. R. ( 2011 ). Climate change and elevated extinction rates of reptiles from Mediterranean islands. The American Naturalist, 177 ( 1 ), 119 – 129.
dc.identifier.citedreferenceGeorgopoulou, E., Neubauer, T. A., Kroh, A., Harzhauser, M., & Mandic, O. ( 2015 ). An outline of the European Quaternary localities with freshwater gastropods: Data on geography and updated stratigraphy. Palaeontologia Electronica, 18.3.48A, 1 – 9. https://doi.org/10.26879/527
dc.identifier.citedreferenceGrano, M., & Cattaneo, C. ( 2019 ). First record of the Rough‐tailed agama Stellagama stellio (Linnaeus, 1758) (Reptilia, Agamidae) from Karpathos island (Dodecanese, Greece). Parnassiana Archives, 7, 51 – 54.
dc.identifier.citedreferenceGreuter, W. ( 1971 ). L’apport de l’homme à la flore spontanée de Crête. Boissiera, 19, 329 – 337.
dc.identifier.citedreferenceGreuter, W. ( 1979 ). The origins and evolution of island floras as exemplified by the Aegean Archipelago. In D. Bramwell (Ed.), Plants and islands (pp. 87 – 106 ). Academic Press.
dc.identifier.citedreferenceHausdorf, B., & Hennig, C. ( 2005 ). The influence of recent geography, palaeogeography and climate on the composition of the fauna of the central Aegean Islands. Biological Journal of the Linnean Society, 84 ( 4 ), 785 – 795. https://doi.org/10.1111/j.1095‐8312.2005.00467.x
dc.identifier.citedreferenceHeaney, L. R., Balete, D. S., & Rickart, E. A. ( 2013 ). Models of oceanic island biogeography: Changing perspectives on biodiversity dynamics in archipelagoes. Frontier in Biogeography, 5, 249 – 257.
dc.identifier.citedreferenceHiggins, M. ( 2009 ). Greek islands: Geology. In R. Gillespie & D. Clague (Eds.), Encyclopedia of Islands (pp. 392 – 396 ). University of California Press.
dc.identifier.citedreferenceIliadou, E., Bazos, I., Kougioumoutzis, K., Karadimou, E., Kokkoris, I., Panitsa, M., Raus, T., Strid, A., & Dimopoulos, P. 2020. Taxonomic and phylogenetic diversity patterns in the Northern Sporades islets complex (West Aegean, Greece). Plant Systematics and Evolution, 306: 1 ‐ 17.
dc.identifier.citedreferenceItescu, Y., Foufopoulos, J., Pafilis, P., & Meiri, S. ( 2020 ). The diverse nature of island isolation and its effect on land bridge insular faunas. Global Ecology and Biogeography, 29, 262 – 280. https://doi.org/10.1111/geb.13024
dc.identifier.citedreferenceJaros, U., Tribsch, A., & Comes, H. P. ( 2018 ). Diversification in continental island archipelagos: New evidence on the roles of fragmentation, colonization and gene flow on the genetic divergence of Aegean Nigella (Ranunculaceae). Annals of Botany, 121, 241 – 254.
dc.identifier.citedreferenceKagiampaki, A., Triantis, K., Vardinoyiannis, K., & Mylonas, M. ( 2011 ). Factors affecting plant species richness and endemism in the South Aegean (Greece). Journal of Biological Research‐Thessaloniki, 16, 281 – 295.
dc.identifier.citedreferenceKallimanis, A. S., Bergmeier, E., Panitsa, M., Georghiou, K., Delipetrou, P., & Dimopoulos, P. ( 2011 ). Biogeographical determinants for total and endemic species richness in a continental archipelago. Biodiversity and Conservation, 19, 1225 – 1235. https://doi.org/10.1007/s10531‐009‐9748‐6
dc.identifier.citedreferenceKornilios, P., Thanou, E., Lymberakis, P., Ilgaz, Ç., Kumlutaş, Y., & Leaché, A. ( 2020 ). A phylogenomic resolution for the taxonomy of Aegean green lizards. Zoologica Scripta, 49 ( 1 ), 14 – 27. https://doi.org/10.1111/zsc.12385
dc.identifier.citedreferenceKougioumoutzis, K., Kokkoris, I. P., Panitsa, M., Kallimanis, A., Strid, A., & Dimopoulos, P. ( 2021 ). Plant endemism centres and biodiversity hotspots in Greece. Biology, 10 ( 2 ), 72.
dc.identifier.citedreferenceKougioumoutzis, K., Kokkoris, I., Panitsa, M., Trigas, P., Strid, A., & Dimopoulos, P. ( 2020 ). Spatial phylogenetics, biogeographical patterns and conservation implications of the Endemic Flora of Crete (Aegean. Greece) under Climate Change Scenarios. Biology, 9 ( 8 ), 199. https://doi.org/10.3390/biology9080199
dc.identifier.citedreferenceKougioumoutzis, K., & Tiniakou, A. ( 2014 ). Ecological factors driving plant species diversity in the South Aegean Volcanic Arc and other central Aegean islands. Plant Ecology and Diversity, 8, 173 – 186. https://doi.org/10.1080/17550874.2013.866989
dc.identifier.citedreferenceKougioumoutzis, K., Valli, A. T., Georgopoulou, E., Simaiakis, S. M., Triantis, K. A., & Trigas, P. ( 2017 ). Network biogeography of a complex island system: The Aegean Archipelago revisited. Journal of Biogeography, 44, 651 – 660. https://doi.org/10.1111/jbi.12920
dc.identifier.citedreferenceKreft, H., Jetz, W., Mutke, J., Kier, G., & Barthlott, W. ( 2008 ). Global diversity of island floras from a macroecological perspective. Ecology Letters, 11, 116 – 127.
dc.identifier.citedreferenceKuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. ( 2017 ). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82: 13.
dc.identifier.citedreferenceLambeck, K., & Purcell, A. ( 2005 ). Sea‐level change in the Mediterranean Sea since the LGM: Model predictions for tectonically stable areas. Quaternary Science Reviews, 24, 1969 – 1988. https://doi.org/10.1016/j.quascirev.2004.06.025
dc.identifier.citedreferenceLambeck, K., Rouby, H., Purcell, A., Sun, Y., & Sambridge, M. ( 2014 ). Sea‐level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America, 111, 15296 – 15303. https://doi.org/10.1073/pnas.1411762111
dc.identifier.citedreferenceLazarina, M., Kallimanis, A., Dimopoulos, P., Psaralexi, M., Michailidou, D., & Sgardelis, S. ( 2019 ). Patterns and drivers of species richness and turnover of neo‐endemic and palaeo‐endemic vascular plants in a Mediterranean hotspot: The case of Crete, Greece. Journal of Biological Research‐Thessaloniki, 26 ( 1 ), 12.
dc.identifier.citedreferenceMarzahn, E., Mayer, W., Joger, U., Ilgaz, Ç., Jablonski, D., Kindler, C., Kumlutaş, Y., Nistri, A., Schneeweiss, N., Vamberger, M., & Žagar, A. ( 2016 ). Phylogeography of the Lacerta viridis complex: Mitochondrial and nuclear markers provide taxonomic insights. Journal of Zoological Systematics and Evolutionary Research, 54 ( 2 ), 85 – 105.
dc.identifier.citedreferenceMurtaugh, P. ( 2014 ). In defense of P values. Ecology, 95, 611 – 617.
dc.identifier.citedreferenceNakagawa, S., & Schielzeth, H. ( 2013 ). A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods in Ecology and Evolution, 4, 133 – 142.
dc.identifier.citedreferenceNewmark, W. D. ( 1987 ). A land‐bridge island perspective on mammalian extinctions in western North American parks. Nature, 325 ( 6103 ), 430 – 432.
dc.identifier.citedreferenceNorder, S. J., Baumgartner, J. B., Borges, P. A. V., Hengl, T., Kissling, W. D., van Loon, E. E., & Rijsdijk, K. F. ( 2018 ). A global spatially explicit database of changes in island palaeo‐area and archipelago configuration during the late Quaternary. Global Ecology and Biogeography, 27, 500 – 505.
dc.identifier.citedreferenceNorder, S. J., Proios, K. V., Whittaker, R. J., Alonso, M. R., Borges, P. A. V., Borregaard, M. K., Cowie, R. H., Florens, F. B. V., de Frias Martins, A. M., Ibáñez, M., Kissling, W. D., de Nascimento, L., Otto, R., Parent, C. E., Rigal, F., Warren, B. H., Fernández‐Palacios, J. M., van Loon, E. E., Triantis, K. A., & Rijsdijk, K. F. ( 2019 ). Beyond the Last Glacial Maximum: Island endemism is best explained by long‐lasting archipelago configurations. Global Ecology and Biogeography, 28, 184 – 197. https://doi.org/10.1111/geb.12835
dc.identifier.citedreferencePamperis, L. ( 2019 ). The butterflies of Greece. Pamperis Editions. KOAN Editions.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.