Show simple item record

An Instant Change of Elastic Lattice Strain during Cu2Se Phase Transition: Origin of Abnormal Thermoelectric Properties

dc.contributor.authorBai, Hui
dc.contributor.authorSu, Xianli
dc.contributor.authorYang, Dongwang
dc.contributor.authorZhang, Qingjie
dc.contributor.authorTan, Gangjian
dc.contributor.authorUher, Ctirad
dc.contributor.authorTang, Xinfeng
dc.contributor.authorWu, Jinsong
dc.date.accessioned2021-06-02T21:05:03Z
dc.date.available2022-06-02 17:05:02en
dc.date.available2021-06-02T21:05:03Z
dc.date.issued2021-05
dc.identifier.citationBai, Hui; Su, Xianli; Yang, Dongwang; Zhang, Qingjie; Tan, Gangjian; Uher, Ctirad; Tang, Xinfeng; Wu, Jinsong (2021). "An Instant Change of Elastic Lattice Strain during Cu2Se Phase Transition: Origin of Abnormal Thermoelectric Properties." Advanced Functional Materials 31(20): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/167752
dc.description.abstractThe superionic conductor Cu2Se is a promising thermoelectric material due to its low thermal conductivity. An abnormal but clear change in the thermoelectric parameters has been observed during the phase transformation from the ordered and non‐cubic α‐Cu2Se to the disordered and cubic β‐Cu2Se. However, the microstructural origin of the abnormal change and its implications for thermoelectric applications remain largely unknown. Herein, by mimicking the real working conditions of thermoelectrics, the phase transition from α‐ to β‐Cu2Se induced by the rising temperature has been carefully investigated by in situ transmission electron microscopy. It is observed that an abrupt and anisotropic volume‐change in the Se‐sublattice occurs when the temperature is raised to the phase transition point. The abnormal change in the crystalline volume versus temperature, which is caused by the local migration of Cu‐ions, induces an instant and uncommon strain‐field, which reduces the carrier’s mobility and increases the electrical resistance. Local migration of Cu‐ions is responsible for a quite low thermal conductivity. Such effects exist only at the instance of the phase transition. Observing the thermoelectric response of the structure during the phase transition may provide insights into the development of high performance thermoelectric materials, which fall beyond the traditional approaches.By applying in situ TEM, a dynamic evolution of the crystalline structure and the strain fields during Cu2Se phase transformation have been studied. The instant generation and release of a large elastic strain is identified as one of the main origins of the abnormal thermoelectric behavior of Cu2Se in the moment of phase transition.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherthermoelectric materials
dc.subject.otherphase transformations
dc.subject.otherCu2Se ionic conductors
dc.subject.otherelastic lattice strain
dc.subject.otherin situ TEM
dc.titleAn Instant Change of Elastic Lattice Strain during Cu2Se Phase Transition: Origin of Abnormal Thermoelectric Properties
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167752/1/adfm202100431_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167752/2/adfm202100431.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167752/3/adfm202100431-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/adfm.202100431
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferencea) D. M. Rowe, Thermoelectrics Handbook: Macro to Nano, CRC Press, Boca Raton, FL 2018; b) G. Tan, L. D. Zhao, M. G. Kanatzidis, Chem. Rev. 2016, 116, 12123; c) X. L. Shi, J. Zou, Z. G. Chen, Chem. Rev. 2020, 120, 7399.
dc.identifier.citedreferenceH. J. Goldsmid, Introduction to Thermoelectricity, Springer, Berlin, 2010.
dc.identifier.citedreferencea) M. L. Taheri, E. A. Stach, I. Arslan, P. A. Crozier, B. C. Kabius, T. LaGrange, A. M. Minor, S. Takeda, M. Tanase, J. B. Wagner, Ultramicroscopy 2016, 170, 86; b) T. W. Hansen, J. B. Wagner, P. L. Hansen, S. Dahl, H. Topsøe, C. J. Jacobsen, Science 2001, 294, 1508.
dc.identifier.citedreferenceD. Byeon, R. Sobota, K. Delime‐Codrin, S. Choi, K. Hirata, M. Adachi, M. Kiyama, T. Matsuura, Y. Yamamoto, M. Matsunami, T. Takeuchi, Nat. Commun. 2019, 10, 72.
dc.identifier.citedreferencea) H. Liu, X. Shi, M. Kirkham, H. Wang, Q. Li, C. Uher, W. Zhang, L. Chen, Mater. Lett. 2013, 93, 121; b) H. Chen, Z. Yue, D. Ren, H. Zeng, T. Wei, K. Zhao, R. Yang, P. Qiu, L. Chen, X. Shi, Adv. Mater. 2019, 31, 1806518.
dc.identifier.citedreferencea) A. Skomorokhov, D. Trots, M. Knapp, N. Bickulova, H. J. J. o. a. Fuess, J. Alloys Compd. 2006, 421, 64; b) W. Qiu, P. Lu, X. Yuan, F. Xu, L. Wu, X. Ke, H. Liu, J. Yang, X. Shi, L. Chen, J. Yang, W. Zhang, J. Chem. Phys. 2016, 144, 194502; c) L. Gulay, M. Daszkiewicz, O. Strok, A. Pietraszko, Chem. Met. Alloys 2011, 4, 200; d) H. Chi, H. Kim, J. C. Thomas, G. Shi, K. Sun, M. Abeykoon, E. S. Bozin, X. Shi, Q. Li, X. Shi, Phys. Rev. B 2014, 89, 195209; e) S. A. Danilkin, M. Avdeev, M. Sale, T. Sakuma, Solid State Ionics 2012, 225, 190; f) E. Eikeland, A. B. Blichfeld, K. A. Borup, K. Zhao, J. Overgaard, X. Shi, L. Chen, B. B. Iversen, IUCrJ 2017, 4, 476; g) T. Zhao, Y.‐A. Wang, Z.‐Y. Zhao, Q. Liu, Q.‐J. Liu, Mater. Res. Express 2018, 5, 016305; h) P. Lu, W. Qiu, Y. Wei, C. Zhu, X. Shi, L. Chen, F. Xu, Acta Crystallogr., Sect. B: Struct. Sci. 2020, 76, 201.
dc.identifier.citedreferencea) Y. He, T. Day, T. Zhang, H. Liu, X. Shi, L. Chen, G. J. Snyder, Adv. Mater. 2014, 26, 3974; b) W. D. Liu, L. Yang, Z. G. Chen, J. Zou, Adv. Mater. 2020, 32, 1905703.
dc.identifier.citedreferencea) X. Su, F. Fu, Y. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. Yang, H. Chi, X. Tang, Q., Zhang, C., Uher, Nat. Commun. 2014, 5, 4908; b) R. Nunna, P. Qiu, M. Yin, H. Chen, R. Hanus, Q. Song, T. Zhang, M.‐Y. Chou, M. T. Agne, J. He, G. J. Snyder, X. Shi, L. Chen, Energy Environ. Sci. 2017, 10, 1928; c) J.‐Y. Tak, W. H. Nam, C. Lee, S. Kim, Y. S. Lim, K. Ko, S. Lee, W.‐S. Seo, H. K. Cho, J.‐H. Shim, C.‐H. Park, Chem. Mater. 2018, 30, 3276; d) S. Namsani, S. Auluck, J. K. Singh, Appl. Phys. Lett. 2017, 111, 163903; e) H. Tang, F.‐H. Sun, J.‐F. Dong, H.‐L. Z. Asfandiyar, Y. Pan, J.‐F. Li, Nano Energy 2018, 49, 267; f) M. Li, D. L. Cortie, J. Liu, D. Yu, S. M. K. N. Islam, L. Zhao, D. R. G. Mitchell, R. A. Mole, M. B. Cortie, S. Dou, X. Wang, Nano Energy 2018, 53, 993; g) A. A. Olvera, N. A. Moroz, P. Sahoo, P. Ren, T. P. Bailey, A. A. Page, C. Uher, P. F. P. Poudeu, Energy Environ. Sci. 2017, 10, 1668; h) J. L. Niedziela, D. Bansal, A. F. May, J. Ding, T. Lanigan‐Atkins, G. Ehlers, D. L. Abernathy, A. Said, O. Delaire, Nat. Phys. 2019, 15, 73; i) D. Voneshen, H. Walker, K. Refson, J. Goff, Phys. Rev. Lett. 2017, 118, 145901.
dc.identifier.citedreferencea) K. Trachenko, Phys. Rev. B 2008, 78, 104201; b) P. Lu, H. Liu, X. Yuan, F. Xu, X. Shi, K. Zhao, W. Qiu, W. Zhang, L. Chen, J. Mater. Chem. A 2015, 3, 6901; c) H. Liu, X. Yuan, P. Lu, X. Shi, F. Xu, Y. He, Y. Tang, S. Bai, W. Zhang, L. Chen, Y. Lin, L. Shi, H. Lin, X. Gao, X. Zhang, H. Chi, C. Uher, Adv. Mater. 2013, 25, 6607.
dc.identifier.citedreferencea) H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder, Nat. Mater. 2012, 11, 422; b) K. Zhao, P. Qiu, X. Shi, L. Chen, Adv. Funct. Mater. 2019, 30, 1903867.
dc.identifier.citedreferenceS. Sun, Y. Li, Y. Chen, X. Xu, L. Kang, J. Zhou, W. Xia, S. Liu, M. Wang, J. Jiang, A. Liang, D. Pei, K. Zhao, P. Qiu, X. Shi, L. Chen, Y. Guo, Z. Wang, Y. Zhang, Z. Liu, L. Yang, Y. Chen, Sci. Bull. 2020, 65, 1888.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.