Show simple item record

An efficient R1Ï dispersion imaging method for human knee cartilage using constant magnetization prepared turbo- FLASH

dc.contributor.authorPang, Yuxi
dc.contributor.authorPalmieri‐smith, Riann M.
dc.contributor.authorMaerz, Tristan
dc.date.accessioned2021-06-02T21:05:09Z
dc.date.available2022-07-02 17:05:07en
dc.date.available2021-06-02T21:05:09Z
dc.date.issued2021-06
dc.identifier.citationPang, Yuxi; Palmieri‐smith, Riann M. ; Maerz, Tristan (2021). "An efficient R1Ï dispersion imaging method for human knee cartilage using constant magnetization prepared turbo- FLASH." NMR in Biomedicine 34(6): n/a-n/a.
dc.identifier.issn0952-3480
dc.identifier.issn1099-1492
dc.identifier.urihttps://hdl.handle.net/2027.42/167754
dc.publisherSpringer Science & Business Media
dc.publisherWiley Periodicals, Inc.
dc.subject.othertailored constant R1Ï weighting
dc.subject.otherhuman knee articular cartilage
dc.subject.othermagic angle effect
dc.subject.otherquantitative R1Ï dispersion imaging
dc.subject.otherturbo- FLASH
dc.subject.otherfully refocused spin- lock preparation
dc.titleAn efficient R1Ï dispersion imaging method for human knee cartilage using constant magnetization prepared turbo- FLASH
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167754/1/nbm4500.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167754/2/nbm4500_am.pdf
dc.identifier.doi10.1002/nbm.4500
dc.identifier.sourceNMR in Biomedicine
dc.identifier.citedreferenceMotulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1987; 1 ( 5 ): 365 - 374.
dc.identifier.citedreferenceWilliams CF, Redpath TW. Sources of artifact and systematic error in quantitative snapshot FLASH imaging and methods for their elimination. Magn Reson Med. 1999; 41 ( 1 ): 63 - 71.
dc.identifier.citedreferenceCharagundla SR, Borthakur A, Leigh JS, Reddy R. Artifacts in T 1 Ï - weighted imaging: correction with a self- compensating spin- locking pulse. J Magn Reson. 2003; 162 ( 1 ): 113 - 121.
dc.identifier.citedreferenceMitrea BG, Krafft AJ, Song RT, Loeffler RB, Hillenbrand CM. Paired self- compensated spin- lock preparation for improved T 1 Ï quantification. J Magn Reson. 2016; 268: 49 - 57.
dc.identifier.citedreferenceZeng H, Danie LG, Gochberg C, Zhao Y, Avison M, Gore JC. A composite spin- lock pulse for Î B0 + B1 insensitive T1rho measurement. In: Proceedings of the 14th Annual Meeting of ISMRM, Seattle, Washington, USA. 2006:2356.
dc.identifier.citedreferenceGram M, Seethaler M, Gensler D, Oberberger J, Jakob PM, Nordbeck P. Balanced spin- lock preparation for B 1 - insensitive and B 0 - insensitive quantification of the rotating frame relaxation time T 1Ï . Magn Reson Med. 2021; 85: 2771 - 2780.
dc.identifier.citedreferenceJohnson CP, Thedens DR, Kruger SJ, Magnotta VA. Three- dimensional GRE T 1Ï mapping of the brain using tailored variable flip- angle scheduling. Magn Reson Med. 2020; 84 ( 3 ): 1235 - 1249.
dc.identifier.citedreferenceMomot KI, Pope JM, Wellard RM. Anisotropy of spin relaxation of water protons in cartilage and tendon. NMR Biomed. 2010; 23 ( 3 ): 313 - 324.
dc.identifier.citedreferencePang Y. A self- compensated spin- locking scheme for quantitative R1Ï dispersion in articular cartilage. In: Proceedings of the 28th Annual Meeting of ISMRM, Paris, France. 2020:2743.
dc.identifier.citedreferenceGeerts- Ossevoort, L., De Weerdt, E., Duijndam, A., et al. Compressed SENSE. Speed done right. Every time. Philips. Compressed SENSE. MR Clinical Application. 2018. https://philipsproductcontent.blob.core.windows.net/assets/20180109/619119731f2a42c4acd4a863008a46c7.pdf. Accessed September 20, 2019.
dc.identifier.citedreferenceNorris DG. Excitation angle optimization for snapshot FLASH and a signal comparison with EPI. J Magn Reson. 1991. 91 ( 1 ): 190 - 193.
dc.identifier.citedreferenceKlein S, Staring M, Murphy K, Viergever MA, Pluim JPW. elastix: a toolbox for intensity- based medical image registration. IEEE Trans Med Imaging. 2010; 29 ( 1 ): 196 - 205.
dc.identifier.citedreferenceYushkevich PA, Piven J, Hazlett HC, et al. User- guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage. 2006; 31 ( 3 ): 1116 - 1128.
dc.identifier.citedreferenceMarkwardt CB. Non- linear least- squares fitting in IDL with MPFIT. In: Bohlender D, Dowler P, Durand D, eds. Proceedings of Astronomical Data Analysis Software and Systems XVIII, Quebec, Canada, ASP Conference Series, Vol. 411. San Francisco, CA: Astronomical Society of the Pacific; 2009: 251 - 254.
dc.identifier.citedreferenceBevington PR, Robinson DK. Data Reduction and Error Analysis for the Physical Sciences. 3rd ed. Boston, MA: McGraw- Hill; 2003.
dc.identifier.citedreferenceWyatt C, Guha A, Venkatachari A, et al. Improved differentiation between knees with cartilage lesions and controls using 7T relaxation time mapping. J Orthop Transl. 2015; 3 ( 4 ): 197 - 204.
dc.identifier.citedreferencePress WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in C. Cambridge, UK: Cambridge University Press; 1988.
dc.identifier.citedreferenceSharafi A, Chang G, Regatte RR. Biexponential T 2 relaxation estimation of human knee cartilage in vivo at 3T. J Magn Reson Imaging. 2018; 47 ( 3 ): 809 - 819.
dc.identifier.citedreferenceMahar R, Batool S, Badar F, Xia Y. Quantitative measurement of T2, T1Ï and T1 relaxation times in articular cartilage and cartilage- bone interface by SE and UTE imaging at microscopic resolution. J Magn Reson. 2018; 297: 76 - 85.
dc.identifier.citedreferenceWang L, Schweitzer ME, Padua A, Regatte RR. Rapid 3D- T 1 mapping of cartilage with variable flip angle and parallel imaging at 3.0T. J Magn Reson Imaging. 2008; 27 ( 1 ): 154 - 161.
dc.identifier.citedreferenceRazmjoo A, Caliva F, Lee J, et al. T 2 analysis of the entire Osteoarthritis Initiative dataset. J Orthop Res. 2020; 39 ( 1 ): 74 - 85.
dc.identifier.citedreferenceLi X, Wyatt C, Rivoire J, et al. Simultaneous acquisition of T 1Ï and T 2 quantification in knee cartilage: repeatability and diurnal variation. J Magn Reson Imaging. 2014; 39 ( 5 ): 1287 - 1293.
dc.identifier.citedreferenceWelsch GH, Apprich S, Zbyn S, et al. Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra- high field (7T) compared with high field (3T) strength. Eur Radiol. 2011; 21 ( 6 ): 1136 - 1143.
dc.identifier.citedreferenceJordan CD, Saranathan M, Bangerter NK, Hargreaves BA, Gold GE. Musculoskeletal MRI at 3.0 T and 7.0 T: a comparison of relaxation times and image contrast. Eur J Radiol. 2013; 82 ( 5 ): 734 - 739.
dc.identifier.citedreferenceSantyr GE, Henkelman RM, Bronskill MJ. Variation in measured transverse relaxation in tissue resulting from spin locking with the CPMG sequence. J Magn Reson. 1988; 79 ( 1 ): 28 - 44.
dc.identifier.citedreferenceOchoa J, Amano K, Tanaka M, et al. Altered biomechanics and cartilage health changes in bilateral knees following unilateral ACL reconstruction: a 2- year follow- up. Osteoarthr Cartil. 2016; 24: S406 - S407.
dc.identifier.citedreferenceChen W. Errors in quantitative T1rho imaging and the correction methods. Quant Imaging Med Surg. 2015; 5 ( 4 ): 583 - 591.
dc.identifier.citedreferenceVlaardingerbroek MT, Boer JA. Magnetic Resonance Imaging: Theory and Practice. Berlin, Heidelberg: Springer Science & Business Media; 2013.
dc.identifier.citedreferenceMathur- De Vré R. The NMR studies of water in biological systems. Prog Biophys Mol Biol. 1980; 35: 103 - 134.
dc.identifier.citedreferenceWoessner DE. Nuclear magnetic- relaxation and structure in aqueous heterogeneous systems. Mol Phys. 1977; 34 ( 4 ): 899 - 920.
dc.identifier.citedreferencePeto S, Gillis P, Henri VP. Structure and dynamics of water in tendon from NMR relaxation measurements. Biophys J. 1990; 57 ( 1 ): 71 - 84.
dc.identifier.citedreferenceKnispel RR, Thompson RT, Pintar MM. Dispersion of proton spin- lattice relaxation in tissues. J Magn Reson. 1974; 14 ( 1 ): 44 - 51.
dc.identifier.citedreferenceDuvvuri U, Goldberg AD, Kranz JK, et al. Water magnetic relaxation dispersion in biological systems: the contribution of proton exchange and implications for the noninvasive detection of cartilage degradation. Proc Natl Acad Sci USA. 2001; 98 ( 22 ): 12479 - 12484.
dc.identifier.citedreferencePang Y. An order parameter without magic angle effect (OPTIMA) derived from R 1 Ï dispersion in ordered tissue. Magn Reson Med. 2020; 83 ( 5 ): 1783 - 1795.
dc.identifier.citedreferenceBorthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R. Sodium and T 1Ï MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed. 2006; 19 ( 7 ): 781 - 821.
dc.identifier.citedreferenceReddy R, Insko EK, Kaufman JH, Bolinger L, Kneeland JB, Leigh JS. MR imaging of cartilage under spin- locking. In: Proceedings of the International Society of Magnetic Resonance Medicine, Nice. 1995:1535.
dc.identifier.citedreferenceWang L, Regatte RR. T 1 Ï MRI of human musculoskeletal system. J Magn Reson Imaging. 2015; 41 ( 3 ): 586 - 600.
dc.identifier.citedreferenceLink TM, Neumann J, Li X. Prestructural cartilage assessment using MRI. J Magn Reson Imaging. 2017; 45 ( 4 ): 949 - 965.
dc.identifier.citedreferenceLink TM, Li X. Establishing compositional MRI of cartilage as a biomarker for clinical practice. Osteoarthr Cartil. 2018; 26 ( 9 ): 1137 - 1139.
dc.identifier.citedreferenceKim J, Mamoto K, Lartey R, et al. Multi- vendor multi- site T 1Ï and T 2 quantification of knee cartilage. Osteoarthr Cartil. 2020; 28 ( 12 ): 1539 - 1550.
dc.identifier.citedreferenceJones GP. Spin- lattice relaxation in the rotating frame: weak- collision case. s. 1966; 148 ( 1 ): 332 - 335.
dc.identifier.citedreferenceAkella SVS, Regatte RR, Gougoutas AJ, et al. Proteoglycan- induced changes in T 1Ï - relaxation of articular cartilage at 4T. Magn Reson Med. 2001; 46 ( 3 ): 419 - 423.
dc.identifier.citedreferenceRegatte RR, Akella SVS, Lonner JH, Kneeland JB, Reddy R. T 1Ï relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T 1Ï with T 2. J Magn Reson Imaging. 2006; 23 ( 4 ): 547 - 553.
dc.identifier.citedreferenceLi X, Han ET, Busse RF, Majumdar S. In vivo T 1Ï mapping in cartilage using 3D magnetization- prepared angle- modulated partitioned k - space spoiled gradient echo snapshots (3D MAPSS). Magn Reson Med. 2008; 59 ( 2 ): 298 - 307.
dc.identifier.citedreferenceRegatte RR, Akella SV, Borthakur A, Kneeland JB, Reddy R. Proteoglycan depletion- induced changes in transverse relaxation maps of cartilage: comparison of T2 and T1Ï . Acad Radiol. 2002; 9 ( 12 ): 1388 - 1394.
dc.identifier.citedreferencevan Tiel J, Kotek G, Reijman M, et al. Is T1Ï mapping an alternative to delayed gadolinium- enhanced MR imaging of cartilage in the assessment of sulphated glycosaminoglycan content in human osteoarthritic knees? An in vivo validation study. Radiology. 2016; 279 ( 2 ): 523 - 531.
dc.identifier.citedreferenceShao H, Pauli C, Li S, et al. Magic angle effect plays a major role in both T1rho and T2 relaxation in articular cartilage. Osteoarthr Cartil. 2017; 25 ( 12 ): 2022 - 2030.
dc.identifier.citedreferenceMenezes NM, Gray ML, Hartke JR, Burstein D. T 2 and T 1Ï MRI in articular cartilage systems. Magn Reson Med. 2004; 51 ( 3 ): 503 - 509.
dc.identifier.citedreferenceMlynarik V, Szomolanyi P, Toffanin R, Vittur F, Trattnig S. Transverse relaxation mechanisms in articular cartilage. J Magn Reson. 2004; 169 ( 2 ): 300 - 307.
dc.identifier.citedreferencePang Y, Palmieri- Smith RM, Malyarenko DI, Swanson SD, Chenevert TL. A unique anisotropic R2 of collagen degeneration (ARCADE) mapping as an efficient alternative to composite relaxation metric (R2- R1rho) in human knee cartilage study. Magn Reson Med. 2019; 81 ( 6 ): 3763 - 3774.
dc.identifier.citedreferenceLenk R, Bonzon M, Greppin H. Dynamically oriented biological water as studied by NMR. Chem Phys Lett. 1980; 76 ( 1 ): 175 - 177.
dc.identifier.citedreferenceWang P, Block J, Gore JC. Chemical exchange in knee cartilage assessed by R 1Ï (1/T 1Ï ) dispersion at 3T. Magn Reson Imaging. 2015; 33 ( 1 ): 38 - 42.
dc.identifier.citedreferenceCoremans J, Spanoghe M, Budinsky L, et al. A comparison between different imaging strategies for diffusion measurements with the centric phase- encoded turboFLASH sequence. J Magn Reson. 1997; 124 ( 2 ): 323 - 342.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.