Show simple item record

Designing a Single Protein‐Chain Reporter for Opioid Detection at Cellular Resolution

dc.contributor.authorKroning, Kayla E.
dc.contributor.authorWang, Wenjing
dc.date.accessioned2021-06-02T21:05:14Z
dc.date.available2022-07-02 17:05:12en
dc.date.available2021-06-02T21:05:14Z
dc.date.issued2021-06-07
dc.identifier.citationKroning, Kayla E.; Wang, Wenjing (2021). "Designing a Single Protein‐Chain Reporter for Opioid Detection at Cellular Resolution." Angewandte Chemie 133(24): 13470-13477.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/167756
dc.description.abstractMu‐opioid receptor (MOR) signaling regulates multiple neuronal pathways, including those involved in pain, reward, and respiration. To advance the understanding of MOR’s roles in pain modulation, there is a need for high‐throughput screening methods of opioids in vitro and high‐resolution mapping of opioids in the brain. To fill this need, we designed and characterized a genetically encoded fluorescent reporter, called Single‐chain Protein‐based Opioid Transmission Indicator Tool for MOR (M‐SPOTIT). M‐SPOTIT represents a new and unique mechanism for fluorescent reporter design and can detect MOR activation, leaving a persistent green fluorescence mark for image analysis. M‐SPOTIT showed an opioid‐dependent signal to noise ratio (S/N) up to 12.5 and was able to detect as fast as a 30‐second opioid exposure in HEK293T cell culture. Additionally, it showed an opioid‐dependent S/N up to 4.6 in neuronal culture and detected fentanyl with an EC50 of 15 nM. M‐SPOTIT will potentially be useful for high‐throughput detection of opioids in cell cultures and cellular‐resolution detection of opioids in vivo. M‐SPOTIT’s novel mechanism can be used as a platform to design other G‐protein‐coupled receptor‐based sensors.A genetically‐encoded fluorescent sensor was designed for the mu‐opioid receptor using a novel sensor mechanism. In the absence of opioids, Nb39 interacts with the circular permuted green fluorescent protein (cpGFP) and inhibits the fluorophore maturation of cpGFP. When the opioid binds to the opioid receptor (OR), Nb39 binds to the intracellular side of the activated OR. This removes Nb39 from cpGFP, allowing the cpGFP fluorophore to mature, resulting in an opioid‐induced fluorescence increase.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othercpGFP
dc.subject.otheropioid
dc.subject.otherGPCR
dc.subject.otherfluorescent sensor
dc.subject.otherdrug screening
dc.titleDesigning a Single Protein‐Chain Reporter for Opioid Detection at Cellular Resolution
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167756/1/ange202101262-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167756/2/ange202101262_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167756/3/ange202101262.pdf
dc.identifier.doi10.1002/ange.202101262
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceT. Nagai, A. Sawano, E. S. Park, A. Miyawaki, Proc. Natl. Acad. Sci. USA 2001, 98, 3197 – 3202.
dc.identifier.citedreferenceY. H. Wong, Methods Enzymology, Vol. 238, Academic Press, Cambridge, 1994, pp.  81 – 94.
dc.identifier.citedreferenceV. Spahn, D. Nockemann, H. Machelska in Methods in Molecular Biology, Vol. 1230, Humana Press, Clifton, 2015, pp.  197 – 211.
dc.identifier.citedreferenceH. Xing, H.-C. Tran, T. E. Knapp, P. A. Negulescu, B. A. Pollok, J. Recept. Signal Transduction 2000, 20, 189 – 210.
dc.identifier.citedreferenceR. Al-Hasani, J.-M. T. Wong, O. S. Mabrouk, J. G. McCall, G. P. Schmitz, K. A. Porter-Stransky, B. J. Aragona, R. T. Kennedy, M. R. Bruchas, eLife 2018, 7, e36520.
dc.identifier.citedreferenceA. C. Schmidt, L. E. Dunaway, J. G. Roberts, G. S. McCarty, L. A. Sombers, Anal. Chem. 2014, 86, 7806 – 7812.
dc.identifier.citedreferenceW. Huang, A. Manglik, A. J. Venkatakrishnan, T. Laeremans, E. N. Feinberg, A. L. Sanborn, H. E. Kato, K. E. Livingston, T. S. Thorsen, R. C. Kling, S. Granier, P. Gmeiner, S. M. Husbands, J. R. Traynor, W. I. Weis, J. Steyaert, R. O. Dror, B. K. Kobilka, Nature 2015, 524, 315 – 321.
dc.identifier.citedreferenceC. L. Schmid, N. M. Kennedy, N. C. Ross, K. M. Lovell, Z. Yue, J. Morgenweck, M. D. Cameron, T. D. Bannister, L. M. Bohn, Cell 2017, 171, 1165 – 1175, e13.
dc.identifier.citedreferenceY. Fujikawa, N. Kato, Plant J. 2007, 52, 185 – 195.
dc.identifier.citedreferenceD. Lee, M. Creed, K. Jung, T. Stefanelli, D. J. Wendler, W. C. Oh, N. L. Mignocchi, C. Lüscher, H.-B. Kwon, Nat. Methods 2017, 14, 495 – 503.
dc.identifier.citedreferenceP. A. Lawlor, R. J. Bland, A. Mouravlev, D. Young, M. J. During, Mol. Ther. 2009, 17, 1692 – 1702.
dc.identifier.citedreferenceP. Gharagozlou, H. Demirci, J. D. Clark, J. Lameh, BMC Pharmacol. 2003, 3, 1.
dc.identifier.citedreferenceR. Root-Bernstein, M. Turke, U. Subhramanyam, B. Churchill, J. Labahn, Int. J. Mol. Sci. 2018, 19, 272.
dc.identifier.citedreferenceH. Suh, L. Tseng, Naunyn-Schmiedeberg′s Arch. Pharmacol. 1990, 342, 67 – 71.
dc.identifier.citedreferenceS. G. F. Rasmussen, H.-J. Choi, J. J. Fung, E. Pardon, P. Casarosa, P. S. Chae, B. T. DeVree, D. M. Rosenbaum, F. S. Thian, T. S. Kobilka, A. Schnapp, I. Konetzki, R. K. Sunahara, S. H. Gellman, A. Pautsch, J. Steyaert, W. I. Weis, B. K. Kobilka, Nature 2011, 469, 175 – 180.
dc.identifier.citedreferenceR. Iizuka, M. Yamagishi-Shirasaki, T. Funatsu, Anal. Biochem. 2011, 414, 173 – 178.
dc.identifier.citedreferenceT. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W.-H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, L. Tian, Science 2018, 360, eaat4422.
dc.identifier.citedreferenceJ. Feng, C. Zhang, J. E. Lischinsky, M. Jing, J. Zhou, H. Wang, Y. Zhang, A. Dong, Z. Wu, H. Wu, W. Chen, P. Zhang, J. Zou, S. A. Hires, J. J. Zhu, G. Cui, D. Lin, J. Du, Y. Li, Neuron 2019, 102, 745 – 761, e8.
dc.identifier.citedreferenceR. Al-Hasani, M. R. Bruchas, Anesthesiology 2011, 115, 1363 – 1381.
dc.identifier.citedreferenceS. Majumdar, M. Burgman, N. Haselton, S. Grinnell, J. Ocampo, A. R. Pasternak, G. W. Pasternak, Bioorg. Med. Chem. Lett. 2011, 21, 4001 – 4004.
dc.identifier.citedreferenceT. W. Grim, C. L. Schmid, E. L. Stahl, F. Pantouli, J.-H. Ho, A. Acevedo-Canabal, N. M. Kennedy, M. D. Cameron, T. D. Bannister, L. M. Bohn, Neuropsychopharmacology 2020, 45, 416 – 425.
dc.identifier.citedreferenceR. A. Cerione, Biochim. Biophys. Acta Rev. Biomembr. 1991, 1071, 473 – 501.
dc.identifier.citedreferenceP. Coward, S. D. H. Chan, H. G. Wada, G. M. Humphries, B. R. Conklin, Anal. Biochem. 1999, 270, 242 – 248.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.