Show simple item record

Local shifts in inflammatory and resolving lipid mediators in response to tendon overuse

dc.contributor.authorMarkworth, James F.
dc.contributor.authorSugg, Kristoffer B.
dc.contributor.authorSarver, Dylan C.
dc.contributor.authorMaddipati, Krishna Rao
dc.contributor.authorBrooks, Susan V.
dc.date.accessioned2021-06-02T21:05:39Z
dc.date.available2022-07-02 17:05:38en
dc.date.available2021-06-02T21:05:39Z
dc.date.issued2021-06
dc.identifier.citationMarkworth, James F.; Sugg, Kristoffer B.; Sarver, Dylan C.; Maddipati, Krishna Rao; Brooks, Susan V. (2021). "Local shifts in inflammatory and resolving lipid mediators in response to tendon overuse." The FASEB Journal (6): n/a-n/a.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/167767
dc.description.abstractTendon inflammation has been implicated in both adaptive connective tissue remodeling and overuse‐induced tendinopathy. Lipid mediators control both the initiation and resolution of inflammation, but their roles within tendon are largely unknown. Here, we profiled local shifts in intratendinous lipid mediators via liquid chromatography‐tandem mass spectrometry in response to synergist ablation‐induced plantaris tendon overuse. Sixty‐four individual lipid mediators were detected in homogenates of plantaris tendons from ambulatory control rats. This included many bioactive metabolites of the cyclooxygenase (COX), lipoxygenase (LOX), and epoxygenase (CYP) pathways. Synergist ablation induced a robust inflammatory response at day 3 post‐surgery characterized by epitenon infiltration of polymorphonuclear leukocytes and monocytes/macrophages (MΦ), heightened expression of inflammation‐related genes, and increased intratendinous concentrations of the pro‐inflammatory eicosanoids thromboxane B2 and prostaglandin E2. By day 7, MΦ became the predominant myeloid cell type in tendon and there were further delayed increases in other COX metabolites including prostaglandins D2, F2α, and I2. Specialized pro‐resolving mediators including protectin D1, resolvin D2 and D6, as well as related pathway markers of D‐resolvins (17‐hydroxy‐docosahexaenoic acid), E‐resolvins (18‐hydroxy‐eicosapentaenoic acid), and lipoxins (15‐hydroxy‐eicosatetraenoic acid) were also increased locally in response to tendon overuse, as were anti‐inflammatory fatty acid epoxides of the CYP pathway (eg, epoxy‐eicosatrienoic acids). Nevertheless, intratendinous prostaglandins remained markedly increased even following 28 days of tendon overuse together with a lingering MΦ presence. These data reveal a delayed and prolonged local inflammatory response to tendon overuse characterized by an overwhelming predominance of pro‐inflammatory eicosanoids and a relative lack of specialized pro‐resolving lipid mediators.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermass spectrometry
dc.subject.othertendon
dc.subject.otherresolution
dc.subject.othereicosanoid
dc.subject.otherinflammation
dc.subject.otherlipid mediator
dc.titleLocal shifts in inflammatory and resolving lipid mediators in response to tendon overuse
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167767/1/fsb221655.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167767/2/fsb221655_am.pdf
dc.identifier.doi10.1096/fj.202100078R
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceZucali JR, Dinarello CA, Oblon DJ, Gross MA, Anderson L, Weiner RS. Interleukin 1 stimulates fibroblasts to produce granulocyte‐macrophage colony‐stimulating activity and prostaglandin E2. J Clin Invest. 1986; 77: 1857 ‐ 1863.
dc.identifier.citedreferenceBergqvist F, Carr AJ, Wheway K, et al. Divergent roles of prostacyclin and PGE2 in human tendinopathy. Arthritis Res Ther. 2019; 21: 74.
dc.identifier.citedreferenceFitzpatrick FA, Wynalda MA. Albumin‐catalyzed metabolism of prostaglandin D2. Identification of products formed in vitro. J Biol Chem. 1983; 258: 11713 ‐ 11718.
dc.identifier.citedreferenceWilliams TJ. Prostaglandin E2, prostaglandin I2 and the vascular changes of inflammation. Br J Pharmacol. 1979; 65: 517 ‐ 524.
dc.identifier.citedreferenceRajakariar R, Hilliard M, Lawrence T, et al. Hematopoietic prostaglandin D2 synthase controls the onset and resolution of acute inflammation through PGD2 and 15‐deoxyDelta12 14 PGJ2. Proc Natl Acad Sci USA. 2007; 104: 20979 ‐ 20984.
dc.identifier.citedreferenceGilroy DW, Colville‐Nash PR, Willis D, Chivers J, Paul‐Clark MJ, Willoughby DA. Inducible cyclooxygenase may have anti‐inflammatory properties. Nat Med. 1999; 5: 698 ‐ 701.
dc.identifier.citedreferenceLi Z, Yang G, Khan M, Stone D, Woo SL, Wang JH. Inflammatory response of human tendon fibroblasts to cyclic mechanical stretching. Am J Sports Med. 2004; 32: 435 ‐ 440.
dc.identifier.citedreferenceWerner M, Jordan PM, Romp E, et al. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome. FASEB J. 2019; 33: 6140 ‐ 6153.
dc.identifier.citedreferenceSerhan CN, Hamberg M, Samuelsson B, Morris J, Wishka DG. On the stereochemistry and biosynthesis of lipoxin B. Proc Natl Acad Sci USA. 1986; 83: 1983 ‐ 1987.
dc.identifier.citedreferenceSerhan CN, Nicolaou KC, Webber SE, et al. Lipoxin A. Stereochemistry and biosynthesis. J Biol Chem. 1986; 261: 16340 ‐ 16345.
dc.identifier.citedreferenceHong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN. Novel docosatrienes and 17S‐resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti‐inflammation. J Biol Chem. 2003; 278: 14677 ‐ 14687.
dc.identifier.citedreferenceWang Y, He G, Tang H, et al. Aspirin inhibits inflammation and scar formation in the injury tendon healing through regulating JNK/STAT‐3 signalling pathway. Cell Prolif. 2019; 52: e12650.
dc.identifier.citedreferenceLehner C, Spitzer G, Gehwolf R, et al. Tenophages: a novel macrophage‐like tendon cell population expressing CX3CL1 and CX3CR1. Dis Model Mech. 2019; 12 ( 12 ): dmm041384. https://doi.org/10.1242/dmm.041384
dc.identifier.citedreferenceGottfried E, Kunz‐Schughart LA, Weber A, et al. Expression of CD68 in non‐myeloid cell types. Scand J Immunol. 2008; 67: 453 ‐ 463.
dc.identifier.citedreferenceAndersson G, Backman LJ, Scott A, Lorentzon R, Forsgren S, Danielson P. Substance P accelerates hypercellularity and angiogenesis in tendon tissue and enhances paratendinitis in response to Achilles tendon overuse in a tendinopathy model. Br J Sports Med. 2011; 45: 1017 ‐ 1022.
dc.identifier.citedreferenceChbinou N, Frenette J. Insulin‐dependent diabetes impairs the inflammatory response and delays angiogenesis following Achilles tendon injury. Am J Physiol Regul Integr Comp Physiol. 2004; 286: R952 ‐ R957.
dc.identifier.citedreferenceFenwick SA, Hazleman BL, Riley GP. The vasculature and its role in the damaged and healing tendon. Arthritis Res. 2002; 4: 252 ‐ 260.
dc.identifier.citedreferenceNieman DC, Gillitt ND, Chen GY, Zhang Q, Sakaguchi CA, Stephan EH. Carbohydrate intake attenuates post‐exercise plasma levels of cytochrome P450‐generated oxylipins. PLoS One. 2019; 14: e0213676.
dc.identifier.citedreferenceNieman DC, Gillitt ND, Chen GY, et al. Blueberry and/or banana consumption mitigate arachidonic, cytochrome P450 oxylipin generation during recovery from 75‐Km cycling: a randomized trial. Front Nutr. 2020; 7: 121.
dc.identifier.citedreferenceSignini EF, Nieman DC, Silva CD, Sakaguchi CA, Catai AM. Oxylipin response to acute and chronic exercise: a systematic review. Metabolites. 2020; 10 ( 6 ): 264 ‐ 281.
dc.identifier.citedreferenceTrappe TA, Carroll CC, Jemiolo B, et al. Cyclooxygenase mRNA expression in human patellar tendon at rest and after exercise. Am J Physiol Regul Integr Comp Physiol. 2008; 294: R192 ‐ R199.
dc.identifier.citedreferenceMcLennan IS, Macdonald RE. Prostaglandin synthetase and prostacyclin synthetase in mature rat skeletal muscles: immunohistochemical localisation to arterioles, tendons and connective tissues. J Anat. 1991; 178: 243 ‐ 253.
dc.identifier.citedreferenceStanford KI, Lynes MD, Takahashi H, et al. 12,13‐diHOME: an exercise‐induced lipokine that increases skeletal muscle fatty acid uptake. Cell Metab. 2018; 27 ( 1111‐1120 ): e1113.
dc.identifier.citedreferenceChristensen B, Dandanell S, Kjaer M, Langberg H. Effect of anti‐inflammatory medication on the running‐induced rise in patella tendon collagen synthesis in humans. J Appl Physiol 1985. 2011; 110: 137 ‐ 141.
dc.identifier.citedreferenceMarsolais D, Cote CH, Frenette J. Nonsteroidal anti‐inflammatory drug reduces neutrophil and macrophage accumulation but does not improve tendon regeneration. Lab Invest. 2003; 83: 991 ‐ 999.
dc.identifier.citedreferencePlein LM, Rittner HL. Opioids and the immune system ‐ friend or foe. Br J Pharmacol. 2018; 175: 2717 ‐ 2725.
dc.identifier.citedreferenceMessner K, Wei Y, Andersson B, Gillquist J, Rasanen T. Rat model of Achilles tendon disorder. A pilot study. Cells Tissues Organs. 1999; 165: 30 ‐ 39.
dc.identifier.citedreferenceThorpe CT, Screen HR. Tendon structure and composition. Adv Exp Med Biol. 2016; 920: 3 ‐ 10.
dc.identifier.citedreferenceKongsgaard M, Reitelseder S, Pedersen TG, et al. Region specific patellar tendon hypertrophy in humans following resistance training. Acta Physiol (Oxf). 2007; 191: 111 ‐ 121.
dc.identifier.citedreferenceAbat F, Alfredson H, Cucchiarini M, et al. Current trends in tendinopathy: consensus of the ESSKA basic science committee. Part I: biology, biomechanics, anatomy and an exercise‐based approach. J Exp Orthop. 2017; 4: 18.
dc.identifier.citedreferenceWojciak B, Crossan JF. The accumulation of inflammatory cells in synovial sheath and epitenon during adhesion formation in healing rat flexor tendons. Clin Exp Immunol. 1993; 93: 108 ‐ 114.
dc.identifier.citedreferenceKang HJ, Park BM, Hahn SB, Kang ES. An experimental study of healing of the partially severed flexor tendon in chickens. Yonsei Med J. 1990; 31: 264 ‐ 273.
dc.identifier.citedreferenceEnwemeka CS. Inflammation, cellularity, and fibrillogenesis in regenerating tendon: implications for tendon rehabilitation. Phys Ther. 1989; 69: 816 ‐ 825.
dc.identifier.citedreferenceMarsolais D, Cote CH, Frenette J. Neutrophils and macrophages accumulate sequentially following Achilles tendon injury. J Orthop Res. 2001; 19: 1203 ‐ 1209.
dc.identifier.citedreferenceKawamura S, Ying L, Kim HJ, Dynybil C, Rodeo SA. Macrophages accumulate in the early phase of tendon‐bone healing. J Orthop Res. 2005; 23: 1425 ‐ 1432.
dc.identifier.citedreferenceWong JK, Lui YH, Kapacee Z, Kadler KE, Ferguson MW, McGrouther DA. The cellular biology of flexor tendon adhesion formation: an old problem in a new paradigm. Am J Pathol. 2009; 175: 1938 ‐ 1951.
dc.identifier.citedreferenceZhao G, Zhang J, Nie D, et al. HMGB1 mediates the development of tendinopathy due to mechanical overloading. PLoS One. 2019; 14: e0222369.
dc.identifier.citedreferencePingel J, Wienecke J, Kongsgaard M, et al. Increased mast cell numbers in a calcaneal tendon overuse model. Scand J Med Sci Sports. 2013; 23: e353 ‐ e360.
dc.identifier.citedreferenceBarbe MF, Barr AE, Gorzelany I, Amin M, Gaughan JP, Safadi FF. Chronic repetitive reaching and grasping results in decreased motor performance and widespread tissue responses in a rat model of MSD. J Orthop Res. 2003; 21: 167 ‐ 176.
dc.identifier.citedreferenceKietrys DM, Barr‐Gillespie AE, Amin M, Wade CK, Popoff SN, Barbe MF. Aging contributes to inflammation in upper extremity tendons and declines in forelimb agility in a rat model of upper extremity overuse. PLoS One. 2012; 7: e46954.
dc.identifier.citedreferenceFedorczyk JM, Barr AE, Rani S, et al. Exposure‐dependent increases in IL‐1beta, substance P, CTGF, and tendinosis in flexor digitorum tendons with upper extremity repetitive strain injury. J Orthop Res. 2010; 28: 298 ‐ 307.
dc.identifier.citedreferenceBarbe MF, Elliott MB, Abdelmagid SM, et al. Serum and tissue cytokines and chemokines increase with repetitive upper extremity tasks. J Orthop Res. 2008; 26: 1320 ‐ 1326.
dc.identifier.citedreferenceAbate M, Silbernagel KG, Siljeholm C, et al. Pathogenesis of tendinopathies: inflammation or degeneration? Arthritis Res Ther. 2009; 11: 235.
dc.identifier.citedreferenceMosca MJ, Rashid MS, Snelling SJ, Kirtley S, Carr AJ, Dakin SG. Trends in the theory that inflammation plays a causal role in tendinopathy: a systematic review and quantitative analysis of published reviews. BMJ Open Sport Exerc Med. 2018; 4: e000332.
dc.identifier.citedreferenceKhan KM, Cook JL, Kannus P, Maffulli N, Bonar SF. Time to abandon the "tendinitis" myth. BMJ. 2002; 324: 626 ‐ 627.
dc.identifier.citedreferenceJomaa G, Kwan CK, Fu SC, et al. A systematic review of inflammatory cells and markers in human tendinopathy. BMC Musculoskelet Disord. 2020; 21: 78.
dc.identifier.citedreferenceRees JD, Stride M, Scott A. Tendons–time to revisit inflammation. Br J Sports Med. 2014; 48: 1553 ‐ 1557.
dc.identifier.citedreferenceGilroy DW, Bishop‐Bailey D. Lipid mediators in immune regulation and resolution. Br J Pharmacol. 2019; 176: 1009 ‐ 1023.
dc.identifier.citedreferenceLeuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev. 2020; 159: 133 ‐ 169.
dc.identifier.citedreferenceChristie WW, Harwood JL. Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays Biochem. 2020; 64 ( 3 ): 401 ‐ 421.
dc.identifier.citedreferenceSu B, O’Connor JP. NSAID therapy effects on healing of bone, tendon, and the enthesis. J Appl Physiol 1985. 2013; 115: 892 ‐ 899.
dc.identifier.citedreferenceZhang J, Middleton KK, Fu FH, Im HJ, Wang JH. HGF mediates the anti‐inflammatory effects of PRP on injured tendons. PLoS One. 2013; 8: e67303.
dc.identifier.citedreferenceZhang J, Pan T, Wang JH. Cryotherapy suppresses tendon inflammation in an animal model. J Orthop Translat. 2014; 2: 75 ‐ 81.
dc.identifier.citedreferenceZhang J, Pan T, Liu Y, Wang JH. Mouse treadmill running enhances tendons by expanding the pool of tendon stem cells (TSCs) and TSC‐related cellular production of collagen. J Orthop Res. 2010; 28: 1178 ‐ 1183.
dc.identifier.citedreferenceLangberg H, Boushel R, Skovgaard D, Risum N, Kjaer M. Cyclo‐oxygenase‐2 mediated prostaglandin release regulates blood flow in connective tissue during mechanical loading in humans. J Physiol. 2003; 551: 683 ‐ 689.
dc.identifier.citedreferenceLangberg H, Skovgaard D, Petersen LJ, Bulow J, Kjaer M. Type I collagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans. J Physiol. 1999; 521 ( Pt 1 ): 299 ‐ 306.
dc.identifier.citedreferenceZurier RB, Sayadoff DM. Release of prostaglandins from human polymorphonuclear leukocytes. Inflammation. 1975; 1: 93 ‐ 101.
dc.identifier.citedreferenceHumes JL, Bonney RJ, Pelus L, et al. Macrophages synthesis and release prostaglandins in response to inflammatory stimuli. Nature. 1977; 269: 149 ‐ 151.
dc.identifier.citedreferenceTsuzaki M, Guyton G, Garrett W, et al. IL‐1 beta induces COX2, MMP‐1, ‐3 and ‐13, ADAMTS‐4, IL‐1 beta and IL‐6 in human tendon cells. J Orthop Res. 2003; 21: 256 ‐ 264.
dc.identifier.citedreferenceAlmekinders LC, Baynes AJ, Bracey LW. An in vitro investigation into the effects of repetitive motion and nonsteroidal antiinflammatory medication on human tendon fibroblasts. Am J Sports Med. 1995; 23: 119 ‐ 123.
dc.identifier.citedreferenceSerhan CN. The resolution of inflammation: the devil in the flask and in the details. FASEB J. 2011; 25: 1441 ‐ 1448.
dc.identifier.citedreferenceSerhan CN. Discovery of specialized pro‐resolving mediators marks the dawn of resolution physiology and pharmacology. Mol Aspects Med. 2017; 58: 1 ‐ 11.
dc.identifier.citedreferenceSerhan CN, Hamberg M, Samuelsson B. Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proc Natl Acad Sci USA. 1984; 81: 5335 ‐ 5339.
dc.identifier.citedreferenceSerhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K. Novel functional sets of lipid‐derived mediators with antiinflammatory actions generated from omega‐3 fatty acids via cyclooxygenase 2‐nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med. 2000; 192: 1197 ‐ 1204.
dc.identifier.citedreferenceSerhan CN, Hong S, Gronert K, et al. Resolvins: a family of bioactive products of omega‐3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002; 196: 1025 ‐ 1037.
dc.identifier.citedreferenceMukherjee PK, Marcheselli VL, Serhan CN, Bazan NG. Neuroprotectin D1: a docosahexaenoic acid‐derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA. 2004; 101: 8491 ‐ 8496.
dc.identifier.citedreferenceSerhan CN, Yang R, Martinod K, et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med. 2009; 206: 15 ‐ 23.
dc.identifier.citedreferenceChiang N, Serhan CN. Structural elucidation and physiologic functions of specialized pro‐resolving mediators and their receptors. Mol Aspects Med. 2017; 58: 114 ‐ 129.
dc.identifier.citedreferenceDalli J, Serhan CN. Pro‐resolving mediators in regulating and conferring macrophage function. Front Immunol. 2017; 8: 1400.
dc.identifier.citedreferenceSerhan CN. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J. 2017; 31: 1273 ‐ 1288.
dc.identifier.citedreferenceDalli J, Serhan CN. Identification and structure elucidation of the pro‐resolving mediators provides novel leads for resolution pharmacology. Br J Pharmacol. 2019; 176: 1024 ‐ 1037.
dc.identifier.citedreferenceGiannakis N, Sansbury BE, Patsalos A, et al. Dynamic changes to lipid mediators support transitions among macrophage subtypes during muscle regeneration. Nat Immunol. 2019; 20: 626 ‐ 636.
dc.identifier.citedreferenceMarkworth JF, Brown LA, Lim E, et al. Resolvin D1 supports skeletal myofiber regeneration via actions on myeloid and muscle stem cells. JCI Insight. 2020; 5 ( 18 ): e137713. https://doi.org/10.1172/jci.insight.137713
dc.identifier.citedreferenceMarkworth JF, Brown LA, Lim E, et al. Lipidomic profiling reveals an age‐related deficiency of skeletal muscle proresolving mediators that contributes to maladaptive tissue remodeling. bioRxiv, 2020. https://doi.org/10.1101/2020.11.05.370056
dc.identifier.citedreferenceSansbury BE, Li X, Wong B, et al. Myeloid ALX/FPR2 regulates vascularization following tissue injury. Proc Natl Acad Sci USA. 2020; 117: 14354 ‐ 14364.
dc.identifier.citedreferenceMcArthur S, Juban G, Gobbetti T, et al. Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation. J Clin Invest. 2020; 130: 1156 ‐ 1167.
dc.identifier.citedreferenceZhang MJ, Sansbury BE, Hellmann J, et al. Resolvin D2 enhances postischemic revascularization while resolving inflammation. Circulation. 2016; 134: 666 ‐ 680.
dc.identifier.citedreferenceDakin SG, Dudhia J, Smith RK. Resolving an inflammatory concept: the importance of inflammation and resolution in tendinopathy. Vet Immunol Immunopathol. 2014; 158: 121 ‐ 127.
dc.identifier.citedreferenceDakin SG, Dudhia J, Werling NJ, Werling D, Abayasekara DR, Smith RK. Inflamm‐aging and arachadonic acid metabolite differences with stage of tendon disease. PLoS One. 2012; 7: e48978.
dc.identifier.citedreferenceDakin SG, Werling D, Hibbert A, et al. Macrophage sub‐populations and the lipoxin A4 receptor implicate active inflammation during equine tendon repair. PLoS One. 2012; 7: e32333.
dc.identifier.citedreferenceDakin SG, Ly L, Colas RA, et al. Increased 15‐PGDH expression leads to dysregulated resolution responses in stromal cells from patients with chronic tendinopathy. Sci Rep. 2017; 7: 11009.
dc.identifier.citedreferenceDakin SG, Colas RA, Newton J, et al. 15‐Epi‐LXA4 and MaR1 counter inflammation in stromal cells from patients with Achilles tendinopathy and rupture. FASEB J. 2019; 33: 8043 ‐ 8054.
dc.identifier.citedreferenceDakin SG, Colas RA, Wheway K, et al. Proresolving mediators LXB4 and RvE1 regulate inflammation in stromal cells from patients with shoulder tendon tears. Am J Pathol. 2019; 189: 2258 ‐ 2268.
dc.identifier.citedreferenceDakin SG, Martinez FO, Yapp C, et al. Inflammation activation and resolution in human tendon disease. Sci Transl Med. 2015; 7:311ra173.
dc.identifier.citedreferenceGoldberg AL. Work‐induced growth of skeletal muscle in normal and hypophysectomized rats. Am J Physiol. 1967; 213: 1193 ‐ 1198.
dc.identifier.citedreferenceMarkworth JF, Vella L, Lingard BS, et al. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment. Am J Physiol Regul Integr Comp Physiol. 2013; 305: R1281 ‐ R1296.
dc.identifier.citedreferenceVella L, Markworth JF, Farnfield MM, Maddipati KR, Russell AP, Cameron‐Smith D. Intramuscular inflammatory and resolving lipid profile responses to an acute bout of resistance exercise in men. Physiol Rep. 2019; 7: e14108.
dc.identifier.citedreferenceMaddipati KR, Romero R, Chaiworapongsa T, et al. Eicosanomic profiling reveals dominance of the epoxygenase pathway in human amniotic fluid at term in spontaneous labor. FASEB J. 2014; 28: 4835 ‐ 4846.
dc.identifier.citedreferenceNorris PC, Skulas‐Ray AC, Riley I, et al. Identification of specialized pro‐resolving mediator clusters from healthy adults after intravenous low‐dose endotoxin and omega‐3 supplementation: a methodological validation. Sci Rep. 2018; 8: 18050.
dc.identifier.citedreferenceChong J, Soufan O, Li C, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018; 46: W486 ‐ W494.
dc.identifier.citedreferenceArita M, Clish CB, Serhan CN. The contributions of aspirin and microbial oxygenase to the biosynthesis of anti‐inflammatory resolvins: novel oxygenase products from omega‐3 polyunsaturated fatty acids. Biochem Biophys Res Commun. 2005; 338: 149 ‐ 157.
dc.identifier.citedreferenceHonda H, Kimura H, Rostami A. Demonstration and phenotypic characterization of resident macrophages in rat skeletal muscle. Immunology. 1990; 70: 272 ‐ 277.
dc.identifier.citedreferenceLangberg H, Skovgaard D, Karamouzis M, Bulow J, Kjaer M. Metabolism and inflammatory mediators in the peritendinous space measured by microdialysis during intermittent isometric exercise in humans. J Physiol. 1999; 515 ( Pt 3 ): 919 ‐ 927.
dc.identifier.citedreferenceSvensson J, Hamberg M, Samuelsson B. On the formation and effects of thromboxane A2 in human platelets. Acta Physiol Scand. 1976; 98: 285 ‐ 294.
dc.identifier.citedreferencePouliot M, Gilbert C, Borgeat P, et al. Expression and activity of prostaglandin endoperoxide synthase‐2 in agonist‐activated human neutrophils. FASEB J. 1998; 12: 1109 ‐ 1123.
dc.identifier.citedreferenceLewis RA, Soter NA, Diamond PT, et al. Prostaglandin D2 generation after activation of rat and human mast cells with anti‐IgE. J Immunol. 1982; 129: 1627 ‐ 1631.
dc.identifier.citedreferenceKurland JI, Bockman R. Prostaglandin E production by human blood monocytes and mouse peritoneal macrophages. J Exp Med. 1978; 147: 952 ‐ 957.
dc.identifier.citedreferenceWeksler BB, Marcus AJ, Jaffe EA. Synthesis of prostaglandin I2 (prostacyclin) by cultured human and bovine endothelial cells. Proc Natl Acad Sci USA. 1977; 74: 3922 ‐ 3926.
dc.identifier.citedreferenceBackman C, Boquist L, Friden J, Lorentzon R, Toolanen G. Chronic achilles paratenonitis with tendinosis: an experimental model in the rabbit. J Orthop Res. 1990; 8: 541 ‐ 547.
dc.identifier.citedreferenceAli AE, Barrett JC, Eling TE. Prostaglandin and thromboxane production by fibroblasts and vascular endothelial cells. Adv Prostaglandin Thromboxane Res. 1980; 6: 533 ‐ 535.
dc.identifier.citedreferenceBryant RW, Feinmark SJ, Makheja AN, Bailey JM. Lipid metabolism in cultured cells. Synthesis of vasoactive thromboxane A2 from [14C]arachidonic acid culture lung fibroblasts. J Biol Chem. 1978; 253: 8134 ‐ 8142.
dc.identifier.citedreferenceWang JH, Jia F, Yang G, et al. Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study. Connect Tissue Res. 2003; 44: 128 ‐ 133.
dc.identifier.citedreferenceAlmekinders LC, Banes AJ, Ballenger CA. Effects of repetitive motion on human fibroblasts. Med Sci Sports Exerc. 1993; 25: 603 ‐ 607.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.