Show simple item record

Anion Exchange Ionomers: Impact of Chemistry on Thin‐Film Properties

dc.contributor.authorLuo, Xiaoyan
dc.contributor.authorKushner, Douglas I.
dc.contributor.authorLi, Jonathan
dc.contributor.authorPark, Eun Joo
dc.contributor.authorKim, Yu Seung
dc.contributor.authorKusoglu, Ahmet
dc.date.accessioned2021-06-02T21:05:51Z
dc.date.available2022-06-02 17:05:50en
dc.date.available2021-06-02T21:05:51Z
dc.date.issued2021-05
dc.identifier.citationLuo, Xiaoyan; Kushner, Douglas I.; Li, Jonathan; Park, Eun Joo; Kim, Yu Seung; Kusoglu, Ahmet (2021). "Anion Exchange Ionomers: Impact of Chemistry on Thin‐Film Properties." Advanced Functional Materials 31(20): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/167772
dc.description.abstractIonomer thin‐films (i.e., 20–100 nm) on supports serve as model systems to understand ionomer‐catalyst interfacial behavior as well as the confinement‐driven deviation in properties from bulk membranes. While ionomer thin‐films have been examined for proton exchange ionomers, the thin‐film properties of anion exchange ionomers (AEIs) remain largely unexplored. More importantly, delineating the convoluted impact of chemistry and confinement on thin‐film morphology and hydration is of interest to advancing the field on functional ionic interfaces. In this work, these aspects are studied by using AEIs of different backbones (perfluorinated, aliphatic, and aromatic) and side chains (various lengths, and single versus dual functional groups). Quartz‐crystal microbalance and spectroscopic ellipsometry are used to analyze density and coupled with calculated free volume fraction of thin‐films to provide insights on their gas transport properties. AEI side‐chain’s chemical character plays a key role in how confinement modulates hydration (in thin‐film versus bulk). The results elucidate the effects of backbone, side‐chain chemistry versus anion/cation type in the confinement‐driven changes in thin‐film morphology and swelling. This study also provides new insights for tuning AEI transport functionalities at interfaces via chemistry, which can benefit the design and development of electrode‐ionomers for alkaline membrane‐based energy systems.The results underscore the role of chemistry in tuning the transport (i.e., water, ion, and gas) functionalities of anion exchange ionomer thin‐films and the confinement‐anion interplay, and therefore provide guidance for the design of next‐generation ionomers for the electrodes of alkaline fuel cells, water, and CO2 electrolyzers, and other electrochemical systems, wherein thin‐films provide critical transport functionalities.
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.subject.othernano‐morphology
dc.subject.otherGISAXS
dc.subject.otheranion exchange ionomers
dc.subject.otherfunctionality
dc.subject.otherionomer chemistry
dc.subject.othernano thin‐films
dc.titleAnion Exchange Ionomers: Impact of Chemistry on Thin‐Film Properties
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167772/1/adfm202008778-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167772/2/adfm202008778_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167772/3/adfm202008778.pdf
dc.identifier.doi10.1002/adfm.202008778
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceD. W. Van Krevelen, in Properties of Polymers, 3rd ed., (Ed: D. W. Van Krevelen ), Elsevier, Amsterdam 1997, p. 71.
dc.identifier.citedreferenceD. P. Leonard, S. Maurya, E. J. Park, L. Delfin Manriquez, S. Noh, X. Wang, C. Bae, E. D. Baca, C. Fujimoto, Y. S. Kim, J. Mater. Chem. A 2020, 8, 14135.
dc.identifier.citedreferenceD. Li, E. J. Park, W. Zhu, Q. Shi, Y. Zhou, H. Tian, Y. Lin, A. Serov, B. Zulevi, E. D. Baca, C. Fujimoto, H. T. Chung, Y. S. Kim, Nat. Energy 2020, 5, 378.
dc.identifier.citedreferenceD. I. Kushner, M. A. Hickner, Langmuir 2017, 33, 5261.
dc.identifier.citedreferenceD. I. Kushner, A. Kusoglu, N. J. Podraza, M. A. Hickner, Adv. Funct. Mater. 2019, 29, 1902699.
dc.identifier.citedreferencea) F. S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem. 1990, 41, 525; b) F. S. Bates, G. H. Fredrickson, Phys. Today 1999, 52, 32.
dc.identifier.citedreferencea) A. Eisenberg, B. Hird, R. B. Moore, Macromolecules 1990, 23, 4098; b) A. Eisenberg, Macromolecules 1970, 3, 147.
dc.identifier.citedreferencea) J. Y. Park, D. R. Paul, J. Membr. Sci. 1997, 125, 23; b) J. Marrero, R. Gani, Fluid Phase Equilib. 2001, 183, 183; c) X. Yan, Q. Dong, X. Hong, J. Chem. Eng. Data 2003, 48, 374.
dc.identifier.citedreferenceR. F. Fedors, Polym. Eng. Sci. 1974, 14, 147.
dc.identifier.citedreferenceW. H. Ferrell, D. I. Kushner, M. A. Hickner, J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1365.
dc.identifier.citedreferenceU. N. Shrivastava, H. Fritzsche, K. Karan, Macromolecules 2018, 51, 9839.
dc.identifier.citedreferenceA. Kusoglu, K. Vezzù, G. A. Hegde, G. Nawn, A. R. Motz, H. N. Sarode, G. M. Haugen, Y. Yang, S. Seifert, M. A. Yandrasits, S. Hamrock, C. M. Maupin, A. Z. Weber, V. Di Noto, A. M. Herring, Chem. Mater. 2020, 32, 38.
dc.identifier.citedreferencea) Y. Yu, Y. Wang, T. Li, W. Liang, C. Li, W. Niu, L. Gao, RSC Adv. 2017, 7, 42468; b) Y. P. Yampolskii, A. P. Korikov, V. P. Shantarovich, K. Nagai, B. D. Freeman, T. Masuda, M. Teraguchi, G. Kwak, Macromolecules 2001, 34, 1788.
dc.identifier.citedreferenceA. Katzenberg, A. Chowdhury, M. Fang, A. Z. Weber, Y. Okamoto, A. Kusoglu, M. A. Modestino, J. Am. Chem. Soc. 2020, 142, 3742.
dc.identifier.citedreferenceL. A. Zook, J. Leddy, Anal. Chem. 1996, 68, 3793.
dc.identifier.citedreferenceH. A. Miller, K. Bouzek, J. Hnat, S. Loos, C. I. Bernäcker, T. Weißgärber, L. Röntzsch, J. Meier‐Haack, Sustainable Energy Fuels 2020, 4, 2114.
dc.identifier.citedreferenceA. Bondi, J. Phys. Chem. 1964, 68, 441.
dc.identifier.citedreferencea) W. Germer, J. Leppin, C. N. Kirchner, H. Cho, H.‐J. Kim, D. Henkensmeier, K.‐Y. Lee, M. Brela, A. Michalak, A. Dyck, Macromol. Mater. Eng. 2015, 300, 497; b) M. G. Marino, J. P. Melchior, A. Wohlfarth, K. D. Kreuer, J. Membr. Sci. 2014, 464, 61.
dc.identifier.citedreferenceX. Lin, C. M. Zalitis, J. Sharman, A. R. J. Kucernak, ACS Appl. Mater. Interfaces 2020, 12, 47467.
dc.identifier.citedreferenceY. S. Kim, C. F. Welch, N. H. Mack, R. P. Hjelm, E. B. Orler, M. E. Hawley, K. S. Lee, S. D. Yim, C. M. Johnston, Phys. Chem. Chem. Phys. 2014, 16, 5927.
dc.identifier.citedreferenceC. Klose, T. Saatkamp, A. Münchinger, L. Bohn, G. Titvinidze, M. Breitwieser, K.‐D. Kreuer, S. Vierrath, Adv. Energy Mater. 2020, 10, 1903995.
dc.identifier.citedreferencea) X. Luo, S. Rojas‐Carbonell, Y. Yan, A. Kusoglu, J. Membr. Sci. 2019, 598, 117680; b) J. Lu, A. Barnett, V. Molinero, J. Phys. Chem. C 2019, 123, 8717; c) G. A. Giffin, S. Lavina, G. Pace, V. Di Noto, J. Phys. Chem. C 2012, 116, 23965.
dc.identifier.citedreferenceB. S. Pivovar, DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting 2018.
dc.identifier.citedreferenceE. J. Park, S. Maurya, A. S. Lee, D. P. Leonard, D. Li, J. Y. Jeon, C. Bae, Y. S. Kim, J. Mater. Chem. A 2019, 7, 25040.
dc.identifier.citedreferencea) K. D. Kreuer, M. Schuster, B. Obliers, O. Diat, U. Traub, A. Fuchs, U. Klock, S. J. Paddison, J. Maier, J. Power Sources 2008, 178, 499; b) X. Luo, S. Holdcroft, A. Mani, Y. Zhang, Z. Shi, Phys. Chem. Chem. Phys. 2011, 13, 18055; c) K. M. Meek, J. R. Nykaza, Y. A. Elabd, Macromolecules 2016, 49, 3382.
dc.identifier.citedreferenceA. C. C. Yang, R. Narimani, Z. Zhang, B. J. Frisken, S. Holdcroft, Chem. Mater. 2013, 25, 1935.
dc.identifier.citedreferencea) C. Nagel, K. Günther‐Schade, D. Fritsch, T. Strunskus, F. Faupel, Macromolecules 2002, 35, 2071; b) D. Saha, H. A. Grappe, A. Chakraborty, G. Orkoulas, Chem. Rev. 2016, 116, 11436.
dc.identifier.citedreferencea) R. P. White, J. E. G. Lipson, Macromolecules 2016, 49, 3987; b) Y. U. S. Lipatov, V. P. Privalko, J. Macromol. Sci., Part B: Phys. 1973, 7, 431.
dc.identifier.citedreferencea) D. Guo, C. X. Lin, E. N. Hu, L. Shi, F. Soyekwo, Q. G. Zhang, A. M. Zhu, Q. L. Liu, J. Membr. Sci. 2017, 541, 214; b) A. Kusoglu, K. Vezzu, G. A. Hegde, G. Nawn, A. R. Motz, H. N. Sarode, G. M. Haugen, Y. Yang, S. Seifert, M. A. Yandrasits, S. Hamrock, C. M. Maupin, A. Z. Weber, V. Di Noto, A. M. Herring, Chem. Mater. 2020, 32, 38; c) G. M. Su, I. A. Cordova, M. A. Yandrasits, M. Lindell, J. Feng, C. Wang, A. Kusoglu, J. Am. Chem. Soc. 2019, 141, 13547.
dc.identifier.citedreferencea) Y. He, J. Si, L. Wu, S. Chen, Y. Zhu, J. Pan, X. Ge, Z. Yang, T. Xu, J. Membr. Sci. 2016, 515, 189; b) J. Wang, S. Gu, R. Xiong, B. Zhang, B. Xu, Y. Yan, ChemSusChem 2015, 8, 4229.
dc.identifier.citedreferencea) X. L. Gao, Q. Yang, H. Y. Wu, Q. H. Sun, Z. Y. Zhu, Q. G. Zhang, A. M. Zhu, Q. L. Liu, J. Membr. Sci. 2019, 589, 117247; b) Y. He, L. Wu, J. Pan, Y. Zhu, X. Ge, Z. Yang, J. Ran, T. Xu, J. Membr. Sci. 2016, 504, 47.
dc.identifier.citedreferenceJ. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. Xu, L. Zhuang, Energy Environ. Sci. 2014, 7, 3135.
dc.identifier.citedreferencea) D. R. Dekel, J. Power Sources 2018, 375, 158; b) S. Gottesfeld, D. R. Dekel, M. Page, C. Bae, Y. Yan, P. Zelenay, Y. S. Kim, J. Power Sources 2018, 375, 170.
dc.identifier.citedreferencea) J. Pan, C. Chen, Y. Li, L. Wang, L. Tan, G. Li, X. Tang, L. Xiao, J. Lu, L. Zhuang, Energy Environ. Sci. 2014, 7, 354; b) J. Ran, L. Wu, B. Wei, Y. Chen, T. Xu, Sci. Rep. 2014, 4, 6486; c) E. A. Weiber, P. Jannasch, ChemSusChem 2014, 7, 2621; d) E. A. Weiber, D. Meis, P. Jannasch, Polym. Chem. 2015, 6, 1986; e) N. Li, L. Wang, M. Hickner, Chem. Commun. 2014, 50, 4092; f) J. Si, S. Lu, X. Xu, S. Peng, R. Xiu, Y. Xiang, ChemSusChem 2014, 7, 3389.
dc.identifier.citedreferencea) J. Fan, A. G. Wright, B. Britton, T. Weissbach, T. J. G. Skalski, J. Ward, T. J. Peckham, S. Holdcroft, ACS Macro Lett. 2017, 6, 1089; b) L. Zhu, J. Pan, Y. Wang, J. Han, L. Zhuang, M. A. Hickner, Macromolecules 2016, 49, 815.
dc.identifier.citedreferenceW. E. Mustain, M. Chatenet, M. Page, Y. S. Kim, Energy Environ. Sci. 2020, 13, 2805.
dc.identifier.citedreferenceJ. Wang, Y. Zhao, B. P. Setzler, S. Rojas‐Carbonell, C. Ben Yehuda, A. Amel, M. Page, L. Wang, K. Hu, L. Shi, S. Gottesfeld, B. Xu, Y. Yan, Nat. Energy 2019, 4, 392.
dc.identifier.citedreferencea) L. Wang, M. Bellini, H. A. Miller, J. R. Varcoe, J. Mater. Chem. A 2018, 6, 15404; b) T. J. Omasta, A. M. Park, J. M. LaManna, Y. Zhang, X. Peng, L. Wang, D. L. Jacobson, J. R. Varcoe, D. S. Hussey, B. S. Pivovar, W. E. Mustain, Energy Environ. Sci. 2018, 11, 551.
dc.identifier.citedreferenceS. Maurya, S. Noh, I. Matanovic, E. J. Park, C. Narvaez Villarrubia, U. Martinez, J. Han, C. Bae, Y. S. Kim, Energy Environ. Sci. 2018, 11, 3283.
dc.identifier.citedreferencea) F. Barbir, Sol. Energy 2005, 78, 661; b) M. S. Cha, J. E. Park, S. Kim, S.‐H. Han, S.‐H. Shin, S. H. Yang, T.‐H. Kim, D. M. Yu, S. So, Y. T. Hong, S. J. Yoon, S.‐G. Oh, S. Y. Kang, O.‐H. Kim, H. S. Park, B. Bae, Y.‐E. Sung, Y.‐H. Cho, J. Y. Lee, Energy Environ. Sci. 2020, 13, 3633.
dc.identifier.citedreferenceA. M. Park, Z. R. Owczarczyk, L. E. Garner, A. C. Yang‐Neyerlin, H. Long, C. M. Antunes, M. R. Sturgeon, M. J. Lindell, S. J. Hamrock, M. Yandrasits, B. S. Pivovar, ECS Trans. 2017, 80, 957.
dc.identifier.citedreferencea) A. Kusoglu, A. Z. Weber, Chem. Rev. 2017, 117, 987; b) A. Kusoglu, D. Kushner, D. K. Paul, K. Karan, M. A. Hickner, A. Z. Weber, Adv. Funct. Mater. 2014, 24, 4763.
dc.identifier.citedreferencea) A. Kusoglu, T. J. Dursch, A. Z. Weber, Adv. Funct. Mater. 2016, 26, 4961; b) K. Karan, Langmuir 2019, 35, 13489.
dc.identifier.citedreferenceX. Luo, A. Wright, T. Weissbach, S. Holdcroft, J. Power Sources 2018, 375, 442.
dc.identifier.citedreferencea) D. I. Kushner, L. Zhu, A. Kusoglu, M. A. Hickner, Macromol. Chem. Phys. 2016, 217, 2442; b) V. J. Bharath, J. Millichamp, T. P. Neville, T. J. Mason, P. R. Shearing, R. J. C. Brown, G. Manos, D. J. L. Brett, J. Membr. Sci. 2016, 497, 229; c) V. J. Bharath, J. R. Jervis, J. J. Bailey, E. Engebretsen, T. P. Neville, J. Millichamp, T. Mason, P. R. Shearing, R. J. C. Brown, G. Manos, D. J. L. Brett, Int. J. Hydrogen Energy 2017, 42, 24301.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.