Show simple item record

MMS Observations of Field Line Resonances Under Disturbed Solar Wind Conditions

dc.contributor.authorLe, G.
dc.contributor.authorChi, P. J.
dc.contributor.authorStrangeway, R. J.
dc.contributor.authorRussell, C. T.
dc.contributor.authorSlavin, J. A.
dc.contributor.authorAnderson, B.
dc.contributor.authorNakamura, R.
dc.contributor.authorPlaschke, F.
dc.contributor.authorTorbert, R.
dc.contributor.authorWilder, F.
dc.date.accessioned2021-06-02T21:06:28Z
dc.date.available2022-06-02 17:06:22en
dc.date.available2021-06-02T21:06:28Z
dc.date.issued2021-05
dc.identifier.citationLe, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Anderson, B.; Nakamura, R.; Plaschke, F.; Torbert, R.; Wilder, F. (2021). "MMS Observations of Field Line Resonances Under Disturbed Solar Wind Conditions." Journal of Geophysical Research: Space Physics 126(5): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/167786
dc.description.abstractWe report an observational study of magnetospheric field‐line resonances (FLRs) using multi‐point data from the Magnetospheric Multiscale (MMS) mission. We examine well‐defined FLR events in the frequency range ∼2–10 mHz observed under disturbed solar wind conditions, such as high‐speed solar wind streams and solar wind pressure pulses. We focus on their azimuthal wave numbers (m‐numbers) and spatial variations of the wave frequencies, and compare their occurrence characteristics and wave properties for insights into their energy sources. Under disturbed solar wind conditions, we have found supporting observations for both external and internal energy sources for the generation of FLRs. The FLRs associated with different energy sources appear to have different wave characteristics. Although mode coupling is very common (i.e., waves generally have both toroidal and poloidal components with variable relative amplitudes), our observations show that solar wind disturbances directly drive low‐m, toroidal mode dominated FLRs, but internal energy sources are inferred for high‐m, poloidal mode dominated FLRs. The frequencies of the toroidal and poloidal waves have different spatial variations as a function of the L‐value. The frequency of the toroidal mode waves can change continuously with L while the frequency of poloidal waves exhibits discrete spatial structure along L.Key PointsEvidence for both external and internal energy sources of field‐line resonances (FLRs) under disturbed solar wind conditionsCharacteristics of azimuthal wave numbers with different energy sourcesCharacteristic of frequency changing with L for toroidal and poloidal waves
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfield line resonances
dc.subject.othermagnetosphere
dc.subject.otherpoloidal mode waves
dc.subject.othertoroidal mode waves
dc.subject.otherULF waves
dc.subject.otherdisturbed solar wind
dc.titleMMS Observations of Field Line Resonances Under Disturbed Solar Wind Conditions
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167786/1/2020JA028936-sup-0002-Figure_SI-S02.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167786/2/2020JA028936-sup-0001-Figure_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167786/3/jgra56475.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167786/4/jgra56475_am.pdf
dc.identifier.doi10.1029/2020JA028936
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSinger, H. J., Hughes, W. J., & Russell, C. T. ( 1982 ). Standing hydromagnetic waves observed by ISEE 1 and 2: Radial extent and harmonic. Journal of Geophysical Research, 87 ( A5 ), 3519 – 3529. https://doi.org/10.1029/JA087iA05p03519
dc.identifier.citedreferenceChen, L., & Hasegawa, A. ( 1974 ). A theory of long‐period magnetic pulsations, 1. Steady state excitation of field line resonance. Journal of Geophysical Research, 79 ( 7 ), 1024 – 1032. https://doi.org/10.1029/JA079i007p01024
dc.identifier.citedreferenceChi, P. J., & Le, G. ( 2015 ). Observations of magnetospheric high‐m poloidal waves by ST‐5 satellites in low Earth orbit during geomagnetically quiet times. Journal of Geophysical Research: Space Physics, 120, 4776 – 4783. https://doi.org/10.1002/2015JA021145
dc.identifier.citedreferenceChi, P. J., & Russell, C. T. ( 2008 ). Use of the Wigner‐Ville distribution in interpreting and identifying ULF waves in triaxial magnetic records. Journal of Geophysical Research, 113, A01218. https://doi.org/10.1029/2007JA012469
dc.identifier.citedreferenceDenton, R. E., Lessard, M. R., & Kistler, L. M. ( 2003 ). Radial localization of magnetospheric guided poloidal Pc 4‐5 waves. Journal of Geophysical Research, 108 ( A3 ), 1105. https://doi.org/10.1029/2002JA009679
dc.identifier.citedreferenceDenton, R. E., & Vetoulis, G. ( 1998 ). Global poloidal mode. Journal of Geophysical Research, 103 ( A4 ), 6729 – 6739. https://doi.org/10.1029/97JA03594
dc.identifier.citedreferenceEriksson, P. T. I., Blomberg, L. G., Schaefer, S., & Glassmeier, K.‐H. ( 2006 ). On the excitation of ULF waves by solar wind pressure enhancements. Annales Geophysicae, 24, 3161 – 3172. https://doi.org/10.5194/angeo-24-3161-2006
dc.identifier.citedreferenceGarton, T. M., Murray, S. A., & Gallagher, P. T. ( 2018 ). Expansion of high‐speed solar wind streams from coronal holes through the inner heliosphere. The Astrophysical Journal Letters, 869 ( 1 ), L12. https://doi.org/10.3847/2041-8213/aaf39a
dc.identifier.citedreferenceGerontidou, M., Mavromichalaki, H., & Daglis, T. ( 2018 ). High‐speed solar wind streams and geomagnetic storms during solar cycle 24. Solar Physics, 293, 131. https://doi.org/10.1007/s11207-018-1348-8
dc.identifier.citedreferenceHenry, Z. W., Nykyri, K., Moore, T. W., Dimmock, A. P., & Ma, X. ( 2017 ). On the dawn‐dusk asymmetry of the Kelvin‐Helmholtz instability between 2007 and 2013. Journal of Geophysical Research: Space Physics, 122 ( 11 ), 11888 – 11900. https://doi.org/10.1002/2017JA024548
dc.identifier.citedreferenceHudson, M. K., Denton, R. E., Lessard, M. R., Miftakhova, E. G., & Anderson, R. R. ( 2004 ). A study of Pc‐5 UFL oscillations. Annales Geophysicae, 22, 289 – 302. https://doi.org/10.5194/angeo-22-289-2004
dc.identifier.citedreferenceKivelson, M. G., & Southwood, D. J. ( 1985 ). Resonant ULF waves: A new interpretation. Geophysical Research Letters, 12 ( 1 ), 49 – 52. https://doi.org/10.1029/GL012i001p00049
dc.identifier.citedreferenceLe, G., Chi, P. J., Strangeway, R. J., Russell, C.T., Slavin, J. A., Takahashi, K., et al. ( 2017 ). Global observations of magnetospheric high‐m poloidal waves during the 22 June 2015 magnetic storm. Geophysical Research Letters, 44, 3456 – 3464. https://doi.org/10.1002/2017GL073048
dc.identifier.citedreferenceLee, D.‐H., & Lysak, R. L. ( 1991 ). Impulsive excitation of ULF waves in the three‐dimensional dipole model: The initial results. Journal of Geophysical Research, 96 ( A3 ), 3479 – 3486. https://doi.org/10.1029/90JA02349
dc.identifier.citedreferenceLiu, W., Sarris, T. E., Li, X., Elkington, S. R., Ergun, R., Angelopoulos, V., et al. ( 2009 ). Electric and magnetic field observations of Pc4 and Pc5 pulsations in the inner magnetosphere: A statistical study. Journal of Geophysical Research, 114, A12206. https://doi.org/10.1029/2009JA014243
dc.identifier.citedreferenceNosé, M., Oimatsu, S., Keika, K., Kletzing, C. A., Kurth, W. S., Pascuale, S. D., et al. ( 2015 ). Formation of the oxygen torus in the inner magnetosphere: Van Allen probes observations. Journal of Geophysical Research: Space Physics, 120, 1182 – 1196. https://doi.org/10.1002/2014JA020593
dc.identifier.citedreferenceRae, I. J., Donovan, E. F., Mann, I. R., Fenrich, F. R., Watt, C. E. J., Milling, D. K., et al. ( 2005 ). Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval. Journal of Geophysical Research, 110, A12211. https://doi.org/10.1029/2005JA011007
dc.identifier.citedreferenceRussell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., et al. ( 2016 ). The magnetospheric multiscale magnetometers. Space Science Reviews, 199, 189 – 256. https://doi.org/10.1007/s11214-014-0057-3
dc.identifier.citedreferenceSouthwood, D. J. ( 1974 ). Some features of field line resonances in the magnetosphere, planet. Space Science, 22, 483 – 491. https://doi.org/10.1016/0032-0633(74)90078-6
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1981 ). Charged particle behavior in low‐frequency geomagnetic pulsations: 1. Transverse waves. Journal of Geophysical Research, 86, 5643 – 5655. https://doi.org/10.1029/JA086iA07p05643
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1982 ). Charged particle behavior in low‐frequency geomagnetic pulsations: 2. Graphical approach. Journal of Geophysical Research, 87, 1707 – 1710. https://doi.org/10.1029/JA087iA03p01707
dc.identifier.citedreferenceTakahashi, K., Fennell, J. F., Amata, E., & Higbie, P. R. ( 1987 ). Field‐aligned structure of the storm time Pc 5 wave of November 14–15, 1979. Journal of Geophysical Research, 92 ( A6 ), 5857 – 5864. https://doi.org/10.1029/JA092iA06p05857
dc.identifier.citedreferenceTakahashi, K., Glassmeier, K.‐H., Angelopoulos, V., Bonnell, J., Nishimura, Y., Singer, H. J., & Russell, C. T. ( 2011 ). Multisatellite observations of a giant pulsation event. Journal of Geophysical Research, 116, A11223. https://doi.org/10.1029/2011JA016955
dc.identifier.citedreferenceTakahashi, K., & Ukhorskiy, A. Y. ( 2007 ). Solar wind control of Pc5 pulsation power at geosynchronous orbit. Journal of Geophysical Research, 112, A11205. https://doi.org/10.1029/2007JA012483
dc.identifier.citedreferenceTorbert, R. B., Russell, C. T., Magnes, M., Ergun, R. E., Lindqvist, P.‐A., LeContel, O., et al. ( 2016 ). The fields instrument suite on MMS: scientific objectives, measurements, and data products. Space Science Reviews, 199, 105 – 135. https://doi.org/10.1007/s11214-014-0109-8
dc.identifier.citedreferenceVetoulis, G., & Chen, L. ( 1994 ). Global structures of Alfvén‐ballooning modes in magnetospheric plasmas. Geophysical Research Letters, 21, 2091 – 2094. https://doi.org/10.1029/94GL01703
dc.identifier.citedreferenceVetoulis, G., & Chen, L. ( 1996 ). Kinetic theory of geomagnetic pulsations: 3. Global analysis of drift Alfvén‐ballooning modes. Journal of Geophysical Research, 101 ( A7 ), 15441 – 15456. https://doi.org/10.1029/96JA00494
dc.identifier.citedreferenceZhang, X. Y., Zong, Q.‐G., Wang, Y. F., Zhang, H., Xie, L., Fu, S. Y., et al. ( 2010 ). ULF waves excited by negative/positive solar wind dynamic pressure impulses at geosynchronous orbit. Journal of Geophysical Research, 115, A10221. https://doi.org/10.1029/2009JA015016
dc.identifier.citedreferenceZong, Q., Rankin, R., & Zhou, X. ( 2017 ). The interaction of ultra‐low‐frequency pc3‐5 waves with charged particles in Earth’s magnetosphere. Reviews of Modern Plasma Physics, 1, 10. https://doi.org/10.1007/s41614-017-0011-4
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.