Show simple item record

A binary hidden Markov model on spatial network for amyotrophic lateral sclerosis disease spreading pattern analysis

dc.contributor.authorShin, Yei Eun
dc.contributor.authorLiu, Dawei
dc.contributor.authorSang, Huiyan
dc.contributor.authorFerguson, Toby A.
dc.contributor.authorSong, Peter X. K.
dc.date.accessioned2021-06-02T21:06:38Z
dc.date.available2022-07-02 17:06:37en
dc.date.available2021-06-02T21:06:38Z
dc.date.issued2021-06-15
dc.identifier.citationShin, Yei Eun; Liu, Dawei; Sang, Huiyan; Ferguson, Toby A.; Song, Peter X. K. (2021). "A binary hidden Markov model on spatial network for amyotrophic lateral sclerosis disease spreading pattern analysis." Statistics in Medicine 40(13): 3035-3052.
dc.identifier.issn0277-6715
dc.identifier.issn1097-0258
dc.identifier.urihttps://hdl.handle.net/2027.42/167790
dc.publisherWiley Periodicals, Inc.
dc.publisherUniversity of Kentucky
dc.subject.otherspatiotemporal
dc.subject.otherViterbi algorithm
dc.subject.otherautologistic regressive model
dc.subject.otherhidden Markov model
dc.subject.othernetwork
dc.subject.otherpenalized likelihood
dc.titleA binary hidden Markov model on spatial network for amyotrophic lateral sclerosis disease spreading pattern analysis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167790/1/sim8956_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167790/2/sim8956.pdf
dc.identifier.doi10.1002/sim.8956
dc.identifier.sourceStatistics in Medicine
dc.identifier.citedreferenceNIMS Database of the National Isometric Muscle Strength. Muscular weakness assessment: use of normal isometric strength data. Arch Phys Med Rehabil. 1996; 77 ( 12 ): 1251 ‐ 1255.
dc.identifier.citedreferenceViterbi A. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory. 1967; 13 ( 2 ): 260 ‐ 269.
dc.identifier.citedreferenceBesag J. Spatial interaction and the statistical analysis of lattice systems. J Royal Stat Soc Ser B (Methodol). 1974;36(2): 192 ‐ 236.
dc.identifier.citedreferenceBesag J. Statistical analysis of non‐lattice data. Statistician. 1975;24(3): 179 ‐ 195.
dc.identifier.citedreferenceZhu J, Huang HC, Wu J. Modeling spatial‐temporal binary data using Markov random fields. J Agric Biol Environ Stat. 2005; 10 ( 2 ): 212 ‐ 225.
dc.identifier.citedreferenceHughes J, Haran M, Caragea PC. Autologistic models for binary data on a lattice. Environmetrics. 2011; 22 ( 7 ): 857 ‐ 871.
dc.identifier.citedreferenceRabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE. 1989; 77 ( 2 ): 257 ‐ 286.
dc.identifier.citedreferenceTibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc Ser B (Methodol). 1996; 58 ( 1 ): 267 ‐ 288.
dc.identifier.citedreferenceGeer S, Bühlmann P, Ritov Y’a, Dezeure R. On asymptotically optimal confidence regions and tests for high‐dimensional models. Ann Stat. 2014; 42 ( 3 ): 1166 ‐ 1202.
dc.identifier.citedreferenceTang L, Zhou L, Song PX‐K. Distributed simultaneous inference in generalized linear models via confidence distribution. J Multivar Anal. 2020; 176: 104567.
dc.identifier.citedreferenceCudkowicz ME, Berg LH, Shefner JM, et al. Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double‐blind, phase 3 trial. Lancet Neurol. 2013; 12 ( 11 ): 1059 ‐ 1067.
dc.identifier.citedreferenceCaragea PC, Kaiser MS. Autologistic models with interpretable parameters. J Agric Biol Environ Stat. 2009; 14 ( 3 ): 281 ‐ 300.
dc.identifier.citedreferenceHughes J, Haran M. Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J Royal Stat Soc Ser B (Stat Methodol). 2013; 75 ( 1 ): 139 ‐ 159.
dc.identifier.citedreferenceAgaskar A, Lu YM. ALARM: a logistic auto‐regressive model for binary processes on networks. Paper presented at: Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing. Austin, TX; 2013:305‐308. https://doi.org/10.1109/GlobalSIP.2013.6736876.
dc.identifier.citedreferenceGolub GH, Heath M, Wahba G. Generalized cross‐validation as a method for choosing a good ridge parameter. Technometrics. 1979; 21 ( 2 ): 215 ‐ 223.
dc.identifier.citedreferenceSchwarz G. Estimating the dimension of a model. Ann Stat. 1978; 6 ( 2 ): 461 ‐ 464.
dc.identifier.citedreferenceChen J, Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika. 2008; 95 ( 3 ): 759 ‐ 771.
dc.identifier.citedreferenceShin YE, Sang H, Liu D, Ferguson TA, Song PXK. Autologistic network model on binary data for disease progression study. Biometrics. 2019; 75 ( 4 ): 1310 ‐ 1320.
dc.identifier.citedreferenceNocedal J, Wright S. Numerical Optimization. Berlin, Germany: Springer Science & Business Media; 2006.
dc.identifier.citedreferenceWang Z. Analysis of Binary Data via Spatial‐Temporal Autologistic Regression Models. Theses and Dissertations‐Statistics. Lexington, KY: University of Kentucky; 2012;3.
dc.identifier.citedreferenceBohannon RW. Reference values for extremity muscle strength obtained by hand‐held dynamometry from adults aged 20 to 79 years. Arch Phys Med Rehabil. 1997; 78 ( 1 ): 26 ‐ 32.
dc.identifier.citedreferenceZou H. The adaptive lasso and its oracle properties. J Am Stat Assoc. 2006; 101 ( 476 ): 1418 ‐ 1429.
dc.identifier.citedreferenceFan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc. 2001; 96 ( 456 ): 1348 ‐ 1360.
dc.identifier.citedreferenceZhang C‐H. Nearly unbiased variable selection under minimax concave penalty. Ann Stat. 2010; 38 ( 2 ): 894 ‐ 942.
dc.identifier.citedreferenceSong Q, Liang F. High‐dimensional variable selection with reciprocal l1‐regularization. J Am Stat Assoc. 2015; 110 ( 512 ): 1607 ‐ 1620.
dc.identifier.citedreferenceWasserman L, Roeder K. High dimensional variable selection. Ann Stat. 2009; 37 ( 5A ): 2178.
dc.identifier.citedreferenceZhang X, Cheng G. Simultaneous inference for high‐dimensional linear models. J Am Stat Assoc. 2017; 112 ( 518 ): 757 ‐ 768.
dc.identifier.citedreferenceBertarelli G, Ranalli G, Bartolucci F, D’Alò M, Solari F. Small area estimation for unemployment using latent Markov models. Survey Methodol. 2018; 44 ( 2 ): 167 ‐ 192.
dc.identifier.citedreferenceWei Z, Li H. A hidden spatial‐temporal Markov random field model for network‐based analysis of time course gene expression data. Ann Appl Stat. 2008; 2 ( 1 ): 408 ‐ 429.
dc.identifier.citedreferenceChen S, Langley J, Chen X, Hu X. Spatiotemporal modeling of brain dynamics using resting‐state functional magnetic resonance imaging with Gaussian hidden Markov model. Brain Connect. 2016; 6 ( 4 ): 326 ‐ 334.
dc.identifier.citedreferenceBartolucci F, Pandolfi S, Pennoni F. LMest: an R package for latent Markov models for longitudinal categorical data. J Stat Softw. 2017; 81 ( 1 ): 1 ‐ 38.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.