Show simple item record

Astrocytes in rare neurological conditions: Morphological and functional considerations

dc.contributor.authorRavi, Karthik
dc.contributor.authorPaidas, Michael J.
dc.contributor.authorSaad, Ali
dc.contributor.authorJayakumar, Arumugam R.
dc.date.accessioned2021-06-02T21:07:33Z
dc.date.available2022-08-02 17:07:17en
dc.date.available2021-06-02T21:07:33Z
dc.date.issued2021-07-01
dc.identifier.citationRavi, Karthik; Paidas, Michael J.; Saad, Ali; Jayakumar, Arumugam R. (2021). "Astrocytes in rare neurological conditions: Morphological and functional considerations." Journal of Comparative Neurology 529(10): 2676-2705.
dc.identifier.issn0021-9967
dc.identifier.issn1096-9861
dc.identifier.urihttps://hdl.handle.net/2027.42/167801
dc.description.abstractAstrocytes are a population of central nervous system (CNS) cells with distinctive morphological and functional characteristics that differ within specific areas of the brain and are widely distributed throughout the CNS. There are mainly two types of astrocytes, protoplasmic and fibrous, which differ in morphologic appearance and location. Astrocytes are important cells of the CNS that not only provide structural support, but also modulate synaptic activity, regulate neuroinflammatory responses, maintain the blood–brain barrier, and supply energy to neurons. As a result, astrocytic disruption can lead to widespread detrimental effects and can contribute to the pathophysiology of several neurological conditions. The characteristics of astrocytes in more common neuropathologies such as Alzheimer’s and Parkinson’s disease have significantly been described and continue to be widely studied. However, there still exist numerous rare neurological conditions in which astrocytic involvement is unknown and needs to be explored. Accordingly, this review will summarize functional and morphological changes of astrocytes in various rare neurological conditions based on current knowledge thus far and highlight remaining neuropathologies where astrocytic involvement has yet to be investigated.Astrocytes are essential cells of the CNS with several functions relating to neuronal and overall homeostasis. As a result, astrocytic dysfunction can cause widespread detrimental effects. There still exist numerous rare neurological conditions in which astrocytic involvement is only beginning to be explored. Accordingly, we will detail the role of astrocytes in over 40+ rare neurological conditions through the lens of function and morphology and highlight remaining neuropathologies where astrocytic involvement has yet to be investigated.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othercentral nervous system
dc.subject.otherfunction
dc.subject.othermorphology
dc.subject.otherneurologic conditions
dc.subject.otherastrocytosis
dc.subject.otherastrocyte
dc.titleAstrocytes in rare neurological conditions: Morphological and functional considerations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167801/1/cne25118.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167801/2/cne25118_am.pdf
dc.identifier.doi10.1002/cne.25118
dc.identifier.sourceJournal of Comparative Neurology
dc.identifier.citedreferenceSakurai, A., Makioka, K., Fukuda, T., Takatama, M., & Okamoto, K. ( 2013 ). Accumulation of phosphorylated TDP‐43 in the CNS of a patient with Cockayne syndrome. Neuropathology, 33 ( 6 ), 673 – 677. https://doi.org/10.1111/neup.12038
dc.identifier.citedreferenceWang, L., Wang, Y., Zhou, S., Yang, L., Shi, Q., Li, Y., Zhang, K., Yang, L., Zhao, M., & Yang, Q. ( 2016 ). Imbalance between glutamate and GABA in Fmr1 knockout astrocytes influences neuronal development. Genes (Basel), 7 ( 8 ), 45. https://doi.org/10.3390/genes7080045
dc.identifier.citedreferenceWaters, C. H., Faust, P. L., Powers, J., Vinters, H., Moskowitz, C., Nygaard, T., Hunt, A. L., & Fahn, S. ( 1993 ). Neuropathology of lubag (x‐linked dystonia parkinsonism). Movement Disorders, 8 ( 3 ), 387 – 390. https://doi.org/10.1002/mds.870080328
dc.identifier.citedreferenceWei, H., Zou, H., Sheikh, A. M., Malik, M., Dobkin, C., Brown, W. T., & Li, X. ( 2011 ). IL‐6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. Journal of Neuroinflammation, 8, 52. https://doi.org/10.1186/1742-2094-8-52
dc.identifier.citedreferenceWeidenheim, K. M., Dickson, D. W., & Rapin, I. ( 2009 ). Neuropathology of Cockayne syndrome: Evidence for impaired development, premature aging, and neurodegeneration. Mechanisms of Ageing and Development, 130 ( 9 ), 619 – 636. https://doi.org/10.1016/j.mad.2009.07.006
dc.identifier.citedreferenceWenning, G. K., & Jellinger, K. A. ( 2005 ). The role of alpha‐synuclein in the pathogenesis of multiple system atrophy. Acta Neuropathologica, 109 ( 2 ), 129 – 140. https://doi.org/10.1007/s00401-004-0935-y
dc.identifier.citedreferenceWenzel, H. J., Hunsaker, M. R., Greco, C. M., Willemsen, R., & Berman, R. F. ( 2010 ). Ubiquitin‐positive intranuclear inclusions in neuronal and glial cells in a mouse model of the fragile X premutation. Brain Research, 1318, 155 – 166. https://doi.org/10.1016/j.brainres.2009.12.077
dc.identifier.citedreferenceWhite, E. J., Trigatti, B. L., & Igdoura, S. A. ( 2017 ). Suppression of NK and CD8(+) T cells reduces astrogliosis but accelerates cerebellar dysfunction and shortens life span in a mouse model of Sandhoff disease. Journal of Neuroimmunology, 306, 55 – 67. https://doi.org/10.1016/j.jneuroim.2017.03.004
dc.identifier.citedreferenceWhite, F. A., Jung, H., & Miller, R. J. ( 2007 ). Chemokines and the pathophysiology of neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 104 ( 51 ), 20151 – 20158. https://doi.org/10.1073/pnas.0709250104
dc.identifier.citedreferenceWhitney, E. R., Kemper, T. L., Rosene, D. L., Bauman, M. L., & Blatt, G. J. ( 2009 ). Density of cerebellar basket and stellate cells in autism: Evidence for a late developmental loss of Purkinje cells. Journal of Neuroscience Research, 87 ( 10 ), 2245 – 2254. https://doi.org/10.1002/jnr.22056
dc.identifier.citedreferenceWilkinson, F. L., Holley, R. J., Langford‐Smith, K. J., Badrinath, S., Liao, A., Langford‐Smith, A., Cooper, J. D., Jones, S. A., Wraith, J. E., Wynn, R. F., Merry, C. L. R., & Bigger, B. W. ( 2012 ). Neuropathology in mouse models of mucopolysaccharidosis type I, IIIA and IIIB. PLoS One, 7 ( 4 ), e35787. https://doi.org/10.1371/journal.pone.0035787
dc.identifier.citedreferenceWong, M., Ess, K. C., Uhlmann, E. J., Jansen, L. A., Li, W., Crino, P. B., Mennerick, S., Yamada, K. A., & Gutmann, D. H. ( 2003 ). Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Annals of Neurology, 54 ( 2 ), 251 – 256. https://doi.org/10.1002/ana.10648
dc.identifier.citedreferenceYamano, Y., & Coler‐Reilly, A. ( 2017 ). HTLV‐1 induces a Th1‐like state in CD4(+)CCR4(+) T cells that produces an inflammatory positive feedback loop via astrocytes in HAM/TSP. Journal of Neuroimmunology, 304, 51 – 55. https://doi.org/10.1016/j.jneuroim.2016.08.012
dc.identifier.citedreferenceYan, E., Li, B., Gu, L., Hertz, L., & Peng, L. ( 2013 ). Mechanisms for L‐channel‐mediated increase in [Ca(2+)]i and its reduction by anti‐bipolar drugs in cultured astrocytes combined with its mRNA expression in freshly isolated cells support the importance of astrocytic L‐channels. Cell Calcium, 54 ( 5 ), 335 – 342. https://doi.org/10.1016/j.ceca.2013.08.002
dc.identifier.citedreferenceYang, X. L., Wang, X., Shao, L., Jiang, G. T., Min, J. W., Mei, X. Y., He, X. H., Liu, W. H., Huang, W. X., & Peng, B. W. ( 2019 ). TRPV1 mediates astrocyte activation and interleukin‐1beta release induced by hypoxic ischemia (HI). Journal of Neuroinflammation, 16 ( 1 ), 114. https://doi.org/10.1186/s12974-019-1487-3
dc.identifier.citedreferenceYlikoski, J., Collan, Y., & Palva, T. ( 1981 ). Further observations in the eighth nerve in Meniere’s disease. Acta Neuropathologica, 54 ( 2 ), 157 – 159. https://doi.org/10.1007/BF00689410
dc.identifier.citedreferenceYoon, H., Walters, G., Paulsen, A. R., & Scarisbrick, I. A. ( 2017 ). Astrocyte heterogeneity across the brain and spinal cord occurs developmentally, in adulthood and in response to demyelination. PLoS One, 12 ( 7 ), e0180697. https://doi.org/10.1371/journal.pone.0180697
dc.identifier.citedreferenceZeng, L. H., Bero, A. W., Zhang, B., Holtzman, D. M., & Wong, M. ( 2010 ). Modulation of astrocyte glutamate transporters decreases seizures in a mouse model of tuberous sclerosis complex. Neurobiology of Disease, 37 ( 3 ), 764 – 771. https://doi.org/10.1016/j.nbd.2009.12.020
dc.identifier.citedreferenceZeng, L. H., Ouyang, Y., Gazit, V., Cirrito, J. R., Jansen, L. A., Ess, K. C., Yamada, K. A., Wozniak, D. F., Holtzman, D. M., Gutmann, D. H., & Wong, M. ( 2007 ). Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex. Neurobiology of Disease, 28 ( 2 ), 184 – 196. https://doi.org/10.1016/j.nbd.2007.07.015
dc.identifier.citedreferenceZhang, G. H., Lv, M. M., Wang, S., Chen, L., Qian, N. S., Tang, Y., Zhang, X. D., Ren, P. C., Gao, C. J., Sun, X. D., & Xu, L. X. ( 2011 ). Spinal astrocytic activation is involved in a virally‐induced rat model of neuropathic pain. PLoS One, 6 ( 9 ), e23059. https://doi.org/10.1371/journal.pone.0023059
dc.identifier.citedreferenceZhang, M., Strnatka, D., Donohue, C., Hallows, J. L., Vincent, I., & Erickson, R. P. ( 2008 ). Astrocyte‐only Npc1 reduces neuronal cholesterol and triples life span of Npc1−/− mice. Journal of Neuroscience Research, 86 ( 13 ), 2848 – 2856. https://doi.org/10.1002/jnr.21730
dc.identifier.citedreferenceZhao, Y., Xiao, J., Ueda, M., Wang, Y., Hines, M., Nowak, T. S., Jr., & LeDoux, M. S. ( 2008 ). Glial elements contribute to stress‐induced torsinA expression in the CNS and peripheral nervous system. Neuroscience, 155 ( 2 ), 439 – 453. https://doi.org/10.1016/j.neuroscience.2008.04.053
dc.identifier.citedreferenceZhou, J., Kong, H., Hua, X., Xiao, M., Ding, J., & Hu, G. ( 2008 ). Altered blood‐brain barrier integrity in adult aquaporin‐4 knockout mice. Neuroreport, 19 ( 1 ), 1 – 5. https://doi.org/10.1097/WNR.0b013e3282f2b4eb
dc.identifier.citedreferenceZibaee, S., Fraser, G., Jakes, R., Owen, D., Serpell, L. C., Crowther, R. A., & Goedert, M. ( 2010 ). Human beta‐synuclein rendered fibrillogenic by designed mutations. The Journal of Biological Chemistry, 285 ( 49 ), 38555 – 38567. https://doi.org/10.1074/jbc.M110.160721
dc.identifier.citedreferenceZou, J., Zhang, B., Gutmann, D. H., & Wong, M. ( 2017 ). Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age‐dependent manner. Epilepsia, 58 ( 12 ), 2053 – 2063. https://doi.org/10.1111/epi.13923
dc.identifier.citedreferenceAbouhamed, M., Grobe, K., San, I. V. L. C., Thelen, S., Honnert, U., Balda, M. S., Matter, K., & Bähler, M. ( 2009 ). Myosin IXa regulates epithelial differentiation and its deficiency results in hydrocephalus. Molecular Biology of the Cell, 20 ( 24 ), 5074 – 5085. http://dx.doi.org/10.1091/mbc.e09-04-0291
dc.identifier.citedreferenceAlshafai, L., Ochi, A., Go, C., McCoy, B., Hawkins, C., Otsubo, H., Snead, O. C., Rutka, J., & Widjaja, E. ( 2014 ). Clinical, EEG, MRI, MEG, and surgical outcomes of pediatric epilepsy with astrocytic inclusions versus focal cortical dysplasia. Epilepsia, 55 ( 10 ), 1568 – 1575. https://doi.org/10.1111/epi.12756
dc.identifier.citedreferenceAltshuler, L. L., Abulseoud, O. A., Foland‐Ross, L., Bartzokis, G., Chang, S., Mintz, J., Hellemann, G., & Vinters, H. V. ( 2010 ). Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disorders, 12 ( 5 ), 541 – 549. https://doi.org/10.1111/j.1399-5618.2010.00838.x
dc.identifier.citedreferenceAndo, H., Sato, T., Tomaru, U., Yoshida, M., Utsunomiya, A., Yamauchi, J., Araya, N., Yagishita, N., Coler‐Reilly, A., Shimizu, Y., Yudoh, K., Hasegawa, Y., Nishioka, K., Nakajima, T., Jacobson, S., & Yamano, Y. ( 2013 ). Positive feedback loop via astrocytes causes chronic inflammation in virus‐associated myelopathy. Brain, 136 (Pt 9), 2876 – 2887. https://doi.org/10.1093/brain/awt183
dc.identifier.citedreferenceAndres Benito, P., Dominguez Gonzalez, M., & Ferrer, I. ( 2018 ). Altered gene transcription linked to astrocytes and oligodendrocytes in frontal cortex in Creutzfeldt‐Jakob disease. Prion, 12 ( 3–4 ), 216 – 225. https://doi.org/10.1080/19336896.2018.1500076
dc.identifier.citedreferenceAraujo, B. H. S., Kaid, C., De Souza, J. S., Gomes da Silva, S., Goulart, E., Caires, L. C. J., Musso, C. M., Torres, L. B., Ferrasa, A., Herai, R., Zatz, M., Okamoto, O. K., & Cavalheiro, E. A. ( 2018 ). Down Syndrome iPSC‐derived astrocytes impair neuronal synaptogenesis and the mTOR pathway in vitro. Molecular Neurobiology, 55 ( 7 ), 5962 – 5975. https://doi.org/10.1007/s12035-017-0818-6
dc.identifier.citedreferenceAraya, N., Sato, T., Ando, H., Tomaru, U., Yoshida, M., Coler‐Reilly, A., Yagishita, N., Yamauchi, J., Hasegawa, A., Kannagi, M., Hasegawa, Y., Takahashi, K., Kunitomo, Y., Tanaka, Y., Nakajima, T., Nishioka, K., Utsunomiya, A., Jacobson, S., & Yamano, Y. ( 2014 ). HTLV‐1 induces a Th1‐like state in CD4+CCR4+ T cells. The Journal of Clinical Investigation, 124 ( 8 ), 3431 – 3442. https://doi.org/10.1172/JCI75250
dc.identifier.citedreferenceAriza, J., Rogers, H., Hartvigsen, A., Snell, M., Dill, M., Judd, D., Hagerman, P., & Martinez‐Cerdeno, V. ( 2017 ). Iron accumulation and dysregulation in the putamen in fragile X‐associated tremor/ataxia syndrome. Movement Disorders, 32 ( 4 ), 585 – 591. https://doi.org/10.1002/mds.26902
dc.identifier.citedreferenceArregui, L., Benitez, J. A., Razgado, L. F., Vergara, P., & Segovia, J. ( 2011 ). Adenoviral astrocyte‐specific expression of BDNF in the striata of mice transgenic for Huntington’s disease delays the onset of the motor phenotype. Cellular and Molecular Neurobiology, 31 ( 8 ), 1229 – 1243. https://doi.org/10.1007/s10571-011-9725-y
dc.identifier.citedreferenceAssadi, M., Wang, D. J., Velazquez‐Rodriquez, Y., & Leone, P. ( 2013 ). Multi‐voxel 1H‐MRS in metachromatic Leukodystrophy. Journal of Central Nervous System Disease, 5, 25 – 30. https://doi.org/10.4137/JCNSD.S11861
dc.identifier.citedreferenceAuge, E., Pelegri, C., Manich, G., Cabezon, I., Guinovart, J. J., Duran, J., & Vilaplana, J. ( 2018 ). Astrocytes and neurons produce distinct types of polyglucosan bodies in Lafora disease. Glia, 66 ( 10 ), 2094 – 2107. https://doi.org/10.1002/glia.23463
dc.identifier.citedreferenceBaarine, M., Khan, M., Singh, A., & Singh, I. ( 2015 ). Functional characterization of IPSC‐derived brain cells as a model for X‐linked Adrenoleukodystrophy. PLoS One, 10 ( 11 ), e0143238. https://doi.org/10.1371/journal.pone.0143238
dc.identifier.citedreferenceBallestin, R., Blasco‐Ibanez, J. M., Crespo, C., Nacher, J., Lopez‐Hidalgo, R., Gilabert‐Juan, J., Moltó, D., & Varea, E. ( 2014 ). Astrocytes of the murine model for Down Syndrome Ts65Dn display reduced intracellular ionic zinc. Neurochemistry International, 75, 48 – 53. https://doi.org/10.1016/j.neuint.2014.05.013
dc.identifier.citedreferenceBambrick, L. L., Yarowsky, P. J., & Krueger, B. K. ( 2003 ). Altered astrocyte calcium homeostasis and proliferation in theTs65Dn mouse, a model of down syndrome. Journal of Neuroscience Research, 73 ( 1 ), 89 – 94. https://doi.org/10.1002/jnr.10630
dc.identifier.citedreferenceBarkovich, A. J. ( 2010 ). Current concepts of polymicrogyria. Neuroradiology, 52 ( 6 ), 479 – 487. https://doi.org/10.1007/s00234-009-0644-2
dc.identifier.citedreferenceBarnett, B. P., Bressler, J., Chen, T., Hutchins, G. M., Crain, B. J., & Kaufmann, W. E. ( 2011 ). alphaB‐crystallin negative astrocytic inclusions. Brain Development, 33 ( 4 ), 349 – 352. https://doi.org/10.1016/j.braindev.2010.06.013
dc.identifier.citedreferenceBarragan‐Iglesias, P., Oidor‐Chan, V. H., Loeza‐Alcocer, E., Pineda‐Farias, J. B., Velazquez‐Lagunas, I., Salinas‐Abarca, A. B., Hong, E., Sánchez‐Mendozae, A., Delgado‐Lezama, R., Price, T. J., & Granados‐Soto, V. ( 2018 ). Evaluation of the neonatal streptozotocin model of diabetes in rats: Evidence for a model of neuropathic pain. Pharmacological Reports, 70 ( 2 ), 294 – 303. https://doi.org/10.1016/j.pharep.2017.09.002
dc.identifier.citedreferenceBaslow, M. H. ( 2000 ). Canavan’s spongiform leukodystrophy: A clinical anatomy of a genetic metabolic CNS disease. Journal of Molecular Neuroscience, 15 ( 2 ), 61 – 69. https://doi.org/10.1385/JMN:15:2:61
dc.identifier.citedreferenceBaslow, M. H. ( 2003 ). Brain N‐acetylaspartate as a molecular water pump and its role in the etiology of Canavan disease: A mechanistic explanation. Journal of Molecular Neuroscience, 21 ( 3 ), 185 – 190. https://doi.org/10.1385/jmn:21:3:185
dc.identifier.citedreferenceBaslow, M. H., & Guilfoyle, D. N. ( 2009 ). Are astrocytes the missing link between lack of brain aspartoacylase activity and the spongiform leukodystrophy in Canavan disease? Neurochemical Research, 34 ( 9 ), 1523 – 1534. https://doi.org/10.1007/s11064-009-9958-z
dc.identifier.citedreferenceBaudry, M., Yao, Y., Simmons, D., Liu, J., & Bi, X. ( 2003 ). Postnatal development of inflammation in a murine model of Niemann‐pick type C disease: Immunohistochemical observations of microglia and astroglia. Experimental Neurology, 184 ( 2 ), 887 – 903. https://doi.org/10.1016/S0014-4886(03)00345-5
dc.identifier.citedreferenceBecker, E. B., & Stoodley, C. J. ( 2013 ). Autism spectrum disorder and the cerebellum. International Review of Neurobiology, 113, 1 – 34. https://doi.org/10.1016/B978-0-12-418700-9.00001-0
dc.identifier.citedreferenceBennett, J. L., Lam, C., Kalluri, S. R., Saikali, P., Bautista, K., Dupree, C., Glogowska, M., Case, D., Antel, J. P., Owens, G. P., Gilden, D., Nessler, S., Stadelmann, C., & Hemmer, B. ( 2009 ). Intrathecal pathogenic anti‐aquaporin‐4 antibodies in early neuromyelitis optica. Annals of Neurology, 66 ( 5 ), 617 – 629. https://doi.org/10.1002/ana.21802
dc.identifier.citedreferenceBerger, J. R., Aksamit, A. J., Clifford, D. B., Davis, L., Koralnik, I. J., Sejvar, J. J., Major, E. O., & Nath, A. ( 2013 ). PML diagnostic criteria: Consensus statement from the AAN Neuroinfectious disease section. Neurology, 80 ( 15 ), 1430 – 1438. https://doi.org/10.1212/WNL.0b013e31828c2fa1
dc.identifier.citedreferenceBochukova, E. G., Lawler, K., Croizier, S., Keogh, J. M., Patel, N., Strohbehn, G., Lo, K. K., Humphrey, J., Hokken‐Koelega, A., Damen, L., Donze, S., Bouret, S. G., Plagnol, V., & Farooqi, I. S. ( 2018 ). A transcriptomic signature of the hypothalamic response to fasting and BDNF deficiency in Prader‐Willi Syndrome. Cell Reports, 22 ( 13 ), 3401 – 3408. https://doi.org/10.1016/j.celrep.2018.03.018
dc.identifier.citedreferenceBokhari, M. R., Samanta, D., & Bokhari, S. R. A. ( 2020 ). Canavan disease. StatPearls.
dc.identifier.citedreferenceBoor, P. K., de Groot, K., Waisfisz, Q., Kamphorst, W., Oudejans, C. B., Powers, J. M., van der Pronk, J. C., Scheper, G. C., & Knaap, M. S. ( 2005 ). MLC1: A novel protein in distal astroglial processes. Journal of Neuropathology and Experimental Neurology, 64 ( 5 ), 412 – 419. https://doi.org/10.1093/jnen/64.5.412
dc.identifier.citedreferenceBorbon, I., Totenhagen, J., Fiorenza, M. T., Canterini, S., Ke, W., Trouard, T., & Erickson, R. P. ( 2012 ). Niemann‐pick C1 mice, a model of "juvenile Alzheimer’s disease", with normal gene expression in neurons and fibrillary astrocytes show long term survival and delayed neurodegeneration. Journal of Alzheimer’s Disease, 30 ( 4 ), 875 – 887. https://doi.org/10.3233/JAD-2012-120199
dc.identifier.citedreferenceBorges, C. G., Canani, C. R., Fernandes, C. G., Zanatta, A., Seminotti, B., Ribeiro, C. A., Leipnitz, G., Vargas, C. R., & Wajner, M. ( 2015 ). Reactive nitrogen species mediate oxidative stress and astrogliosis provoked by in vivo administration of phytanic acid in cerebellum of adolescent rats: A potential contributing pathomechanism of cerebellar injury in peroxisomal disorders. Neuroscience, 304, 122 – 132. https://doi.org/10.1016/j.neuroscience.2015.07.028
dc.identifier.citedreferenceBorrett, D., & Becker, L. E. ( 1985 ). Alexander’s disease. A disease of astrocytes. Brain, 108 (Pt 2, 367 – 385. https://doi.org/10.1093/brain/108.2.367
dc.identifier.citedreferenceBrennan‐Krohn, T., Salloway, S., Correia, S., Dong, M., & de la Monte, S. M. ( 2010 ). Glial vascular degeneration in CADASIL. Journal of Alzheimer’s Disease, 21 ( 4 ), 1393 – 1402. https://doi.org/10.3233/jad-2010-100036
dc.identifier.citedreferenceBrinar, V. V., & Poser, C. M. ( 2008 ). Disseminated encephalomyelitis in adults. Clinical Neurology and Neurosurgery, 110 ( 9 ), 913 – 918. https://doi.org/10.1016/j.clineuro.2008.06.015
dc.identifier.citedreferenceBushong, E. A., Martone, M. E., Jones, Y. Z., & Ellisman, M. H. ( 2002 ). Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. The Journal of Neuroscience, 22 ( 1 ), 183 – 192 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11756501
dc.identifier.citedreferenceCao, Z., Hulsizer, S., Cui, Y., Pretto, D. L., Kim, K. H., Hagerman, P. J., Tassone, F., & Pessah, I. N. ( 2013 ). Enhanced asynchronous ca(2+) oscillations associated with impaired glutamate transport in cortical astrocytes expressing Fmr1 gene premutation expansion. The Journal of Biological Chemistry, 288 ( 19 ), 13831 – 13841. https://doi.org/10.1074/jbc.M112.441055
dc.identifier.citedreferenceCekanaviciute, E., & Buckwalter, M. S. ( 2016 ). Astrocytes: Integrative regulators of Neuroinflammation in stroke and other neurological diseases. Neurotherapeutics, 13 ( 4 ), 685 – 701. https://doi.org/10.1007/s13311-016-0477-8
dc.identifier.citedreferenceCervos‐Navarro, J. ( 1990 ). Heredopathia atactica polyneuritiformis (Refsum’s disease). Histology and Histopathology, 5 ( 4 ), 439 – 450 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1724932
dc.identifier.citedreferenceChaussenot, A., Borg, M., Bayreuther, C., & Lebrun, C. ( 2008 ). Late cerebellar ataxia associated with fragile X premutation. Revue Neurologique (Paris), 164 ( 11 ), 957 – 963. https://doi.org/10.1016/j.neurol.2008.03.022
dc.identifier.citedreferenceChavez, C. E., Oyarzun, J. E., Avendano, B. C., Mellado, L. A., Inostroza, C. A., Alvear, T. F., & Orellana, J. A. ( 2019 ). The opening of Connexin 43 hemichannels alters hippocampal astrocyte function and neuronal survival in prenatally LPS‐exposed adult offspring. Frontiers in Cellular Neuroscience, 13, 460. https://doi.org/10.3389/fncel.2019.00460
dc.identifier.citedreferenceChen, C., Jiang, P., Xue, H., Peterson, S. E., Tran, H. T., McCann, A. E., Parast, M. M., Li, S., Pleasure, D. E., Laurent, L. C., Loring, J. F., Liu, Y., & Deng, W. ( 2014 ). Role of astroglia in Down’s syndrome revealed by patient‐derived human‐induced pluripotent stem cells. Nature Communications, 5, 4430. https://doi.org/10.1038/ncomms5430
dc.identifier.citedreferenceChen, G., Park, C. K., Xie, R. G., Berta, T., Nedergaard, M., & Ji, R. R. ( 2014 ). Connexin‐43 induces chemokine release from spinal cord astrocytes to maintain late‐phase neuropathic pain in mice. Brain, 137 (Pt 8, 2193 – 2209. https://doi.org/10.1093/brain/awu140
dc.identifier.citedreferenceChen, S., Hui, H., Zhang, D., & Xue, Y. ( 2010 ). The combination of morphine and minocycline may be a good treatment for intractable post‐herpetic neuralgia. Medical Hypotheses, 75 ( 6 ), 663 – 665. https://doi.org/10.1016/j.mehy.2010.08.013
dc.identifier.citedreferenceChen, T., Lennon, V. A., Liu, Y. U., Bosco, D. B., Li, Y., Yi, M. H., Zhu, J., Wei, S., & Wu, L. J. ( 2020 ). Astrocyte‐microglia interaction drives evolving neuromyelitis optica lesion. The Journal of Clinical Investigation, 130 ( 8 ), 4025 – 4038. https://doi.org/10.1172/JCI134816
dc.identifier.citedreferenceCheng, C., Lau, S. K., & Doering, L. C. ( 2016 ). Astrocyte‐secreted thrombospondin‐1 modulates synapse and spine defects in the fragile X mouse model. Molecular Brain, 9 ( 1 ), 74. https://doi.org/10.1186/s13041-016-0256-9
dc.identifier.citedreferenceCheng, C., Sourial, M., & Doering, L. C. ( 2012 ). Astrocytes and developmental plasticity in fragile X. Neural Plasticity, 2012, 197491 – 197412. https://doi.org/10.1155/2012/197491
dc.identifier.citedreferenceChiulli, N., Codazzi, F., Di Cesare, A., Gravaghi, C., Zacchetti, D., & Grohovaz, F. ( 2007 ). Sphingosylphosphocholine effects on cultured astrocytes reveal mechanisms potentially involved in neurotoxicity in Niemann‐pick type a disease. The European Journal of Neuroscience, 26 ( 4 ), 875 – 881. https://doi.org/10.1111/j.1460-9568.2007.05732.x
dc.identifier.citedreferenceChoi, Y. P., Head, M. W., Ironside, J. W., & Priola, S. A. ( 2014 ). Uptake and degradation of protease‐sensitive and ‐resistant forms of abnormal human prion protein aggregates by human astrocytes. The American Journal of Pathology, 184 ( 12 ), 3299 – 3307. https://doi.org/10.1016/j.ajpath.2014.08.005
dc.identifier.citedreferenceChristopherson, K. S., Ullian, E. M., Stokes, C. C., Mullowney, C. E., Hell, J. W., Agah, A., Lawler, J., Mosher, D. F., Bornstein, P., & Barres, B. A. ( 2005 ). Thrombospondins are astrocyte‐secreted proteins that promote CNS synaptogenesis. Cell, 120 ( 3 ), 421 – 433. https://doi.org/10.1016/j.cell.2004.12.020
dc.identifier.citedreferenceChrobak, A. A., & Soltys, Z. ( 2017 ). Bergmann glia, long‐term depression, and autism Spectrum disorder. Molecular Neurobiology, 54 ( 2 ), 1156 – 1166. https://doi.org/10.1007/s12035-016-9719-3
dc.identifier.citedreferenceChu, K., Lee, S. T., Sinn, D. I., Ko, S. Y., Kim, E. H., Kim, J. M., Kim, S. J., Park, D. K., Jung, K. H., Song, E. C., Lee, S. K., Kim, M., & Roh, J. K. ( 2007 ). Pharmacological induction of ischemic tolerance by glutamate Transporter‐1 (EAAT2) upregulation. Stroke, 38 ( 1 ), 177 – 182. https://doi.org/10.1161/01.STR.0000252091.36912.65
dc.identifier.citedreferenceClarner, T., Wieczorek, N., Krauspe, B., Jansen, K., Beyer, C., & Kipp, M. ( 2014 ). Astroglial redistribution of aquaporin 4 during spongy degeneration in a Canavan disease mouse model. Journal of Molecular Neuroscience, 53 ( 1 ), 22 – 30. https://doi.org/10.1007/s12031-013-0184-4
dc.identifier.citedreferenceCole, A. J., Andermann, F., Taylor, L., Olivier, A., Rasmussen, T., Robitaille, Y., & Spire, J. P. ( 1988 ). The Landau‐Kleffner syndrome of acquired epileptic aphasia: Unusual clinical outcome, surgical experience, and absence of encephalitis. Neurology, 38 ( 1 ), 31 – 38. https://doi.org/10.1212/wnl.38.1.31
dc.identifier.citedreferenceColombo, J. A., Quinn, B., & Puissant, V. ( 2002 ). Disruption of astroglial interlaminar processes in Alzheimer’s disease. Brain Research Bulletin, 58 ( 2 ), 235 – 242. https://doi.org/10.1016/s0361-9230(02)00785-2
dc.identifier.citedreferenceColombo, J. A., Reisin, H. D., Jones, M., & Bentham, C. ( 2005 ). Development of interlaminar astroglial processes in the cerebral cortex of control and Down’s syndrome human cases. Experimental Neurology, 193 ( 1 ), 207 – 217. https://doi.org/10.1016/j.expneurol.2004.11.024
dc.identifier.citedreferenceCrawford, J. D., Chandley, M. J., Szebeni, K., Szebeni, A., Waters, B., & Ordway, G. A. ( 2015 ). Elevated GFAP protein in anterior cingulate cortical White matter in males with autism Spectrum disorder. Autism Research, 8 ( 6 ), 649 – 657. https://doi.org/10.1002/aur.1480
dc.identifier.citedreferenceDamadzic, R., Bigelow, L. B., Krimer, L. S., Goldenson, D. A., Saunders, R. C., Kleinman, J. E., & Herman, M. M. ( 2001 ). A quantitative immunohistochemical study of astrocytes in the entorhinal cortex in schizophrenia, bipolar disorder and major depression: Absence of significant astrocytosis. Brain Research Bulletin, 55 ( 5 ), 611 – 618. https://doi.org/10.1016/s0361-9230(01)00529-9
dc.identifier.citedreferencede Baecque, C. M., Suzuki, K., Rapin, I., Johnson, A. B., & Whethers, D. L. ( 1975 ). GM2‐gangliosidosis, AB variant: Clinico‐pathological study of a case. Acta Neuropathologica, 33 ( 3 ), 207 – 226. https://doi.org/10.1007/BF00688395
dc.identifier.citedreferencede Waard, D. M., & Bugiani, M. ( 2020 ). Astrocyte‐oligodendrocyte‐microglia crosstalk in Astrocytopathies. Frontiers in Cellular Neuroscience, 14, 608073. https://doi.org/10.3389/fncel.2020.608073
dc.identifier.citedreferenceDehghani, A., Khoramkish, M., & Shahsavari Isfahani, S. ( 2019 ). Challenges in the daily living activities of patients with multiple sclerosis: A qualitative content analysis. International Journal of Community Based Nursing and Midwifery, 7 ( 3 ), 201 – 210. https://doi.org/10.30476/IJCBNM.2019.44995
dc.identifier.citedreferenceDel Tredici, K., Ludolph, A. C., Feldengut, S., Jacob, C., Reichmann, H., Bohl, J. R., & Braak, H. ( 2020 ). Fabry disease with concomitant Lewy body disease. Journal of Neuropathology and Experimental Neurology, 79 ( 4 ), 378 – 392. https://doi.org/10.1093/jnen/nlz139
dc.identifier.citedreferenceDeng, X. T., Wu, M. Z., Xu, N., Ma, P. C., & Song, X. J. ( 2017 ). Activation of ephrinB‐EphB receptor signalling in rat spinal cord contributes to maintenance of diabetic neuropathic pain. European Journal of Pain, 21 ( 2 ), 278 – 288. https://doi.org/10.1002/ejp.922
dc.identifier.citedreferenceDesilva, T. M., Billiards, S. S., Borenstein, N. S., Trachtenberg, F. L., Volpe, J. J., Kinney, H. C., & Rosenberg, P. A. ( 2008 ). Glutamate transporter EAAT2 expression is up‐regulated in reactive astrocytes in human periventricular leukomalacia. The Journal of Comparative Neurology, 508 ( 2 ), 238 – 248. https://doi.org/10.1002/cne.21667
dc.identifier.citedreferenceDi Pauli, F., Hoftberger, R., Reindl, M., Beer, R., Rhomberg, P., Schanda, K., Sato, D., Fujihara, K., Lassmann, H., Schmutzhard, E., & Berger, T. ( 2015 ). Fulminant demyelinating encephalomyelitis: Insights from antibody studies and neuropathology. Neurology Neuroimmunology & Neuroinflammation, 2 ( 6 ), e175. https://doi.org/10.1212/NXI.0000000000000175
dc.identifier.citedreferenceDominguez‐Pinos, M. D., Paez, P., Jimenez, A. J., Weil, B., Arraez, M. A., Perez‐Figares, J. M., & Rodriguez, E. M. ( 2005 ). Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus. Journal of Neuropathology and Experimental Neurology, 64 ( 7 ), 595 – 604. https://doi.org/10.1097/01.jnen.0000171648.86718.bb
dc.identifier.citedreferenceDrago, F., Lombardi, M., Prada, I., Gabrielli, M., Joshi, P., Cojoc, D., Franck, J., Fournier, I., Vizioli, J., & Verderio, C. ( 2017 ). ATP modifies the proteome of extracellular vesicles released by microglia and influences their action on astrocytes. Frontiers in Pharmacology, 8, 910. https://doi.org/10.3389/fphar.2017.00910
dc.identifier.citedreferenceDuran, J., & Guinovart, J. J. ( 2015 ). Brain glycogen in health and disease. Molecular Aspects of Medicine, 46, 70 – 77. https://doi.org/10.1016/j.mam.2015.08.007
dc.identifier.citedreferenceDwyer, C. A., Scudder, S. L., Lin, Y., Dozier, L. E., Phan, D., Allen, N. J., Patrick, G. N., & Esko, J. D. ( 2017 ). Neurodevelopmental changes in excitatory synaptic structure and function in the cerebral cortex of Sanfilippo Syndrome IIIA mice. Scientific Reports, 7, 46576. https://doi.org/10.1038/srep46576
dc.identifier.citedreferenceFernandes, E. R., de Andrade, H. F., Jr., Lancellotti, C. L., Quaresma, J. A., Demachki, S., da Costa Vasconcelos, P. F., & Duarte, M. I. ( 2011 ). In situ apoptosis of adaptive immune cells and the cellular escape of rabies virus in CNS from patients with human rabies transmitted by Desmodus rotundus. Virus Research, 156 ( 1–2 ), 121 – 126. https://doi.org/10.1016/j.virusres.2011.01.006
dc.identifier.citedreferenceFerrand, F. X., Pillard, P., Carozzo, C., Marchal, T., Seurin, M. J., & Escriou, C. ( 2015 ). Spinal neurenteric cyst in a dog. Irish Veterinary Journal, 68, 9. https://doi.org/10.1186/s13620-015-0037-2
dc.identifier.citedreferenceFranco, C., Genis, L., Navarro, J. A., Perez‐Domper, P., Fernandez, A. M., Schneuwly, S., & Torres Aleman, I. ( 2017 ). A role for astrocytes in cerebellar deficits in frataxin deficiency: Protection by insulin‐like growth factor I. Molecular and Cellular Neurosciences, 80, 100 – 110. https://doi.org/10.1016/j.mcn.2017.02.008
dc.identifier.citedreferenceFrati, G., Luciani, M., Meneghini, V., De Cicco, S., Stahlman, M., Blomqvist, M., Grossi, S., Filocamo, M., Moreno, F., Menegon, A., Martino, S., & Gritti, A. ( 2018 ). Human iPSC‐based models defective glial and neuronal differentiation from neural progenitor cells in metachromatic leukodystrophy. Cell Death & Disease, 9 ( 6 ), 698. https://doi.org/10.1038/s41419-018-0737-0
dc.identifier.citedreferenceGearing, M., Juncos, J. L., Procaccio, V., Gutekunst, C. A., Marino‐Rodriguez, E. M., Gyure, K. A., Ono, S., Santoianni, R., Krawiecki, N. S., Wallace, D. C., & Wainer, B. H. ( 2002 ). Aggregation of actin and cofilin in identical twins with juvenile‐onset dystonia. Annals of Neurology, 52 ( 4 ), 465 – 476. https://doi.org/10.1002/ana.10319
dc.identifier.citedreferenceGhosh, M., Balbi, M., Hellal, F., Dichgans, M., Lindauer, U., & Plesnila, N. ( 2015 ). Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Annals of Neurology, 78 ( 6 ), 887 – 900. https://doi.org/10.1002/ana.24512
dc.identifier.citedreferenceGibb, W. R., Kilford, L., & Marsden, C. D. ( 1992 ). Severe generalised dystonia associated with a mosaic pattern of striatal gliosis. Movement Disorders, 7 ( 3 ), 217 – 223. https://doi.org/10.1002/mds.870070305
dc.identifier.citedreferenceGilg, A. G., Singh, A. K., & Singh, I. ( 2000 ). Inducible nitric oxide synthase in the central nervous system of patients with X‐adrenoleukodystrophy. Journal of Neuropathology and Experimental Neurology, 59 ( 12 ), 1063 – 1069. https://doi.org/10.1093/jnen/59.12.1063
dc.identifier.citedreferenceGipson, T. T., Gerner, G., Wilson, M. A., Blue, M. E., & Johnston, M. V. ( 2013 ). Potential for treatment of severe autism in tuberous sclerosis complex. World Journal of Clinical Pediatrics, 2 ( 3 ), 16 – 25. https://doi.org/10.5409/wjcp.v2.i3.16
dc.identifier.citedreferenceGortz, A. L., Peferoen, L. A. N., Gerritsen, W. H., van Noort, J. M., Bugiani, M., & Amor, S. ( 2018 ). Heat shock protein expression in cerebral X‐linked adrenoleukodystrophy reveals astrocyte stress prior to myelin loss. Neuropathology and Applied Neurobiology, 44 ( 4 ), 363 – 376. https://doi.org/10.1111/nan.12399
dc.identifier.citedreferenceGortzen, A., Schluter, S., & Veh, R. W. ( 2004 ). Anti‐astrocyte autoantibodies in Guillain‐Barre Syndrome—Possible involvement in the pathophysiology of a psychosyndrome? Autoimmunity, 37 ( 6–7 ), 521 – 528. https://doi.org/10.1080/08916930412331279840
dc.identifier.citedreferenceGreco, C. M., Berman, R. F., Martin, R. M., Tassone, F., Schwartz, P. H., Chang, A., Trapp, B. D., Iwahashi, C., Brunberg, J., Grigsby, J., Hessl, D., Becker, E. J., Papazian, J., Leehey, M. A., Hagerman, R. J., & Hagerman, P. J. ( 2006 ). Neuropathology of fragile X‐associated tremor/ataxia syndrome (FXTAS). Brain, 129 ( Pt 1 ), 243 – 255. https://doi.org/10.1093/brain/awh683
dc.identifier.citedreferenceGregory, M. A., Gregory, R. J., & Podd, J. V. ( 2005 ). Understanding Guillain‐Barre syndrome and central nervous system involvement. Rehabilitation Nursing, 30 ( 5 ), 207 – 212. https://doi.org/10.1002/j.2048-7940.2005.tb00112.x
dc.identifier.citedreferenceGrier, M. D., Carson, R. P., & Lagrange, A. H. ( 2015 ). Toward a broader view of Ube3a in a mouse model of Angelman syndrome: Expression in brain, spinal cord, sciatic nerve and glial cells. PLoS One, 10 ( 4 ), e0124649. https://doi.org/10.1371/journal.pone.0124649
dc.identifier.citedreferenceGudo, E. S., Silva‐Barbosa, S. D., Linhares‐Lacerda, L., Ribeiro‐Alves, M., Real, S. C., Bou‐Habib, D. C., & Savino, W. ( 2015 ). HAM/TSP‐derived HTLV‐1‐infected T cell lines promote morphological and functional changes in human astrocytes cell lines: Possible role in the enhanced T cells recruitment into central nervous system. Virology Journal, 12, 165. https://doi.org/10.1186/s12985-015-0398-x
dc.identifier.citedreferenceGuerrini, R., & Parrini, E. ( 2010 ). Neuronal migration disorders. Neurobiology of Disease, 38 ( 2 ), 154 – 166. https://doi.org/10.1016/j.nbd.2009.02.008
dc.identifier.citedreferenceHayakawa, K., Pham, L. D., Arai, K., & Lo, E. H. ( 2014 ). Reactive astrocytes promote adhesive interactions between brain endothelium and endothelial progenitor cells via HMGB1 and beta‐2 integrin signaling. Stem Cell Research, 12 ( 2 ), 531 – 538. https://doi.org/10.1016/j.scr.2013.12.008
dc.identifier.citedreferenceHaynes, R. L., Folkerth, R. D., Keefe, R. J., Sung, I., Swzeda, L. I., Rosenberg, P. A., Volpe, J. J., & Kinney, H. C. ( 2003 ). Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. Journal of Neuropathology and Experimental Neurology, 62 ( 5 ), 441 – 450. https://doi.org/10.1093/jnen/62.5.441
dc.identifier.citedreferenceHaynes, R. L., Folkerth, R. D., Trachtenberg, F. L., Volpe, J. J., & Kinney, H. C. ( 2009 ). Nitrosative stress and inducible nitric oxide synthase expression in periventricular leukomalacia. Acta Neuropathologica, 118 ( 3 ), 391 – 399. https://doi.org/10.1007/s00401-009-0540-1
dc.identifier.citedreferenceHead, M. W., Corbin, E., & Goldman, J. E. ( 1994 ). Coordinate and independent regulation of alpha B‐crystallin and hsp27 expression in response to physiological stress. Journal of Cellular Physiology, 159 ( 1 ), 41 – 50. https://doi.org/10.1002/jcp.1041590107
dc.identifier.citedreferenceHeaven, M. R., Flint, D., Randall, S. M., Sosunov, A. A., Wilson, L., Barnes, S., Goldman, J. E., Muddiman, D. C., & Brenner, M. ( 2016 ). Composition of Rosenthal fibers, the protein aggregate Hallmark of Alexander disease. Journal of Proteome Research, 15 ( 7 ), 2265 – 2282. https://doi.org/10.1021/acs.jproteome.6b00316
dc.identifier.citedreferenceHelyes, Z., Tekus, V., Szentes, N., Pohoczky, K., Botz, B., Kiss, T., Kemény, Á., Környei, Z., Tóth, K., Lénárt, N., Ábrahám, H., Pinteaux, E., Francis, S., Sensi, S., Dénes, Á., & Goebel, A. ( 2019 ). Transfer of complex regional pain syndrome to mice via human autoantibodies is mediated by interleukin‐1‐induced mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 116 ( 26 ), 13067 – 13076. https://doi.org/10.1073/pnas.1820168116
dc.identifier.citedreferenceHemley, S. J., Bilston, L. E., Cheng, S., Chan, J. N., & Stoodley, M. A. ( 2013 ). Aquaporin‐4 expression in post‐traumatic syringomyelia. Journal of Neurotrauma, 30 ( 16 ), 1457 – 1467. https://doi.org/10.1089/neu.2012.2614
dc.identifier.citedreferenceHendriksen, R. G., Schipper, S., Hoogland, G., Schijns, O. E., Dings, J. T., Aalbers, M. W., & Vles, J. S. ( 2016 ). Dystrophin distribution and expression in human and experimental temporal lobe epilepsy. Frontiers in Cellular Neuroscience, 10, 174. https://doi.org/10.3389/fncel.2016.00174
dc.identifier.citedreferenceHinson, S. R., Pittock, S. J., Lucchinetti, C. F., Roemer, S. F., Fryer, J. P., Kryzer, T. J., & Lennon, V. A. ( 2007 ). Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology, 69 ( 24 ), 2221 – 2231. https://doi.org/10.1212/01.WNL.0000289761.64862.ce
dc.identifier.citedreferenceHodges, J. L., Yu, X., Gilmore, A., Bennett, H., Tjia, M., Perna, J. F., Chen, C. C., Li, X., Lu, J., & Zuo, Y. ( 2017 ). Astrocytic contributions to synaptic and learning abnormalities in a mouse model of fragile X syndrome. Biological Psychiatry, 82 ( 2 ), 139 – 149. https://doi.org/10.1016/j.biopsych.2016.08.036
dc.identifier.citedreferenceHolley, R. J., Ellison, S. M., Fil, D., O’Leary, C., McDermott, J., Senthivel, N., Langford‐Smith, A. W. W., Wilkinson, F. L., D’Souza, Z., Parker, H., Liao, A., Rowlston, S., Gleitz, H. F. E., Kan, S. H., Dickson, P. I., & Bigger, B. W. ( 2018 ). Macrophage enzyme and reduced inflammation drive brain correction of mucopolysaccharidosis IIIB by stem cell gene therapy. Brain, 141 ( 1 ), 99 – 116. https://doi.org/10.1093/brain/awx311
dc.identifier.citedreferenceHoppen, T., Jacobi, G., & Rister, M. ( 2003 ). Subacute sclerosing panencephalitis (SSPE). Klinische Pädiatrie, 215 ( 5 ), 268 – 269. https://doi.org/10.1055/s-2003-42671
dc.identifier.citedreferenceHowe, C. L., Kaptzan, T., Magana, S. M., Ayers‐Ringler, J. R., LaFrance‐Corey, R. G., & Lucchinetti, C. F. ( 2014 ). Neuromyelitis optica IgG stimulates an immunological response in rat astrocyte cultures. Glia, 62 ( 5 ), 692 – 708. https://doi.org/10.1002/glia.22635
dc.identifier.citedreferenceHu, H. L., Ni, X. S., Duff‐Canning, S., & Wang, X. P. ( 2016 ). Oxidative damage of copper chloride overload to the cultured rat astrocytes. American Journal of Translational Research, 8 ( 2 ), 1273 – 1280 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27158414
dc.identifier.citedreferenceJacobs, S., & Doering, L. C. ( 2010 ). Astrocytes prevent abnormal neuronal development in the fragile x mouse. The Journal of Neuroscience, 30 ( 12 ), 4508 – 4514. https://doi.org/10.1523/JNEUROSCI.5027-09.2010
dc.identifier.citedreferenceJantzie, L. L., Talos, D. M., Selip, D. B., An, L., Jackson, M. C., Folkerth, R. D., Deng, W., & Jensen, F. E. ( 2010 ). Developmental regulation of group I metabotropic glutamate receptors in the premature brain and their protective role in a rodent model of periventricular leukomalacia. Neuron Glia Biology, 6 ( 4 ), 277 – 288. https://doi.org/10.1017/S1740925X11000111
dc.identifier.citedreferenceJawaid, S., Kidd, G. J., Wang, J., Swetlik, C., Dutta, R., & Trapp, B. D. ( 2018 ). Alterations in CA1 hippocampal synapses in a mouse model of fragile X syndrome. Glia, 66 ( 4 ), 789 – 800. https://doi.org/10.1002/glia.23284
dc.identifier.citedreferenceJehmlich, U., Ritzer, J., Grosche, J., Hartig, W., & Liebert, U. G. ( 2013 ). Experimental measles encephalitis in Lewis rats: Dissemination of infected neuronal cell subtypes. Journal of Neurovirology, 19 ( 5 ), 461 – 470. https://doi.org/10.1007/s13365-013-0199-1
dc.identifier.citedreferenceJellinger, K. A. ( 2018 ). Multiple system atrophy: An oligodendroglioneural synucleinopathy 1. Journal of Alzheimer’s Disease, 62 ( 3 ), 1141 – 1179. https://doi.org/10.3233/JAD-170397
dc.identifier.citedreferenceJesionek‐Kupnicka, D., Majchrowska, A., Krawczyk, J., Wendorff, J., Barcikowska, M., Lukaszek, S., & Liberski, P. P. ( 1997 ). Krabbe disease: An ultrastructural study of globoid cells and reactive astrocytes at the brain and optic nerves. Folia Neuropathologica, 35 ( 3 ), 155 – 162 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9595850
dc.identifier.citedreferenceJogai, S., Radotra, B. D., & Banerjee, A. K. ( 2000 ). Immunohistochemical study of human rabies. Neuropathology, 20 ( 3 ), 197 – 203. https://doi.org/10.1046/j.1440-1789.2000.00332.x
dc.identifier.citedreferenceJudson, M. C., Sosa‐Pagan, J. O., Del Cid, W. A., Han, J. E., & Philpot, B. D. ( 2014 ). Allelic specificity of Ube3a expression in the mouse brain during postnatal development. The Journal of Comparative Neurology, 522 ( 8 ), 1874 – 1896. https://doi.org/10.1002/cne.23507
dc.identifier.citedreferenceKanner, S., Goldin, M., Galron, R., Ben Jacob, E., Bonifazi, P., & Barzilai, A. ( 2018 ). Astrocytes restore connectivity and synchronization in dysfunctional cerebellar networks. Proceedings of the National Academy of Sciences, 115 ( 31 ), 8025 – 8030. http://dx.doi.org/10.1073/pnas.1718582115
dc.identifier.citedreferenceKarikkineth, A. C., Scheibye‐Knudsen, M., Fivenson, E., Croteau, D. L., & Bohr, V. A. ( 2017 ). Cockayne syndrome: Clinical features, model systems and pathways. Ageing Research Reviews, 33, 3 – 17. https://doi.org/10.1016/j.arr.2016.08.002
dc.identifier.citedreferenceKatsuragi, T., Iseki, E., Kosaka, K., Nishimura, T., Akiyama, H., Ikeda, K., & Kato, M. ( 1996 ). Immunohistochemical investigation of human leukocyte antigen (HLA)‐DR‐positive astrocytes in adrenoleukodystrophy brain. Neuroscience Letters, 219 ( 3 ), 207 – 210. https://doi.org/10.1016/s0304-3940(96)13215-8
dc.identifier.citedreferenceKern, J. K. ( 2003 ). Purkinje cell vulnerability and autism: A possible etiological connection. Brain Dev, 25 ( 6 ), 377 – 382. https://doi.org/10.1016/s0387-7604(03)00056-1
dc.identifier.citedreferenceKettenmann, H., & Verkhratsky, A. ( 2008 ). Neuroglia: The 150 years after. Trends in Neurosciences, 31 ( 12 ), 653 – 659. https://doi.org/10.1016/j.tins.2008.09.003
dc.identifier.citedreferenceKezuka, T., Usui, Y., Yamakawa, N., Matsunaga, Y., Matsuda, R., Masuda, M., Utsumi, H., Tanaka, K., & Goto, H. ( 2012 ). Relationship between NMO‐antibody and anti‐MOG antibody in optic neuritis. Journal of Neuro‐Ophthalmology, 32 ( 2 ), 107 – 110. https://doi.org/10.1097/WNO.0b013e31823c9b6c
dc.identifier.citedreferenceKhan, M., Pahan, K., Singh, A. K., & Singh, I. ( 1998 ). Cytokine‐induced accumulation of very long‐chain fatty acids in rat C6 glial cells: Implication for X‐adrenoleukodystrophy. Journal of Neurochemistry, 71 ( 1 ), 78 – 87. https://doi.org/10.1046/j.1471-4159.1998.71010078.x
dc.identifier.citedreferenceKilleen, P. R. ( 2019 ). Models of attention‐deficit hyperactivity disorder. Behavioural Processes, 162, 205 – 214. https://doi.org/10.1016/j.beproc.2019.01.001
dc.identifier.citedreferenceKilleen, P. R., Russell, V. A., & Sergeant, J. A. ( 2013 ). A behavioral neuroenergetics theory of ADHD. Neuroscience and Biobehavioral Reviews, 37 ( 4 ), 625 – 657. https://doi.org/10.1016/j.neubiorev.2013.02.011
dc.identifier.citedreferenceKim, D. Y., Zhang, H., Park, S., Kim, Y., Bae, C. R., Kim, Y. M., & Kwon, Y. G. ( 2020 ). CU06‐1004 (endothelial dysfunction blocker) ameliorates astrocyte end‐feet swelling by stabilizing endothelial cell junctions in cerebral ischemia/reperfusion injury. Journal of Molecular Medicine (Berlin, Germany), 98 ( 6 ), 875 – 886. https://doi.org/10.1007/s00109-020-01920-z
dc.identifier.citedreferenceKodama, H., Meguro, Y., Abe, T., Rayner, M. H., Suzuki, K. T., Kobayashi, S., & Nishimura, M. ( 1991 ). Genetic expression of Menkes disease in cultured astrocytes of the macular mouse. Journal of Inherited Metabolic Disease, 14 ( 6 ), 896 – 901. https://doi.org/10.1007/BF01800470
dc.identifier.citedreferenceKohama, H., Kusunoki‐Ii, M., Kato, K., Kato, M., & Kato, S. ( 2020 ). Immunohistochemical and ultrastructural evidence for the pathogenesis of white matter degeneration in patients with panencephalopathic‐type Creutzfeldt‐Jakob disease: Inducible nitric oxide synthase overexpression in bizarre astrocytes. Neuropathology, 40, 319 – 327. https://doi.org/10.1111/neup.12646
dc.identifier.citedreferenceKoob, M., Laugel, V., Durand, M., Fothergill, H., Dalloz, C., Sauvanaud, F., Dollfus, H., Namer, I. J., & Dietemann, J. L. ( 2010 ). Neuroimaging in Cockayne syndrome. AJNR. American Journal of Neuroradiology, 31 ( 9 ), 1623 – 1630. https://doi.org/10.3174/ajnr.A2135
dc.identifier.citedreferenceKrasovska, V., & Doering, L. C. ( 2018 ). Regulation of IL‐6 secretion by astrocytes via TLR4 in the fragile X mouse model. Frontiers in Molecular Neuroscience, 11, 272. https://doi.org/10.3389/fnmol.2018.00272
dc.identifier.citedreferenceKrejciova, Z., Alibhai, J., Zhao, C., Krencik, R., Rzechorzek, N. M., Ullian, E. M., Manson, J., Ironside, J. W., Head, M. W., & Chandran, S. ( 2017 ). Human stem cell‐derived astrocytes replicate human prions in a PRNP genotype‐dependent manner. The Journal of Experimental Medicine, 214 ( 12 ), 3481 – 3495. https://doi.org/10.1084/jem.20161547
dc.identifier.citedreferenceKrejciova, Z., Carlson, G. A., Giles, K., & Prusiner, S. B. ( 2019 ). Replication of multiple system atrophy prions in primary astrocyte cultures from transgenic mice expressing human alpha‐synuclein. Acta Neuropathologica Communications, 7 ( 1 ), 81. https://doi.org/10.1186/s40478-019-0703-9
dc.identifier.citedreferenceLanciotti, A., Brignone, M. S., Belfiore, M., Columba‐Cabezas, S., Mallozzi, C., Vincentini, O., Molinari, P., Petrucci, T. C., Visentin, S., & Ambrosini, E. ( 2020 ). Megalencephalic leukoencephalopathy with subcortical cysts disease‐linked MLC1 protein favors gap‐junction intercellular communication by regulating connexin 43 trafficking in astrocytes. Cell, 9 ( 6 ), 1425. https://doi.org/10.3390/cells9061425
dc.identifier.citedreferenceLee, B. J., Kim, J. Y., Cho, H. J., & Park, D. ( 2020 ). Sphingosine 1‐phosphate receptor modulation attenuate mechanical allodynia in mouse model of chronic complex regional pain syndrome by suppressing pathogenic astrocyte activation. Regional Anesthesia and Pain Medicine, 45 ( 3 ), 230 – 238. https://doi.org/10.1136/rapm-2019-100801
dc.identifier.citedreferenceLee, F. H. F., Lai, T. K. Y., Su, P., & Liu, F. ( 2019 ). Altered cortical cytoarchitecture in the Fmr1 knockout mouse. Molecular Brain, 12 ( 1 ), 56. https://doi.org/10.1186/s13041-019-0478-8
dc.identifier.citedreferenceLee, S. H., Yoo, S. H., Lee, H. J., Han, D., Lee, J., Jeon, S. H., Cho, E. A., & Park, H. J. ( 2020 ). Anti‐allodynic effects of polydeoxyribonucleotide in an animal model of neuropathic pain and complex regional pain syndrome. Journal of Korean Medical Science, 35 ( 26 ), e225. https://doi.org/10.3346/jkms.2020.35.e225
dc.identifier.citedreferenceLei, Y., Sun, Y., Lu, C., Ma, Z., & Gu, X. ( 2016 ). Activated glia increased the level of proinflammatory cytokines in a resiniferatoxin‐induced neuropathic pain rat model. Regional Anesthesia and Pain Medicine, 41 ( 6 ), 744 – 749. https://doi.org/10.1097/AAP.0000000000000441
dc.identifier.citedreferenceLewandowska, E., Szpak, G. M., Lechowicz, W., Pasennik, E., & Sobczyk, W. ( 2001 ). Ultrastructural changes in neuronal and glial cells in subacute sclerosing panencephalitis: Correlation with disease duration. Folia Neuropathologica, 39 ( 3 ), 193 – 202 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11770130
dc.identifier.citedreferenceLi, B., Gu, L., Zhang, H., Huang, J., Chen, Y., Hertz, L., & Peng, L. ( 2007 ). Up‐regulation of cPLA(2) gene expression in astrocytes by all three conventional anti‐bipolar drugs is drug‐specific and enzyme‐specific. Psychopharmacology, 194 ( 3 ), 333 – 345. https://doi.org/10.1007/s00213-007-0853-5
dc.identifier.citedreferenceLi, L., Lundkvist, A., Andersson, D., Wilhelmsson, U., Nagai, N., Pardo, A. C., Nodin, C., Stahlberg, A., Aprico, K., Larsson, K., Yabe, T., Moons, L., Fotheringham, A., Davies, I., Carmeliet, P., Schwartz, J. P., Pekna, M., Kubista, M., Blomstrand, F., …, Pekny, M. ( 2008 ). Protective role of reactive astrocytes in brain ischemia. Journal of Cerebral Blood Flow and Metabolism, 28 ( 3 ), 468 – 481. https://doi.org/10.1038/sj.jcbfm.9600546
dc.identifier.citedreferenceLi, T., Chen, X., Zhang, C., Zhang, Y., & Yao, W. ( 2019 ). An update on reactive astrocytes in chronic pain. Journal of Neuroinflammation, 16 ( 1 ), 140. https://doi.org/10.1186/s12974-019-1524-2
dc.identifier.citedreferenceLi, X., Wu, X., Luo, P., & Xiong, L. ( 2020 ). Astrocyte‐specific NDRG2 gene: Functions in the brain and neurological diseases. Cellular and Molecular Life Sciences, 77 ( 13 ), 2461 – 2472. https://doi.org/10.1007/s00018-019-03406-9
dc.identifier.citedreferenceLi, Y., Yin, A., Sun, X., Zhang, M., Zhang, J., Wang, P., Xie, R., Li, W., Fan, Z., Zhu, Y., Wang, H., Dong, H., Wu, S., & Xiong, L. ( 2017 ). Deficiency of tumor suppressor NDRG2 leads to attention deficit and hyperactive behavior. The Journal of Clinical Investigation, 127 ( 12 ), 4270 – 4284. https://doi.org/10.1172/JCI94455
dc.identifier.citedreferenceLi, Y. J., Zhang, X., & Li, Y. M. ( 2020 ). Antineuroinflammatory therapy: Potential treatment for autism spectrum disorder by inhibiting glial activation and restoring synaptic function. CNS Spectrums, 25 ( 4 ), 493 – 501. https://doi.org/10.1017/S1092852919001603
dc.identifier.citedreferenceLiao, X., Liu, Y., Fu, X., & Li, Y. ( 2020 ). Postmortem studies of neuroinflammation in autism spectrum disorder: A systematic review. Molecular Neurobiology, 57 ( 8 ), 3424 – 3438. https://doi.org/10.1007/s12035-020-01976-5
dc.identifier.citedreferenceLiao, Y. H., Zhang, G. H., Jia, D., Wang, P., Qian, N. S., He, F., Zeng, X. T., He, Y., Yang, Y. L., Cao, D. Y., Zhang, Y., Wang, D. S., Tao, K. S., Gao, C. J., & Dou, K. F. ( 2011 ). Spinal astrocytic activation contributes to mechanical allodynia in a mouse model of type 2 diabetes. Brain Research, 1368, 324 – 335. https://doi.org/10.1016/j.brainres.2010.10.044
dc.identifier.citedreferenceLiberski, P. P., Brown, P., Cervenakova, L., & Gajdusek, D. C. ( 1997 ). Interactions between astrocytes and oligodendroglia in human and experimental Creutzfeldt‐Jakob disease and scrapie. Experimental Neurology, 144 ( 1 ), 227 – 234. https://doi.org/10.1006/exnr.1997.6422
dc.identifier.citedreferenceLiddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Münch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., …, Barres, B. A. ( 2017 ). Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 541 ( 7638 ), 481 – 487. https://doi.org/10.1038/nature21029
dc.identifier.citedreferenceLinnman, C., Becerra, L., & Borsook, D. ( 2013 ). Inflaming the brain: CRPS a model disease to understand neuroimmune interactions in chronic pain. Journal of Neuroimmune Pharmacology, 8 ( 3 ), 547 – 563. https://doi.org/10.1007/s11481-012-9422-8
dc.identifier.citedreferenceLipski, J., Wan, C. K., Bai, J. Z., Pi, R., Li, D., & Donnelly, D. ( 2007 ). Neuroprotective potential of ceftriaxone in in vitro models of stroke. Neuroscience, 146 ( 2 ), 617 – 629. https://doi.org/10.1016/j.neuroscience.2007.02.003
dc.identifier.citedreferenceLiu, L. R., Liu, J. C., Bao, J. S., Bai, Q. Q., & Wang, G. Q. ( 2020 ). Interaction of microglia and astrocytes in the neurovascular unit. Frontiers in Immunology, 11, 1024. https://doi.org/10.3389/fimmu.2020.01024
dc.identifier.citedreferenceLlorens, F., Lopez‐Gonzalez, I., Thune, K., Carmona, M., Zafar, S., Andreoletti, O., Zerr, I., & Ferrer, I. ( 2014 ). Subtype and regional‐specific neuroinflammation in sporadic creutzfeldt‐jakob disease. Frontiers in Aging Neuroscience, 6, 198. https://doi.org/10.3389/fnagi.2014.00198
dc.identifier.citedreferenceLopez‐Hernandez, T., Sirisi, S., Capdevila‐Nortes, X., Montolio, M., Fernandez‐Duenas, V., Scheper, G. C., Knapp, M. S., Casquero, P., Ciruela, F., Ferrer, I., Nunes, V., & Estevez, R. ( 2011 ). Molecular mechanisms of MLC1 and GLIALCAM mutations in megalencephalic leukoencephalopathy with subcortical cysts. Human Molecular Genetics, 20 ( 16 ), 3266 – 3277. https://doi.org/10.1093/hmg/ddr238
dc.identifier.citedreferenceLoria, F., & Diaz‐Nido, J. ( 2015 ). Frataxin knockdown in human astrocytes triggers cell death and the release of factors that cause neuronal toxicity. Neurobiology of Disease, 76, 1 – 12. https://doi.org/10.1016/j.nbd.2014.12.017
dc.identifier.citedreferenceLoth, M. K., Choi, J., McGlothan, J. L., Pletnikov, M. V., Pomper, M. G., & Guilarte, T. R. ( 2016 ). TSPO in a murine model of Sandhoff disease: Presymptomatic marker of neurodegeneration and disease pathophysiology. Neurobiology of Disease, 85, 174 – 186. https://doi.org/10.1016/j.nbd.2015.11.001
dc.identifier.citedreferenceLucchinetti, C. F., Guo, Y., Popescu, B. F., Fujihara, K., Itoyama, Y., & Misu, T. ( 2014 ). The pathology of an autoimmune astrocytopathy: Lessons learned from neuromyelitis optica. Brain Pathology, 24 ( 1 ), 83 – 97. https://doi.org/10.1111/bpa.12099
dc.identifier.citedreferenceMachelska, H., & Celik, M. O. ( 2016 ). Recent advances in understanding neuropathic pain: Glia, sex differences, and epigenetics. F1000Res, 5, 2743. https://doi.org/10.12688/f1000research.9621.1
dc.identifier.citedreferenceMallard, C., Davidson, J. O., Tan, S., Green, C. R., Bennet, L., Robertson, N. J., & Gunn, A. J. ( 2014 ). Astrocytes and microglia in acute cerebral injury underlying cerebral palsy associated with preterm birth. Pediatric Research, 75 ( 1–2 ), 234 – 240. https://doi.org/10.1038/pr.2013.188
dc.identifier.citedreferenceMarignier, R., Nicolle, A., Watrin, C., Touret, M., Cavagna, S., Varrin‐Doyer, M., Cavillon, G., Rogemond, V., Confavreux, C., Honnorat, J., & Giraudon, P. ( 2010 ). Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury. Brain, 133 ( 9 ), 2578 – 2591. https://doi.org/10.1093/brain/awq177
dc.identifier.citedreferenceMedin, T., Medin, H., Hefte, M. B., Storm‐Mathisen, J., & Bergersen, L. H. ( 2019 ). Upregulation of the lactate transporter monocarboxylate transporter 1 at the blood‐brain barrier in a rat model of attention‐deficit/hyperactivity disorder suggests hyperactivity could be a form of self‐treatment. Behavioural Brain Research, 360, 279 – 285. https://doi.org/10.1016/j.bbr.2018.12.023
dc.identifier.citedreferenceMelamud, L., Fernandez, J. M., Rivarola, V., Di Giusto, G., Ford, P., Villa, A., & Capurro, C. ( 2012 ). Neuromyelitis Optica Immunoglobulin G present in sera from neuromyelitis optica patients affects aquaporin‐4 expression and water permeability of the astrocyte plasma membrane. Journal of Neuroscience Research, 90 ( 6 ), 1240 – 1248. https://doi.org/10.1002/jnr.22822
dc.identifier.citedreferenceMerlini, M., Meyer, E. P., Ulmann‐Schuler, A., & Nitsch, R. M. ( 2011 ). Vascular beta‐amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice. Acta Neuropathologica, 122 ( 3 ), 293 – 311. https://doi.org/10.1007/s00401-011-0834-y
dc.identifier.citedreferenceMerrill, S. T., Nelson, G. R., Longo, N., & Bonkowsky, J. L. ( 2016 ). Cytotoxic edema and diffusion restriction as an early pathoradiologic marker in canavan disease: Case report and review of the literature. Orphanet Journal of Rare Diseases, 11 ( 1 ), 169. https://doi.org/10.1186/s13023-016-0549-1
dc.identifier.citedreferenceMeshulam, L., Galron, R., Kanner, S., De Pitta, M., Bonifazi, P., Goldin, M., Frenkel, D., Ben‐Jacob, E., & Barzilai, A. ( 2012 ). The role of the neuro‐astro‐vascular unit in the etiology of ataxia telangiectasia. Frontiers in Pharmacology, 3, 157. https://doi.org/10.3389/fphar.2012.00157
dc.identifier.citedreferenceMesquita, R., Bjorkholm, M., Ekman, M., Bogdanovic, G., & Biberfeld, P. ( 1996 ). Polyomavirus‐infected oligodendrocytes and macrophages within astrocytes in progressive multifocal leukoencephalopathy (PML). APMIS, 104 ( 2 ), 153 – 160. https://doi.org/10.1111/j.1699-0463.1996.tb00701.x
dc.identifier.citedreferenceMiki, Y., Tanji, K., Mori, F., Sakamoto, N., & Wakabayashi, K. ( 2015 ). An autopsy case of refractory epilepsy due to unilateral polymicrogyria in a 65‐year‐old man: Histogenesis of four‐layered polymicrogyric cortex. Neuropathology, 35 ( 6 ), 569 – 574. https://doi.org/10.1111/neup.12219
dc.identifier.citedreferenceMiller, R. H., & Raff, M. C. ( 1984 ). Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. The Journal of Neuroscience, 4 ( 2 ), 585 – 592 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/6366155
dc.identifier.citedreferenceMinamitani, M., Tanaka, J., & Maekawa, K. ( 1994 ). Peculiar eosinophilic inclusions within astrocytes in a patient with malformed brain. Brain Development, 16 ( 4 ), 309 – 314. https://doi.org/10.1016/0387-7604(94)90029-9
dc.identifier.citedreferenceMinkel, H. R., Anwer, T. Z., Arps, K. M., Brenner, M., & Olsen, M. L. ( 2015 ). Elevated GFAP induces astrocyte dysfunction in caudal brain regions: A potential mechanism for hindbrain involved symptoms in type II Alexander disease. Glia, 63 ( 12 ), 2285 – 2297. https://doi.org/10.1002/glia.22893
dc.identifier.citedreferenceMiyahara, H., Itonaga, T., Maeda, T., Izumi, T., & Ihara, K. ( 2015 ). Overexpression of p53 but not Rb in the cytoplasm of neurons and small vessels in an autopsy of a patient with Cockayne syndrome. Neuropathology, 35 ( 3 ), 266 – 272. https://doi.org/10.1111/neup.12183
dc.identifier.citedreferenceMizuno, G. O., Wang, Y., Shi, G., Wang, Y., Sun, J., Papadopoulos, S., Broussard, G. J., Unger, E. K., Deng, W., Weick, J., Bhattacharyya, A., Chen, C. Y., Yu, G., Looger, L. L., & Tian, L. ( 2018 ). Aberrant calcium signaling in astrocytes inhibits neuronal excitability in a human down syndrome stem cell model. Cell Reports, 24 ( 2 ), 355 – 365. https://doi.org/10.1016/j.celrep.2018.06.033
dc.identifier.citedreferenceMohri, I., Taniike, M., Taniguchi, H., Kanekiyo, T., Aritake, K., Inui, T., Fukumoto, N., Eguchi, N., Kushi, A., Sasai, H., Kanaoka, Y., Ozono, K., Narumiya, S., Suzuki, K., & Urade, Y. ( 2006 ). Prostaglandin D2‐mediated microglia/astrocyte interaction enhances astrogliosis and demyelination in twitcher. The Journal of Neuroscience, 26 ( 16 ), 4383 – 4393. https://doi.org/10.1523/JNEUROSCI.4531-05.2006
dc.identifier.citedreferenceMolander‐Melin, M., Pernber, Z., Franken, S., Gieselmann, V., Mansson, J. E., & Fredman, P. ( 2004 ). Accumulation of sulfatide in neuronal and glial cells of arylsulfatase A deficient mice. Journal of Neurocytology, 33 ( 4 ), 417 – 427. https://doi.org/10.1023/B:NEUR.0000046572.53905.2c
dc.identifier.citedreferenceMuller, W., Heinemann, U., & Schuchmann, S. ( 1997 ). Impaired Ca‐signaling in astrocytes from the Ts16 mouse model of Down syndrome. Neuroscience Letters, 223 ( 2 ), 81 – 84. https://doi.org/10.1016/s0304-3940(97)13406-1
dc.identifier.citedreferenceMunoz‐Ballester, C., Berthier, A., Viana, R., & Sanz, P. ( 2016 ). Homeostasis of the astrocytic glutamate transporter GLT‐1 is altered in mouse models of Lafora disease. Biochimica et Biophysica Acta, 1862 ( 6 ), 1074 – 1083. https://doi.org/10.1016/j.bbadis.2016.03.008
dc.identifier.citedreferenceMunoz‐Ballester, C., Santana, N., Perez‐Jimenez, E., Viana, R., Artigas, F., & Sanz, P. ( 2019 ). In vivo glutamate clearance defects in a mouse model of Lafora disease. Experimental Neurology, 320, 112959. https://doi.org/10.1016/j.expneurol.2019.112959
dc.identifier.citedreferenceMurphy, S., Zweyer, M., Henry, M., Meleady, P., Mundegar, R. R., Swandulla, D., & Ohlendieck, K. ( 2015 ). Label‐free mass spectrometric analysis reveals complex changes in the brain proteome from the mdx‐4cv mouse model of Duchenne muscular dystrophy. Clinical Proteomics, 12, 27. https://doi.org/10.1186/s12014-015-9099-0
dc.identifier.citedreferenceMyerowitz, R., Lawson, D., Mizukami, H., Mi, Y., Tifft, C. J., & Proia, R. L. ( 2002 ). Molecular pathophysiology in Tay‐Sachs and Sandhoff diseases as revealed by gene expression profiling. Human Molecular Genetics, 11 ( 11 ), 1343 – 1350. https://doi.org/10.1093/hmg/11.11.1343
dc.identifier.citedreferenceNagai, J., Rajbhandari, A. K., Gangwani, M. R., Hachisuka, A., Coppola, G., Masmanidis, S. C., Fanselow, M. S., & Khakh, B. S. ( 2019 ). Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell, 177 ( 5 ), 1280 – 1292. e1220. https://doi.org/10.1016/j.cell.2019.03.019
dc.identifier.citedreferenceNakamura, K., Mori, F., Kon, T., Tanji, K., Miki, Y., Tomiyama, M., Kurotaki, H., Toyoshima, Y., Kakita, A., Takahashi, H., Yamada, M., & Wakabayashi, K. ( 2016 ). Accumulation of phosphorylated alpha‐synuclein in subpial and periventricular astrocytes in multiple system atrophy of long duration. Neuropathology, 36 ( 2 ), 157 – 167. https://doi.org/10.1111/neup.12243
dc.identifier.citedreferenceNiciu, M. J., Ma, X. M., El Meskini, R., Pachter, J. S., Mains, R. E., & Eipper, B. A. ( 2007 ). Altered ATP7A expression and other compensatory responses in a murine model of Menkes disease. Neurobiology of Disease, 27 ( 3 ), 278 – 291. https://doi.org/10.1016/j.nbd.2007.05.004
dc.identifier.citedreferenceNico, B., Frigeri, A., Nicchia, G. P., Corsi, P., Ribatti, D., Quondamatteo, F., Herken, R., Girolamo, F., Marzullo, A., Svelto, M., & Roncali, L. ( 2003 ). Severe alterations of endothelial and glial cells in the blood‐brain barrier of dystrophic mdx mice. Glia, 42 ( 3 ), 235 – 251. https://doi.org/10.1002/glia.10216
dc.identifier.citedreferenceNico, B., & Ribatti, D. ( 2012 ). Morphofunctional aspects of the blood‐brain barrier. Current Drug Metabolism, 13 ( 1 ), 50 – 60. https://doi.org/10.2174/138920012798356970
dc.identifier.citedreferenceOberheim, N. A., Takano, T., Han, X., He, W., Lin, J. H., Wang, F., Xu, Q., Wyatt, J. D., Pilcher, W., Ojemann, J. G., Ransom, B. R., Goldman, S. A., & Nedergaard, M. ( 2009 ). Uniquely hominid features of adult human astrocytes. The Journal of Neuroscience, 29 ( 10 ), 3276 – 3287. https://doi.org/10.1523/JNEUROSCI.4707-08.2009
dc.identifier.citedreferenceOe, Y., Baba, O., Ashida, H., Nakamura, K. C., & Hirase, H. ( 2016 ). Glycogen distribution in the microwave‐fixed mouse brain reveals heterogeneous astrocytic patterns. Glia, 64 ( 9 ), 1532 – 1545. https://doi.org/10.1002/glia.23020
dc.identifier.citedreferenceOgawa, Y., Furusawa, E., Saitoh, T., Sugimoto, H., Omori, T., Shimizu, S., Kondo, H., Yamazaki, M., Sakuraba, H., & Oishi, K. ( 2018 ). Inhibition of astrocytic adenosine receptor A2A attenuates microglial activation in a mouse model of Sandhoff disease. Neurobiology of Disease, 118, 142 – 154. https://doi.org/10.1016/j.nbd.2018.07.014
dc.identifier.citedreferenceOgawa, Y., Sano, T., Irisa, M., Kodama, T., Saito, T., Furusawa, E., Kaizu, K., Yanagi, Y., Tsukimura, T., Togawa, T., Yamanaka, S., Itoh, K., Sakuraba, H., & Oishi, K. ( 2017 ). FcRgamma‐dependent immune activation initiates astrogliosis during the asymptomatic phase of Sandhoff disease model mice. Scientific Reports, 7, 40518. https://doi.org/10.1038/srep40518
dc.identifier.citedreferenceOlabarria, M., Putilina, M., Riemer, E. C., & Goldman, J. E. ( 2015 ). Astrocyte pathology in Alexander disease causes a marked inflammatory environment. Acta Neuropathologica, 130 ( 4 ), 469 – 486. https://doi.org/10.1007/s00401-015-1469-1
dc.identifier.citedreferenceOlopade, F. E., Shokunbi, M. T., Azeez, I. A., Andrioli, A., Scambi, I., & Bentivoglio, M. ( 2019 ). Neuroinflammatory response in chronic hydrocephalus in juvenile rats. Neuroscience, 419, 14 – 22. https://doi.org/10.1016/j.neuroscience.2019.08.049
dc.identifier.citedreferencePacey, L. K., Guan, S., Tharmalingam, S., Thomsen, C., & Hampson, D. R. ( 2015 ). Persistent astrocyte activation in the fragile X mouse cerebellum. Brain and Behavior: A Cognitive Neuroscience Perspective, 5 ( 10 ), e00400. https://doi.org/10.1002/brb3.400
dc.identifier.citedreferencePaez, P., Batiz, L. F., Roales‐Bujan, R., Rodriguez‐Perez, L. M., Rodriguez, S., Jimenez, A. J., Rodríguez, E. M., & Perez‐Figares, J. M. ( 2007 ). Patterned neuropathologic events occurring in hyh congenital hydrocephalic mutant mice. Journal of Neuropathology and Experimental Neurology, 66 ( 12 ), 1082 – 1092. https://doi.org/10.1097/nen.0b013e31815c1952
dc.identifier.citedreferencePatel, A. M., Wierda, K., Thorrez, L., van Putten, M., De Smedt, J., Ribeiro, L., Tricot, T., Gajjar, M., Duelen, R., Damme, P. V., Waele, L. D., Goemans, N., Winter, C. T., Costamagna, D., Aartsma‐Rus, A., Duyvenvoorde, H., Sampaolesi, M., Buyse, G. M., & Verfaillie, C. M. ( 2019 ). Dystrophin deficiency leads to dysfunctional glutamate clearance in iPSC derived astrocytes. Translational Psychiatry, 9 ( 1 ), 200. https://doi.org/10.1038/s41398-019-0535-1
dc.identifier.citedreferencePatel, S. C., Suresh, S., Kumar, U., Hu, C. Y., Cooney, A., Blanchette‐Mackie, E. J., Neufeld, E. B., Patel, R. C., Brady, R. O., Pentchev, P. G., & Ong, W. Y. ( 1999 ). Localization of Niemann‐Pick C1 protein in astrocytes: Implications for neuronal degeneration in Niemann‐Pick type C disease. Proceedings of the National Academy of Sciences of the United States of America, 96 ( 4 ), 1657 – 1662. https://doi.org/10.1073/pnas.96.4.1657
dc.identifier.citedreferencePeng, L., Li, B., & Verkhratsky, A. ( 2016 ). Targeting astrocytes in bipolar disorder. Expert Review of Neurotherapeutics, 16 ( 6 ), 649 – 657. https://doi.org/10.1586/14737175.2016.1171144
dc.identifier.citedreferencePhatnani, H., & Maniatis, T. ( 2015 ). Astrocytes in neurodegenerative disease. Cold Spring Harbor Perspectives in Biology, 7 ( 6 ), a020628. https://doi.org/10.1101/cshperspect.a020628
dc.identifier.citedreferencePonath, G., Ramanan, S., Mubarak, M., Housley, W., Lee, S., Sahinkaya, F. R., Vortmeyer, A., Raine, C. S., & Pitt, D. ( 2017 ). Myelin phagocytosis by astrocytes after myelin damage promotes lesion pathology. Brain, 140 ( 2 ), 399 – 413. https://doi.org/10.1093/brain/aww298
dc.identifier.citedreferencePonroy Bally, B., Farmer, W. T., Jones, E. V., Jessa, S., Kacerovsky, J. B., Mayran, A., Peng, H., Lefebvre, J. L., Drouin, J., Hayer, A., Ernst, C., & Murai, K. K. ( 2020 ). Human iPSC‐derived Down syndrome astrocytes display genome‐wide perturbations in gene expression, an altered adhesion profile, and increased cellular dynamics. Human Molecular Genetics, 29 ( 5 ), 785 – 802. https://doi.org/10.1093/hmg/ddaa003
dc.identifier.citedreferencePotter, G. B., & Petryniak, M. A. ( 2016 ). Neuroimmune mechanisms in Krabbe’s disease. Journal of Neuroscience Research, 94 ( 11 ), 1341 – 1348. https://doi.org/10.1002/jnr.23804
dc.identifier.citedreferencePrasad, A. S. ( 2014 ). Zinc is an antioxidant and anti‐inflammatory agent: Its role in human health. Frontiers in Nutrition, 1, 14. https://doi.org/10.3389/fnut.2014.00014
dc.identifier.citedreferencePurcell, A. E., Jeon, O. H., Zimmerman, A. W., Blue, M. E., & Pevsner, J. ( 2001 ). Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology, 57 ( 9 ), 1618 – 1628. https://doi.org/10.1212/wnl.57.9.1618
dc.identifier.citedreferencePuy, V., Darwiche, W., Trudel, S., Gomila, C., Lony, C., Puy, L., Lefebvre, T., Vitry, S., Boullier, A., Karim, Z., & Ausseil, J. ( 2018 ). Predominant role of microglia in brain iron retention in Sanfilippo syndrome, a pediatric neurodegenerative disease. Glia, 66 ( 8 ), 1709 – 1723. https://doi.org/10.1002/glia.23335
dc.identifier.citedreferenceRadakovits, R., Barros, C. S., Belvindrah, R., Patton, B., & Muller, U. ( 2009 ). Regulation of radial glial survival by signals from the meninges. The Journal of Neuroscience, 29 ( 24 ), 7694 – 7705. https://doi.org/10.1523/JNEUROSCI.5537-08.2009
dc.identifier.citedreferenceRadford, R., Rcom‐H’cheo‐Gauthier, A., Wong, M. B., Eaton, E. D., Quilty, M., Blizzard, C., Norazit, A., Meedeniya, A., Vickers, J. C., Gai, W. P., Guillemin, G. J., West, A. K., Dickson, T. C., Chung, R., & Pountney, D. L. ( 2015 ). The degree of astrocyte activation in multiple system atrophy is inversely proportional to the distance to alpha‐synuclein inclusions. Molecular and Cellular Neurosciences, 65, 68 – 81. https://doi.org/10.1016/j.mcn.2015.02.015
dc.identifier.citedreferenceRae, M. G., & O’Malley, D. ( 2016 ). Cognitive dysfunction in Duchenne muscular dystrophy: A possible role for neuromodulatory immune molecules. Journal of Neurophysiology, 116 ( 3 ), 1304 – 1315. https://doi.org/10.1152/jn.00248.2016
dc.identifier.citedreferenceRakic, P. ( 2007 ). The radial edifice of cortical architecture: From neuronal silhouettes to genetic engineering. Brain Research Reviews, 55 ( 2 ), 204 – 219. https://doi.org/10.1016/j.brainresrev.2007.02.010
dc.identifier.citedreferenceRapin, I., Weidenheim, K., Lindenbaum, Y., Rosenbaum, P., Merchant, S. N., Krishna, S., & Dickson, D. W. ( 2006 ). Cockayne syndrome in adults: Review with clinical and pathologic study of a new case. Journal of Child Neurology, 21 ( 11 ), 991 – 1006. https://doi.org/10.1177/08830738060210110101
dc.identifier.citedreferenceRay, N. B., Power, C., Lynch, W. P., Ewalt, L. C., & Lodmell, D. L. ( 1997 ). Rabies viruses infect primary cultures of murine, feline, and human microglia and astrocytes. Archives of Virology, 142 ( 5 ), 1011 – 1019. https://doi.org/10.1007/s007050050136
dc.identifier.citedreferenceReemst, K., Noctor, S. C., Lucassen, P. J., & Hol, E. M. ( 2016 ). The indispensable roles of microglia and astrocytes during brain development. Frontiers in Human Neuroscience, 10, 566. https://doi.org/10.3389/fnhum.2016.00566
dc.identifier.citedreferenceShafit‐Zagardo, B., Peterson, C., & Goldman, J. E. ( 1988 ). Rapid increases in glial fibrillary acidic protein mRNA and protein levels in the copper‐deficient, brindled mouse. Journal of Neurochemistry, 51 ( 4 ), 1258 – 1266. https://doi.org/10.1111/j.1471-4159.1988.tb03095.x
dc.identifier.citedreferenceReiser, G., Schonfeld, P., & Kahlert, S. ( 2006 ). Mechanism of toxicity of the branched‐chain fatty acid phytanic acid, a marker of Refsum disease, in astrocytes involves mitochondrial impairment. International Journal of Developmental Neuroscience, 24 ( 2–3 ), 113 – 122. https://doi.org/10.1016/j.ijdevneu.2005.11.002
dc.identifier.citedreferenceRink, C., Gortzen, A., Veh, R. W., & Pruss, H. ( 2017 ). Serum antibodies targeting neurons of the monoaminergic systems in Guillain‐Barre syndrome. Journal of the Neurological Sciences, 372, 318 – 323. https://doi.org/10.1016/j.jns.2016.11.078
dc.identifier.citedreferenceRisher, W. C., Patel, S., Kim, I. H., Uezu, A., Bhagat, S., Wilton, D. K., Pilaz, L. J., Alvarado, J. S., Calhan, O. Y., Silver, D. L., Stevens, B., Calakos, N., Soderling, S. H., & Eroglu, C. ( 2014 ). Astrocytes refine cortical connectivity at dendritic spines. eLife, 3, e04047. https://doi.org/10.7554/eLife.04047
dc.identifier.citedreferenceRoales‐Bujan, R., Paez, P., Guerra, M., Rodriguez, S., Vio, K., Ho‐Plagaro, A., García‐Bonilla, M., Rodríguez‐Pérez, L. M., Domínguez‐Pinos, M. D., Rodríguez, E. M., Pérez‐Fígares, J. M., & Jimenez, A. J. ( 2012 ). Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathologica, 124 ( 4 ), 531 – 546. https://doi.org/10.1007/s00401-012-0992-6
dc.identifier.citedreferenceRonicke, S., Kruska, N., Kahlert, S., & Reiser, G. ( 2009 ). The influence of the branched‐chain fatty acids pristanic acid and Refsum disease‐associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes. Neurobiology of Disease, 36 ( 2 ), 401 – 410. https://doi.org/10.1016/j.nbd.2009.08.005
dc.identifier.citedreferenceRothstein, J. D., Patel, S., Regan, M. R., Haenggeli, C., Huang, Y. H., Bergles, D. E., Jin, L., Hoberg, M. D., Vidensky, S., Chung, D. S., Toan, S. V., Brujin, L. I., Su, Z. Z., Gupta, P., & Fisher, P. B. ( 2005 ). Beta‐lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 433 ( 7021 ), 73 – 77. https://doi.org/10.1038/nature03180
dc.identifier.citedreferenceRubio‐Villena, C., Viana, R., Bonet, J., Garcia‐Gimeno, M. A., Casado, M., Heredia, M., & Sanz, P. ( 2018 ). Astrocytes: New players in progressive myoclonus epilepsy of Lafora type. Human Molecular Genetics, 27 ( 7 ), 1290 – 1300. https://doi.org/10.1093/hmg/ddy044
dc.identifier.citedreferenceRussell, V. A., Oades, R. D., Tannock, R., Killeen, P. R., Auerbach, J. G., Johansen, E. B., & Sagvolden, T. ( 2006 ). Response variability in attention‐deficit/hyperactivity disorder: A neuronal and glial energetics hypothesis. Behavioral and Brain Functions, 2, 30. https://doi.org/10.1186/1744-9081-2-30
dc.identifier.citedreferenceRusso, F. B., Freitas, B. C., Pignatari, G. C., Fernandes, I. R., Sebat, J., Muotri, A. R., & Beltrao‐Braga, P. C. B. ( 2018 ). Modeling the interplay between neurons and astrocytes in autism using human induced pluripotent stem cells. Biological Psychiatry, 83 ( 7 ), 569 – 578. https://doi.org/10.1016/j.biopsych.2017.09.021
dc.identifier.citedreferenceSaez, P. J., Orellana, J. A., Vega‐Riveros, N., Figueroa, V. A., Hernandez, D. E., Castro, J. F., Klein, A. D., Jiang, J. X., Zanlungo, S., & Saez, J. C. ( 2013 ). Disruption in connexin‐based communication is associated with intracellular Ca(2)(+) signal alterations in astrocytes from Niemann‐Pick type C mice. PLoS One, 8 ( 8 ), e71361. https://doi.org/10.1371/journal.pone.0071361
dc.identifier.citedreferenceSahin, M., Henske, E. P., Manning, B. D., Ess, K. C., Bissler, J. J., Klann, E., Kwiatkowski, D. J., Roberds, S. L., Silva, A. J., Hillarie‐Clarke, C. S., Young, L. R., Zervas, M., Mamounas, L. A., & Tuberous Sclerosis Complex Working Group to Update the Research Plan. ( 2016 ). Advances and future directions for tuberous sclerosis complex research: Recommendations from the 2015 strategic planning conference. Pediatric Neurology, 60, 1 – 12. https://doi.org/10.1016/j.pediatrneurol.2016.03.015
dc.identifier.citedreferenceSandau, U. S., Alderman, Z., Corfas, G., Ojeda, S. R., & Raber, J. ( 2012 ). Astrocyte‐specific disruption of SynCAM1 signaling results in ADHD‐like behavioral manifestations. PLoS One, 7 ( 4 ), e36424. https://doi.org/10.1371/journal.pone.0036424
dc.identifier.citedreferenceSbarbati, A., Carner, M., Colletti, V., & Osculati, F. ( 1996a ). Extrusion of corpora amylacea from the marginal gila at the vestibular root entry zone. Journal of Neuropathology and Experimental Neurology, 55 ( 2 ), 196 – 201. https://doi.org/10.1097/00005072-199602000-00008
dc.identifier.citedreferenceSbarbati, A., Carner, M., Colletti, V., & Osculati, F. ( 1996b ). Myelin‐containing corpora amylacea in vestibular root entry zone. Ultrastructural Pathology, 20 ( 5 ), 437 – 442. https://doi.org/10.3109/01913129609016346
dc.identifier.citedreferenceSchluter, E. W., Hunsaker, M. R., Greco, C. M., Willemsen, R., & Berman, R. F. ( 2012 ). Distribution and frequency of intranuclear inclusions in female CGG KI mice modeling the fragile X premutation. Brain Research, 1472, 124 – 137. https://doi.org/10.1016/j.brainres.2012.06.052
dc.identifier.citedreferenceSchonfeld, P., & Reiser, G. ( 2016 ). Brain lipotoxicity of phytanic acid and very long‐chain fatty acids. Harmful cellular/mitochondrial activities in Refsum disease and X‐linked adrenoleukodystrophy. Aging and Disease, 7 ( 2 ), 136 – 149. https://doi.org/10.14336/AD.2015.0823
dc.identifier.citedreferenceSeifert, G., Schilling, K., & Steinhauser, C. ( 2006 ). Astrocyte dysfunction in neurological disorders: A molecular perspective. Nature Reviews. Neuroscience, 7 ( 3 ), 194 – 206. https://doi.org/10.1038/nrn1870
dc.identifier.citedreferenceTabata, H. ( 2015 ). Diverse subtypes of astrocytes and their development during corticogenesis. Frontiers in Neuroscience, 9, 114. https://doi.org/10.3389/fnins.2015.00114
dc.identifier.citedreferenceShimoda, K., Mimaki, M., Fujino, S., Takeuchi, M., Hino, R., Uozaki, H., Hayashi, M., Oka, A., & Mizuguchi, M. ( 2017 ). Brain edema with clasmatodendrosis complicating ataxia telangiectasia. Brain Development, 39 ( 7 ), 629 – 632. https://doi.org/10.1016/j.braindev.2017.02.007
dc.identifier.citedreferenceShintaku, M., & Yutani, C. ( 2004 ). Oligodendrocytes within astrocytes ("emperipolesis") in the white matter in Creutzfeldt‐Jakob disease. Acta Neuropathologica, 108 ( 3 ), 201 – 206. https://doi.org/10.1007/s00401-004-0880-9
dc.identifier.citedreferenceShiow, L. R., Favrais, G., Schirmer, L., Schang, A. L., Cipriani, S., Andres, C., Wright, J. N., Nobuta, H., Fleiss, B., Gressens, P., & Rowitch, D. H. ( 2017 ). Reactive astrocyte COX2‐PGE2 production inhibits oligodendrocyte maturation in neonatal white matter injury. Glia, 65 ( 12 ), 2024 – 2037. https://doi.org/10.1002/glia.23212
dc.identifier.citedreferenceSimhal, A. K., Zuo, Y., Perez, M. M., Madison, D. V., Sapiro, G., & Micheva, K. D. ( 2019 ). Multifaceted changes in synaptic composition and astrocytic involvement in a mouse model of fragile X syndrome. Scientific Reports, 9 ( 1 ), 13855. https://doi.org/10.1038/s41598-019-50240-x
dc.identifier.citedreferenceSingh, J., Khan, M., & Singh, I. ( 2009 ). Silencing of Abcd1 and Abcd2 genes sensitizes astrocytes for inflammation: Implication for X‐adrenoleukodystrophy. Journal of Lipid Research, 50 ( 1 ), 135 – 147. https://doi.org/10.1194/jlr.M800321-JLR200
dc.identifier.citedreferenceSingh, S. K., Stogsdill, J. A., Pulimood, N. S., Dingsdale, H., Kim, Y. H., Pilaz, L. J., Kim, I. H., Manheas, A. C., Rodrigues Jr, W. S., Pamukcu, A., Enustun, E., Ertuz, Z., Scheiffele, P., Soderling, S. H., Silver, D. L., Ji, R. R., Medina, A. E., & Eroglu, C. ( 2016 ). Astrocytes assemble thalamocortical synapses by bridging NRX1alpha and NL1 via Hevin. Cell, 164 ( 1–2 ), 183 – 196. https://doi.org/10.1016/j.cell.2015.11.034
dc.identifier.citedreferenceSiracusa, R., Fusco, R., & Cuzzocrea, S. ( 2019 ). Astrocytes: Role and functions in brain pathologies. Frontiers in Pharmacology, 10, 1114. https://doi.org/10.3389/fphar.2019.01114
dc.identifier.citedreferenceSnook, E. R., Fisher‐Perkins, J. M., Sansing, H. A., Lee, K. M., Alvarez, X., MacLean, A. G., Peterson, K., Lackner, A. A., & Bunnell, B. A. ( 2014 ). Innate immune activation in the pathogenesis of a murine model of globoid cell leukodystrophy. The American Journal of Pathology, 184 ( 2 ), 382 – 396. https://doi.org/10.1016/j.ajpath.2013.10.011
dc.identifier.citedreferenceSofroniew, M. V. ( 2009 ). Molecular dissection of reactive astrogliosis and glial scar formation. Trends in Neurosciences, 32 ( 12 ), 638 – 647. https://doi.org/10.1016/j.tins.2009.08.002
dc.identifier.citedreferenceSofroniew, M. V., & Vinters, H. V. ( 2010 ). Astrocytes: Biology and pathology. Acta Neuropathologica, 119 ( 1 ), 7 – 35. https://doi.org/10.1007/s00401-009-0619-8
dc.identifier.citedreferenceSong, D., Li, B., Yan, E., Man, Y., Wolfson, M., Chen, Y., & Peng, L. ( 2012 ). Chronic treatment with anti‐bipolar drugs causes intracellular alkalinization in astrocytes, altering their functions. Neurochemical Research, 37 ( 11 ), 2524 – 2540. https://doi.org/10.1007/s11064-012-0837-7
dc.identifier.citedreferenceSosunov, A., Olabarria, M., & Goldman, J. E. ( 2018 ). Alexander disease: An astrocytopathy that produces a leukodystrophy. Brain Pathology, 28 ( 3 ), 388 – 398. https://doi.org/10.1111/bpa.12601
dc.identifier.citedreferenceSosunov, A. A., McGovern, R. A., Mikell, C. B., Wu, X., Coughlin, D. G., Crino, P. B., Weiner, H. L., 2nd., Ghatan, S., Goldman, J. E., & McKhann, G. M. ( 2015 ). Epileptogenic but MRI‐normal perituberal tissue in tuberous sclerosis complex contains tuber‐specific abnormalities. Acta Neuropathologica Communications, 3, 17. https://doi.org/10.1186/s40478-015-0191-5
dc.identifier.citedreferenceSosunov, A. A., Wu, X., Weiner, H. L., Mikell, C. B., Goodman, R. R., Crino, P. D., & McKhann, G. M., 2nd. ( 2008 ). Tuberous sclerosis: A primary pathology of astrocytes? Epilepsia, 49 ( Suppl 2 ), 53 – 62. https://doi.org/10.1111/j.1528-1167.2008.01493.x
dc.identifier.citedreferenceSpencer, R. F., Sismanis, A., Kilpatrick, J. K., & Shaia, W. T. ( 2002 ). Demyelination of vestibular nerve axons in unilateral Meniere’s disease. Ear, Nose, & Throat Journal, 81 ( 11 ), 785 – 789 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12472033
dc.identifier.citedreferenceSquier, W., & Jansen, A. ( 2014 ). Polymicrogyria: Pathology, fetal origins and mechanisms. Acta Neuropathologica Communications, 2, 80. https://doi.org/10.1186/s40478-014-0080-3
dc.identifier.citedreferenceSugio, S., Tohyama, K., Oku, S., Fujiyoshi, K., Yoshimura, T., Hikishima, K., Yano, R., Fukuda, T., Nakamura, M., Okano, H., Watanabe, M., Fukata, M., Ikenaka, K., & Tanaka, K. F. ( 2017 ). Astrocyte‐mediated infantile‐onset leukoencephalopathy mouse model. Glia, 65 ( 1 ), 150 – 168. https://doi.org/10.1002/glia.23084
dc.identifier.citedreferenceSun, X. Z., Takahashi, S., Fukui, Y., Hisano, S., Kubota, Y., Sato, H., & Inouye, M. ( 2001 ). Neurogenesis of heterotopic gray matter in the brain of the microcephalic mouse. Journal of Neuroscience Research, 66 ( 6 ), 1083 – 1093. https://doi.org/10.1002/jnr.10018
dc.identifier.citedreferenceSzpak, G. M., Lewandowska, E., Schmidt‐Sidor, B., Popow, J., Kozlowski, P., Lechowicz, W., Kulczycki, J., Zaremba, J., & Dymecki, J. ( 1996 ). Adult schizophrenic‐like variant of adrenoleukodystrophy. Folia Neuropathologica, 34 ( 4 ), 184 – 192 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9812421
dc.identifier.citedreferenceSzymocha, R., Akaoka, H., Dutuit, M., Malcus, C., Didier‐Bazes, M., Belin, M. F., & Giraudon, P. ( 2000 ). Human T‐cell lymphotropic virus type 1‐infected T lymphocytes impair catabolism and uptake of glutamate by astrocytes via Tax‐1 and tumor necrosis factor alpha. Journal of Virology, 74 ( 14 ), 6433 – 6441. https://doi.org/10.1128/jvi.74.14.6433-6441.2000
dc.identifier.citedreferenceTakeda, S., Ohama, E., & Ikuta, F. ( 1989 ). Adrenoleukodystrophy—Early ultrastructural changes in the brain. Acta Neuropathologica, 78 ( 2 ), 124 – 130. https://doi.org/10.1007/BF00688199
dc.identifier.citedreferenceTata, D. A., Marciano, V. A., & Anderson, B. J. ( 2006 ). Synapse loss from chronically elevated glucocorticoids: Relationship to neuropil volume and cell number in hippocampal area CA3. The Journal of Comparative Neurology, 498 ( 3 ), 363 – 374. https://doi.org/10.1002/cne.21071
dc.identifier.citedreferenceTeijido, O., Martinez, A., Pusch, M., Zorzano, A., Soriano, E., Del Rio, J. A., Palacín, M., & Estevez, R. ( 2004 ). Localization and functional analyses of the MLC1 protein involved in megalencephalic leukoencephalopathy with subcortical cysts. Human Molecular Genetics, 13 ( 21 ), 2581 – 2594. https://doi.org/10.1093/hmg/ddh291
dc.identifier.citedreferenceThomas, R., Salter, M. G., Wilke, S., Husen, A., Allcock, N., Nivison, M., Nnoli, A. N., & Fern, R. ( 2004 ). Acute ischemic injury of astrocytes is mediated by Na‐K‐Cl cotransport and not Ca2+ influx at a key point in white matter development. Journal of Neuropathology and Experimental Neurology, 63 ( 8 ), 856 – 871. https://doi.org/10.1093/jnen/63.8.856
dc.identifier.citedreferenceTian, B., Zhou, M., Yang, Y., Yu, L., Luo, Z., Tian, D., Wang, K., Cui, M., Chen, H., Fu, Z. F., & Zhao, L. ( 2017 ). Lab‐attenuated rabies virus causes abortive infection and induces cytokine expression in astrocytes by activating mitochondrial antiviral‐signaling protein signaling pathway. Frontiers in Immunology, 8, 2011. https://doi.org/10.3389/fimmu.2017.02011
dc.identifier.citedreferenceTian, G., Luo, X., Tang, C., Cheng, X., Chung, S. K., Xia, Z., Cheung, C. W., & Guo, Q. ( 2017 ). Astrocyte contributes to pain development via MMP2‐JNK1/2 signaling in a mouse model of complex regional pain syndrome. Life Sciences, 170, 64 – 71. https://doi.org/10.1016/j.lfs.2016.11.030
dc.identifier.citedreferenceTian, R., Wu, X., Hagemann, T. L., Sosunov, A. A., Messing, A., McKhann, G. M., & Goldman, J. E. ( 2010 ). Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes. Journal of Neuropathology and Experimental Neurology, 69 ( 4 ), 335 – 345. https://doi.org/10.1097/NEN.0b013e3181d3cb52
dc.identifier.citedreferenceToker, L., Mancarci, B. O., Tripathy, S., & Pavlidis, P. ( 2018 ). Transcriptomic evidence for alterations in astrocytes and parvalbumin interneurons in subjects with bipolar disorder and schizophrenia. Biological Psychiatry, 84 ( 11 ), 787 – 796. https://doi.org/10.1016/j.biopsych.2018.07.010
dc.identifier.citedreferenceUhlmann, E. J., Apicelli, A. J., Baldwin, R. L., Burke, S. P., Bajenaru, M. L., Onda, H., Kwiatkowski, D., & Gutmann, D. H. ( 2002 ). Heterozygosity for the tuberous sclerosis complex (TSC) gene products results in increased astrocyte numbers and decreased p27‐Kip1 expression in TSC2+/− cells. Oncogene, 21 ( 25 ), 4050 – 4059. https://doi.org/10.1038/sj.onc.1205435
dc.identifier.citedreferenceUhlmann, E. J., Li, W., Scheidenhelm, D. K., Gau, C. L., Tamanoi, F., & Gutmann, D. H. ( 2004 ). Loss of tuberous sclerosis complex 1 (Tsc1) expression results in increased Rheb/S6K pathway signaling important for astrocyte cell size regulation. Glia, 47 ( 2 ), 180 – 188. https://doi.org/10.1002/glia.20036
dc.identifier.citedreferenceUhlmann, E. J., Wong, M., Baldwin, R. L., Bajenaru, M. L., Onda, H., Kwiatkowski, D. J., Yamada, K., & Gutmann, D. H. ( 2002 ). Astrocyte‐specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Annals of Neurology, 52 ( 3 ), 285 – 296. https://doi.org/10.1002/ana.10283
dc.identifier.citedreferenceValles‐Ortega, J., Duran, J., Garcia‐Rocha, M., Bosch, C., Saez, I., Pujadas, L., Serafin, A., Cañas, Xavier, Soriano, E., Delgado‐García, J. M., Gruart, A., & Guinovart, J. J. ( 2011 ). Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. EMBO Molecular Medicine, 3 ( 11 ), 667 – 681. https://doi.org/10.1002/emmm.201100174
dc.identifier.citedreferencevan der Knaap, M. S., Boor, I., & Estevez, R. ( 2012 ). Megalencephalic leukoencephalopathy with subcortical cysts: Chronic white matter oedema due to a defect in brain ion and water homoeostasis. Lancet Neurology, 11 ( 11 ), 973 – 985. https://doi.org/10.1016/S1474-4422(12)70192-8
dc.identifier.citedreferencevan Scheppingen, J., Iyer, A. M., Prabowo, A. S., Muhlebner, A., Anink, J. J., Scholl, T., Feucht, M., Jansen, F. E., Spliet, W. G., Krsek, P., Zamecnik, J., Buccoliero, A. M., Giordano, F., Genitori, L., Kotulska, K., Jozwiak, S., Jaworski, J., Liszewska, E., Vilet, E. A., & Aronica, E. ( 2016 ). Expression of microRNAs miR21, miR146a, and miR155 in tuberous sclerosis complex cortical tubers and their regulation in human astrocytes and SEGA‐derived cell cultures. Glia, 64 ( 6 ), 1066 – 1082. https://doi.org/10.1002/glia.22983
dc.identifier.citedreferencevan Scheppingen, J., Mills, J. D., Zimmer, T. S., Broekaart, D. W. M., Iori, V., Bongaarts, A., Anink, J. J., Iyer, A. M., Korotkov, A., Jansen, F. E., Hecke, W., Spilet, W. G., Rijen, P. C., Baayen, J. C., Vezzani, A., Vilet, E. A., & Aronica, E. ( 2018 ). miR147b: A novel key regulator of interleukin 1 beta‐mediated inflammation in human astrocytes. Glia, 66 ( 5 ), 1082 – 1097. https://doi.org/10.1002/glia.23302
dc.identifier.citedreferenceVasile, F., Dossi, E., & Rouach, N. ( 2017 ). Human astrocytes: Structure and functions in the healthy brain. Brain Structure & Function, 222 ( 5 ), 2017 – 2029. https://doi.org/10.1007/s00429-017-1383-5
dc.identifier.citedreferenceViana, G. M., Gonzalez, E. A., Alvarez, M. M. P., Cavalheiro, R. P., do Nascimento, C. C., Baldo, G., D’Almeida, V., Lima, M. A., Pshezhetsky, A. V., & Nader, H. B. ( 2020 ). Cathepsin B‐associated activation of amyloidogenic pathway in murine mucopolysaccharidosis type I brain cortex. International Journal of Molecular Sciences, 21 ( 4 ), 1459. https://doi.org/10.3390/ijms21041459
dc.identifier.citedreferenceVictoria, G. S., Arkhipenko, A., Zhu, S., Syan, S., & Zurzolo, C. ( 2016 ). Astrocyte‐to‐neuron intercellular prion transfer is mediated by cell‐cell contact. Scientific Reports, 6, 20762. https://doi.org/10.1038/srep20762
dc.identifier.citedreferenceVincent, T., Saikali, P., Cayrol, R., Roth, A. D., Bar‐Or, A., Prat, A., & Antel, J. P. ( 2008 ). Functional consequences of neuromyelitis optica‐IgG astrocyte interactions on blood‐brain barrier permeability and granulocyte recruitment. Journal of Immunology, 181 ( 8 ), 5730 – 5737. https://doi.org/10.4049/jimmunol.181.8.5730
dc.identifier.citedreferenceVolpe, J. J., Kinney, H. C., Jensen, F. E., & Rosenberg, P. A. ( 2011 ). The developing oligodendrocyte: Key cellular target in brain injury in the premature infant. International Journal of Developmental Neuroscience, 29 ( 4 ), 423 – 440. https://doi.org/10.1016/j.ijdevneu.2011.02.012
dc.identifier.citedreferenceWallingford, J., Scott, A. L., Rodrigues, K., & Doering, L. C. ( 2017 ). Altered developmental expression of the astrocyte‐secreted factors Hevin and SPARC in the fragile X mouse model. Frontiers in Molecular Neuroscience, 10, 268. https://doi.org/10.3389/fnmol.2017.00268
dc.identifier.citedreferenceWalz, W., & Lang, M. K. ( 1998 ). Immunocytochemical evidence for a distinct GFAP‐negative subpopulation of astrocytes in the adult rat hippocampus. Neuroscience Letters, 257 ( 3 ), 127 – 130. https://doi.org/10.1016/s0304-3940(98)00813-1
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.