Show simple item record

Protonation status and control mechanism of flavin–oxygen intermediates in the reaction of bacterial luciferase

dc.contributor.authorTinikul, Ruchanok
dc.contributor.authorLawan, Narin
dc.contributor.authorAkeratchatapan, Nattanon
dc.contributor.authorPimviriyakul, Panu
dc.contributor.authorChinantuya, Wachirawit
dc.contributor.authorSuadee, Chutintorn
dc.contributor.authorSucharitakul, Jeerus
dc.contributor.authorChenprakhon, Pirom
dc.contributor.authorBallou, David P.
dc.contributor.authorEntsch, Barrie
dc.contributor.authorChaiyen, Pimchai
dc.date.accessioned2021-06-02T21:07:59Z
dc.date.available2022-06-02 17:07:58en
dc.date.available2021-06-02T21:07:59Z
dc.date.issued2021-05
dc.identifier.citationTinikul, Ruchanok; Lawan, Narin; Akeratchatapan, Nattanon; Pimviriyakul, Panu; Chinantuya, Wachirawit; Suadee, Chutintorn; Sucharitakul, Jeerus; Chenprakhon, Pirom; Ballou, David P.; Entsch, Barrie; Chaiyen, Pimchai (2021). "Protonation status and control mechanism of flavin–oxygen intermediates in the reaction of bacterial luciferase." The FEBS Journal (10): 3246-3260.
dc.identifier.issn1742-464X
dc.identifier.issn1742-4658
dc.identifier.urihttps://hdl.handle.net/2027.42/167808
dc.publisherWiley Periodicals, Inc.
dc.publisherWorld Scientific Publishing Co. Pte. Ltd.
dc.subject.otheractive site histidine
dc.subject.otherbacterial luciferase
dc.subject.otherflavin intermediate
dc.subject.otherflavin monooxygenase
dc.subject.otherprotonation status
dc.titleProtonation status and control mechanism of flavin–oxygen intermediates in the reaction of bacterial luciferase
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167808/1/febs15653.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167808/2/febs15653_am.pdf
dc.identifier.doi10.1111/febs.15653
dc.identifier.sourceThe FEBS Journal
dc.identifier.citedreferenceXin X, Xi L & Tu S‐C ( 1991 ) Functional consequences of site‐directed mutation of conserved histidyl residues of the bacterial luciferase α subunit. Biochemistry 30, 11255 – 11262.
dc.identifier.citedreferenceChenprakhon P, Wongnate T & Chaiyen P ( 2019 ) Monooxygenation of aromatic compounds by flavin‐dependent monooxygenases. Protein Sci 28, 8 – 29.
dc.identifier.citedreferenceEntsch B, Cole L & Ballou DP ( 2005 ) Protein dynamics and electrostatics in the function of p‐hydroxybenzoate hydroxylase. Arch Biochem Biophys 433, 297 – 311.
dc.identifier.citedreferenceRuangchan N, Tongsook C, Sucharitakul J & Chaiyen P ( 2011 ) pH‐dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p ‐hydroxyphenylacetate 3‐hydroxylase. J Biol Chem 286, 223 – 233.
dc.identifier.citedreferenceBalke K, Kadow M, Mallin H, Saß S & Bornscheuer UT ( 2012 ) Discovery, application and protein engineering of Baeyer‐Villiger monooxygenases for organic synthesis. Org Biomol Chem 10, 6249 – 6265.
dc.identifier.citedreferenceMalito E, Alfieri A, Fraaije MW & Mattevi A ( 2004 ) Crystal structure of a Baeyer‐Villiger monooxygenase. Proc Natl Acad Sci USA 101, 13157 – 13162.
dc.identifier.citedreferenceChenprakhon P, Trisrivirat D, Thotsaporn K, Sucharitakul J & Chaiyen P ( 2014 ) Control of C4a‐hydroperoxyflavin protonation in the oxygenase component of p‐hydroxyphenyl‐acetate‐3‐hydroxylase. Biochemistry 53, 4084 – 4086.
dc.identifier.citedreferenceVisitsatthawong S, Chenprakhon P, Chaiyen P & Surawatanawong P ( 2015 ) Mechanism of oxygen activation in a flavin‐dependent monooxygenase: a nearly barrierless formation of C4a‐hydroperoxyflavin via proton‐coupled electron transfer. J Am Chem Soc 137, 9363 – 9374.
dc.identifier.citedreferenceWongnate T, Surawatanawong P, Visitsatthawong S, Sucharitakul J, Scrutton NS & Chaiyen P ( 2014 ) Proton‐coupled electron transfer and adduct configuration are important for C4a‐hydroperoxyflavin formation and stabilization in a flavoenzyme. J Am Chem Soc 136, 241 – 253.
dc.identifier.citedreferenceAlfieri A, Fersini F, Ruangchan N, Prongjit M, Chaiyen P & Mattevi A ( 2007 ) Structure of the monooxygenase component of a two‐component flavoprotein monooxygenase. Proc Natl Acad Sci USA 104, 1177 – 1182.
dc.identifier.citedreferenceLuo Y & Liu Y‐J ( 2019 ) Revisiting the origination of bacterial bioluminescence: a QM/MM study on oxygenation reaction of reduced flavin in protein. ChemPhysChem 20, 405 – 409. https://doi.org/10.1002/cphc.201800970
dc.identifier.citedreferenceSheng D, Ballou DP & Massey V ( 2001 ) Mechanistic studies of cyclohexanone monooxygenase: chemical properties of intermediates involved in catalysis. Biochemistry 40, 11156 – 11167.
dc.identifier.citedreferenceOrru R, Dudek HM, Martinoli C, Pazmino DET, Royant A, Weik M, Fraaije MW & Mattevi A ( 2011 ) Snapshots of enzymatic Baeyer‐Villiger catalysis oxygen activation and intermediate stabilization. J Biol Chem 286, 29284 – 29291.
dc.identifier.citedreferenceBrondani PB, Dudek HM, Martinoli C, Mattevi A & Fraaije MW ( 2014 ) Finding the switch: turning a baeyer−villiger monooxygenase into a NADPH oxidase. J Am Chem Soc 136, 16966 – 16969.
dc.identifier.citedreferenceHuang S & Tu S‐C ( 1997 ) Identification and characterization of a catalytic base in bacterial luciferase by chemical rescue of a Dark Mutant. Biochemistry 36, 14609 – 14615.
dc.identifier.citedreferenceLi H, Ortego BC, Maillard KI, Willson RC & Tu S‐C ( 1999 ) Effects of mutations of the His45 residue of Vibrio harveyi luciferase on the yield and reactivity of the flavin peroxide intermediate. Biochemistry 38, 4409 – 4415.
dc.identifier.citedreferenceSucharitakul J, Wongnate T & Chaiyen P ( 2011 ) Hydrogen peroxide elimination from C4a‐hydroperoxyflavin in a flavoprotein oxidase occurs through a single proton transfer from flavin N5 to a peroxide leaving group. J Biol Chem 286, 16900 – 16909.
dc.identifier.citedreferenceThotsaporn K, Chenprakhon P, Sucharitakul J, Mattevi A & Chaiyen P ( 2011 ) Stabilization of C4a‐hydroperoxyflavin in a two‐component flavin‐dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms. J Biol Chem 286, 28170 – 28180.
dc.identifier.citedreferenceSucharitakul J, Phongsak T, Entsch B, Svasti J, Chaiyen P & Ballou DP ( 2007 ) Kinetics of a two‐component p‐hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase. Biochemistry 24, 8611 – 8623.
dc.identifier.citedreferenceKarplus M & Petsko GA ( 1990 ) Molecular dynamics simulations in biology. Nature 347, 631 – 639.
dc.identifier.citedreferenceBocharov EV, Sobol AG, Pavlov KV, Korzhnev DM, Jaravine VA, Gudkov AT & Arseniev AS ( 2004 ) From structure and dynamics of protein L7/L12 to molecular switching in ribosome. J Biol Chem 279, 17697 – 17706.
dc.identifier.citedreferenceDay R & Daggett V ( 2007 ) Direct observation of microscopic reversibility in single‐molecule protein folding. J Mol Biol 366, 677 – 686.
dc.identifier.citedreferenceDodson GG, Lane DP & Verma CS ( 2008 ) Molecular simulations of protein dynamics: new windows on mechanisms in biology. EMBO Rep 9, 144 – 150.
dc.identifier.citedreferencePhillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L & Schulten K ( 2005 ) Scalable molecular dynamics with NAMD. J Comp Chem 26, 1781 – 1802.
dc.identifier.citedreferenceFrederick RE, Ojha S, Lamb A & Dubois JL ( 2014 ) How pH modulates the reactivity and selectivity of a siderophore‐associated flavin monooxygenase. Biochemistry 53, 2007 – 2016.
dc.identifier.citedreferenceKathleen M, Meneely EW, Barr J, Martin Bollinger J Jr & Audrey LL ( 2009 ) Kinetic mechanism of ornithine hydroxylase (PvdA) from Pseudomonas aeruginosa: Substrate triggering of O 2 addition but not flavin reduction. Biochemistry 48, 4371 – 4376.
dc.identifier.citedreferenceXu D, Ballou DP & Massey V ( 2001 ) Studies of the mechanism of phenol hydroxylase:mutants Tyr289Phe, Asp54Asn, and Arg281Met. Biochemistry 40, 12369 – 12378.
dc.identifier.citedreferenceSucharitakul J, Tongsook C, Pakotiprapha D, van Berkel WJH & Chaiyen P ( 2013 ) The reaction kinetics of 3‐hydroxybenzoate 6‐hydroxylase from Rhodococcus jostii RHA1 provide an understanding of the para ‐hydroxylation enzyme catalytic cycle. J Biol Chem 288, 35210 – 35221.
dc.identifier.citedreferenceSucharitakul J, Chaiyen P, Entsch B & Ballou DP ( 2005 ) The reductase of p ‐hydroxyphenylacetate 3‐hydroxylase from Acinetobacter baumannii requires p ‐hydroxyphenylacetate for effective catalysis. Biochemistry 44, 10434 – 10442.
dc.identifier.citedreferenceChaiyen P, Suadee C & Wilairat P ( 2001 ) A novel two‐protein component flavoprotein hydroxylase p ‐hydroxyphenylacetate hydroxylase from Acinetobacter baumannii. Eur J Biochem 268, 5550 – 5561.
dc.identifier.citedreferencePatil PV & Ballou DP ( 2000 ) The use of protocatechuate dioxygenase for maintaining anaerobic conditions in biochemical experiments. Anal Biochem 286, 187 – 192.
dc.identifier.citedreferenceShimomura O ( 2006 ) Bioluminescence: Chemical Principles and Methods, 1 st edn. World Scientific Publishing Co. Pte. Ltd., Singapore.
dc.identifier.citedreferenceTinikul R & Chaiyen P ( 2016 ) Structure, mechanism, and mutation of bacterial luciferase. Adv Biochem Eng Biotechnol 154, 47 – 74.
dc.identifier.citedreferenceUlitzur S ( 1997 ) Review paper established technologies and new approaches in applying luminous bacteria for analytical purposes. J Biolumin Chemilumin 121, 79 – 192.
dc.identifier.citedreferenceFrancis KP, Joh D, Bellinger‐Kawahara C, Hawkinson MJ, Purchio TF & Contag PR ( 2000 ) Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun 68, 3594 – 3600.
dc.identifier.citedreferenceBrodl E, Winkler A & Macheroux P ( 2018 ) Molecular mechanisms of bacterial bioluminescence. Comput Struct Biotechnol J 16, 551 – 564.
dc.identifier.citedreferenceMeighen EA ( 1991 ) Molecular biology of bacterial bioluminescence. Microbiol Mol Biol Rev 55, 123 – 142.
dc.identifier.citedreferenceMitiouchkina T, Mishin AS, Somermeyer LG, Markina NM, Chepurnyh TV, Guglya EB, Karataeva TA, Palkina KA, Shakhova ES, Fakhranurova LI et al. ( 2020 ) Plants with genetically encoded autoluminescence. Nat Biotechnol 38, 1 – 3.
dc.identifier.citedreferenceClose DM, Patterson SS, Ripp S, Baek SJ, Sanseverino J & Sayler GS ( 2010 ) Autonomous bioluminescent expression of the bacterial luciferase gene cassette ( lux ) in a mammalian cell line. PLoS One 5, 1 – 12.
dc.identifier.citedreferenceClose D, Xu T, Smartt A, Rogers A, Crossley R, Price S, Ripp S & Sayler G ( 2012 ) The evolution of the bacterial luciferase gene cassette ( lux ) as a real‐time bioreporter. Sensors 12, 732 – 752.
dc.identifier.citedreferenceGregor C, Gwosch KC, Sahl SJ & Hell SW ( 2018 ) Strongly enhanced bacterial bioluminescence with the ilux operon for single‐cell imaging. Proc Natl Acad Sci USA 115, 962 – 967.
dc.identifier.citedreferenceGregora C, Papea JK, Gwoscha KC, Gilata T, Sahla SJ & Hella SW ( 2019 ) Autonomous bioluminescence imaging of single mammalian cells with the bacterial bioluminescence system. Proc Natl Acad Sci USA 116, 26491 – 26496.
dc.identifier.citedreferenceCampbell ZT, Weichsel A, Montfort WR & Baldwin TO ( 2009 ) Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the β subunit. Biochemistry 48, 6085 – 6094.
dc.identifier.citedreferenceFisher AJ, Thompson TB, Thoden JB & Baldwin TO ( 1996 ) The 1.5‐Å resolution crystal structure of bacterial luciferase low salt conditions. J Biol Chem 271, 21956 – 21968.
dc.identifier.citedreferenceXin X, Xi L & Tu S‐C ( 1994 ) Probing the Vibrio harveyi luciferase β subunit functionality and the intersubunit domain by site‐directed mutagenesis. Biochemistry 33, 12194 – 12201.
dc.identifier.citedreferenceVervoort J, Muller F, Lee J, van den Berg WAM & Moonen CTW ( 1986 ) Identifications of the true carbon‐13 nuclear magnetic resonance spectrum of the stable intermediate II in bacterial luciferase. Biochemistry 25, 8062 – 8067.
dc.identifier.citedreferenceGhisla S & Massey V ( 1989 ) Mechanism of flavoprotein‐catalyzed reactions. Eur J Biochem 181, 1 – 17.
dc.identifier.citedreferencePalfey BA & McDonald CA ( 2010 ) Control of catalysis in flavin‐dependent monooxygenases. Arch Biochem Biophys 493, 26 – 36.
dc.identifier.citedreferenceHuijbers MME, Montersino S, Westphal AH, Tischler D & van Berkel WJH ( 2014 ) Flavin dependent monooxygenases. Arch Biochem Biophys 544, 2 – 17.
dc.identifier.citedreferenceBruice TC ( 1984 ) Oxygen‐flavin chemistry. Isr J Chem 24, 54 – 61.
dc.identifier.citedreferenceAbu‐Soud HM, Mullins LS, Baldwin TO & Raushel FM ( 1992 ) Stopped‐flow kinetic analysis of the bacterial luciferase reaction. Biochemistry 31, 3807 – 3813.
dc.identifier.citedreferenceSuadee C, Nijvipakul S, Svasti J, Entsch B, Ballou DP & Chaiyen P ( 2007 ) Luciferase from Vibrio campbellii is more thermostable and binds reduced FMN better than its homologues. J Biochem 142, 539 – 552.
dc.identifier.citedreferenceTinikul R, Thotsaporn K, Thaveekarn W, Jitrapakdee S & Chaiyen P ( 2012 ) The fusion Vibrio campbellii luciferase as a eukaryotic gene reporter. J Biotechnol 62, 346 – 353.
dc.identifier.citedreferenceChaiyen P, Fraaije MW & Mattevi A ( 2012 ) The enigmatic reaction of flavins with oxygen. Trends Biochem Sci 37, 373 – 380.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.