Show simple item record

InterCarb: A Community Effort to Improve Interlaboratory Standardization of the Carbonate Clumped Isotope Thermometer Using Carbonate Standards

dc.contributor.authorBernasconi, S. M.
dc.contributor.authorDaëron, M.
dc.contributor.authorBergmann, K. D.
dc.contributor.authorBonifacie, M.
dc.contributor.authorMeckler, A. N.
dc.contributor.authorAffek, H. P.
dc.contributor.authorAnderson, N.
dc.contributor.authorBajnai, D.
dc.contributor.authorBarkan, E.
dc.contributor.authorBeverly, E.
dc.contributor.authorBlamart, D.
dc.contributor.authorBurgener, L.
dc.contributor.authorCalmels, D.
dc.contributor.authorChaduteau, C.
dc.contributor.authorClog, M.
dc.contributor.authorDavidheiser‐kroll, B.
dc.contributor.authorDavies, A.
dc.contributor.authorDux, F.
dc.contributor.authorEiler, J.
dc.contributor.authorElliott, B.
dc.contributor.authorFetrow, A. C.
dc.contributor.authorFiebig, J.
dc.contributor.authorGoldberg, S.
dc.contributor.authorHermoso, M.
dc.contributor.authorHuntington, K. W.
dc.contributor.authorHyland, E.
dc.contributor.authorIngalls, M.
dc.contributor.authorJaggi, M.
dc.contributor.authorJohn, C. M.
dc.contributor.authorJost, A. B.
dc.contributor.authorKatz, S.
dc.contributor.authorKelson, J.
dc.contributor.authorKluge, T.
dc.contributor.authorKocken, I. J.
dc.contributor.authorLaskar, A.
dc.contributor.authorLeutert, T. J.
dc.contributor.authorLiang, D.
dc.contributor.authorLucarelli, J.
dc.contributor.authorMackey, T. J.
dc.contributor.authorMangenot, X.
dc.contributor.authorMeinicke, N.
dc.contributor.authorModestou, S. E.
dc.contributor.authorMüller, I. A.
dc.contributor.authorMurray, S.
dc.contributor.authorNeary, A.
dc.contributor.authorPackard, N.
dc.contributor.authorPassey, B. H.
dc.contributor.authorPelletier, E.
dc.contributor.authorPetersen, S.
dc.contributor.authorPiasecki, A.
dc.contributor.authorSchauer, A.
dc.contributor.authorSnell, K. E.
dc.contributor.authorSwart, P. K.
dc.contributor.authorTripati, A.
dc.contributor.authorUpadhyay, D.
dc.contributor.authorVennemann, T.
dc.contributor.authorWinkelstern, I.
dc.contributor.authorYarian, D.
dc.contributor.authorYoshida, N.
dc.contributor.authorZhang, N.
dc.contributor.authorZiegler, M.
dc.date.accessioned2021-06-02T21:08:08Z
dc.date.available2022-06-02 17:08:06en
dc.date.available2021-06-02T21:08:08Z
dc.date.issued2021-05
dc.identifier.citationBernasconi, S. M.; Daëron, M. ; Bergmann, K. D.; Bonifacie, M.; Meckler, A. N.; Affek, H. P.; Anderson, N.; Bajnai, D.; Barkan, E.; Beverly, E.; Blamart, D.; Burgener, L.; Calmels, D.; Chaduteau, C.; Clog, M.; Davidheiser‐kroll, B. ; Davies, A.; Dux, F.; Eiler, J.; Elliott, B.; Fetrow, A. C.; Fiebig, J.; Goldberg, S.; Hermoso, M.; Huntington, K. W.; Hyland, E.; Ingalls, M.; Jaggi, M.; John, C. M.; Jost, A. B.; Katz, S.; Kelson, J.; Kluge, T.; Kocken, I. J.; Laskar, A.; Leutert, T. J.; Liang, D.; Lucarelli, J.; Mackey, T. J.; Mangenot, X.; Meinicke, N.; Modestou, S. E.; Müller, I. A. ; Murray, S.; Neary, A.; Packard, N.; Passey, B. H.; Pelletier, E.; Petersen, S.; Piasecki, A.; Schauer, A.; Snell, K. E.; Swart, P. K.; Tripati, A.; Upadhyay, D.; Vennemann, T.; Winkelstern, I.; Yarian, D.; Yoshida, N.; Zhang, N.; Ziegler, M. (2021). "InterCarb: A Community Effort to Improve Interlaboratory Standardization of the Carbonate Clumped Isotope Thermometer Using Carbonate Standards." Geochemistry, Geophysics, Geosystems 22(5): n/a-n/a.
dc.identifier.issn1525-2027
dc.identifier.issn1525-2027
dc.identifier.urihttps://hdl.handle.net/2027.42/167811
dc.description.abstractIncreased use and improved methodology of carbonate clumped isotope thermometry has greatly enhanced our ability to interrogate a suite of Earth- system processes. However, interlaboratory discrepancies in quantifying carbonate clumped isotope (Π47) measurements persist, and their specific sources remain unclear. To address interlaboratory differences, we first provide consensus values from the clumped isotope community for four carbonate standards relative to heated and equilibrated gases with 1,819 individual analyses from 10 laboratories. Then we analyzed the four carbonate standards along with three additional standards, spanning a broad range of δ47 and Π47 values, for a total of 5,329 analyses on 25 individual mass spectrometers from 22 different laboratories. Treating three of the materials as known standards and the other four as unknowns, we find that the use of carbonate reference materials is a robust method for standardization that yields interlaboratory discrepancies entirely consistent with intralaboratory analytical uncertainties. Carbonate reference materials, along with measurement and data processing practices described herein, provide the carbonate clumped isotope community with a robust approach to achieve interlaboratory agreement as we continue to use and improve this powerful geochemical tool. We propose that carbonate clumped isotope data normalized to the carbonate reference materials described in this publication should be reported as Π47 (I- CDES) values for Intercarb- Carbon Dioxide Equilibrium Scale.Key PointsThe exclusive use of carbonate reference materials is a robust method for the standardization of clumped isotope measurementsMeasurements using different acid temperatures, designs of preparation lines, and mass spectrometers are statistically indistinguishableWe propose new consensus values for a set of seven carbonate reference materials and updated guidelines to report clumped isotope measurements
dc.publisherWiley Periodicals, Inc.
dc.subject.othercarbonate
dc.subject.otherreference materials
dc.subject.othermass spectrometry
dc.subject.otherinterlaboratory calibration
dc.subject.otherclumped isotopes
dc.titleInterCarb: A Community Effort to Improve Interlaboratory Standardization of the Carbonate Clumped Isotope Thermometer Using Carbonate Standards
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167811/1/ggge22508.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167811/2/ggge22508_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167811/3/2020GC009588-sup-0001-Supporting_Information_SI-S01.pdf
dc.identifier.doi10.1029/2020GC009588
dc.identifier.sourceGeochemistry, Geophysics, Geosystems
dc.identifier.citedreferenceGhosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., et al. ( 2006 ). 13C- 18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70 ( 6 ), 1439 - 1456. https://doi.org/10.1016/j.gca.2005.11.014
dc.identifier.citedreferenceJautzy, J. J., Savard, M. M., Dhillon, R. S., Bernasconi, S. M., Smirnoff, A., & Smirnoff, A. ( 2020 ). Clumped isotope temperature calibration for calcite: Bridging theory and experimentation. Geochemical Perspectives Letters, 36 - 41. https://doi.org/10.7185/geochemlet.2021
dc.identifier.citedreferenceHuntington, K. W., Eiler, J. M., Affek, H. P., Guo, W., Bonifacie, M., Yeung, L. Y., et al. ( 2009 ). Methods and limitations of - clumped- CO2 isotope (Π47) analysis by gas- source isotope ratio mass spectrometry. Journal of Mass Spectrometry, 44 ( 9 ), 1318 - 1329. https://doi.org/10.1002/jms.1614
dc.identifier.citedreferenceHuntington, K. W., Budd, D. A., Wernicke, B. P., & Eiler, J. M. ( 2011 ). Use of clumped- isotope thermometry to constrain the crystallization temperature of diagenetic calcite. Journal of Sedimentary Research, 81 ( 9 ), 656 - 669. https://doi.org/10.2110/jsr.2011.51
dc.identifier.citedreferenceHu, B., Radke, J., Schlüter, H.- J., Heine, F. T., Zhou, L., Bernasconi, S. M., et al. ( 2014 ). A modified procedure for gas- source isotope ratio mass spectrometry: The long- integration dual- inlet (LIDI) methodology and implications for clumped isotope measurements. Rapid Communications in Mass Spectrometry, 28 ( 13 ), 1413 - 1425. https://doi.org/10.1002/rcm.6909
dc.identifier.citedreferenceHe, B., Olack, G. A., & Colman, A. S. ( 2012 ). Pressure baseline correction and high- precision CO2 clumped- isotope (- 47 ) measurements in bellows and micro- volume modes. Rapid Communications in Mass Spectrometry, 26 ( 24 ), 2837 - 2853. https://doi.org/10.1002/rcm.6436
dc.identifier.citedreferenceGuo, W., Mosenfelder, J. L., Goddard, W. A., & Eiler, J. M. ( 2009 ). Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: Insights from first- principles theoretical modeling and clumped isotope measurements. Geochimica et Cosmochimica Acta, 73 ( 24 ), 7203 - 7225. https://doi.org/10.1016/j.gca.2009.05.071
dc.identifier.citedreferenceGuo, W., & Eiler, J. M. ( 2007 ). Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites. Geochimica et Cosmochimica Acta, 71 ( 22 ), 5565 - 5575. https://doi.org/10.1016/j.gca.2007.07.029
dc.identifier.citedreferenceGrauel, A.- L., Schmid, T. W., Hu, B., Bergami, C., Capotondi, L., Zhou, L., & Bernasconi, S. M. ( 2013 ). Calibration and application of the - clumped isotope- thermometer to foraminifera for high- resolution climate reconstructions. Geochimica et Cosmochimica Acta, 108, 125 - 140. https://doi.org/10.1016/j.gca.2012.12.049
dc.identifier.citedreferenceGhosh, P., Garzione, C., & Eiler, J. ( 2006 ). Rapid uplift of the alitplano revealed through 13C- 18O bonds in paleosol carbonates. Science, 311, 511 - 515. https://doi.org/10.1126/science.1119365
dc.identifier.citedreferenceAdlan, Q., Davies, A. J., & John, C. M. ( 2020 ). Effects of oxygen plasma ashing treatment on carbonate clumped isotopes. Rapid Communications in Mass Spectrometry, 34 ( 14 ), e8802. https://doi.org/10.1002/rcm.8802
dc.identifier.citedreferenceAffek, H. P., & Eiler, J. M. ( 2006 ). Abundance of mass 47 CO2 in urban air, car exhaust, and human breath. Geochimica et Cosmochimica Acta, 70 ( 1 ), 1 - 12. https://doi.org/10.1016/j.gca.2005.08.021
dc.identifier.citedreferenceAnderson, N. T., Kelson, J. R., Kele, S., Daëron, M., Bonifacie, M., Horita, J., et al. ( 2021 ). A unified clumped isotope thermometer calibration (0.5- 1100°C) using carbonate- based standardization. Geophysical Research Letters. https://doi.org/10.1029/2020GL092069
dc.identifier.citedreferenceBajnai, D., Guo, W., SpoetlCoplen, C. T. B., Methner, K., Löffler, N., Krsnik, E., et al. ( 2020 ). Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures. Nature Communications, 11, 4005. https://doi.org/10.1038/s41467-020-17501-0
dc.identifier.citedreferenceBernasconi, S. M., Hu, B., Wacker, U., Fiebig, J., Breitenbach, S. F. M., & Rutz, T. ( 2013 ). Background effects on Faraday collectors in gas- source mass spectrometry and implications for clumped isotope measurements. Rapid Communications in Mass Spectrometry, 27 ( 5 ), 603 - 612. https://doi.org/10.1002/rcm.6490
dc.identifier.citedreferenceBernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F. M. M., Fernandez, A., Hodell, D. A., et al. ( 2018 ). Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate- based standardization. Geochemistry, Geophysics, Geosystems, 19 ( 9 ), 1 - 20. https://doi.org/10.1029/2017gc007385
dc.identifier.citedreferenceBonifacie, M., Calmels, D., Eiler, J. M., Horita, J., Chaduteau, C., Vasconcelos, C., et al. ( 2017 ). Calibration of the dolomite clumped isotope thermometer from 25 to 350°C, and implications for a universal calibration for all (Ca, Mg, Fe)CO3 carbonates. Geochimica et Cosmochimica Acta, 200, 255 - 279. https://doi.org/10.1016/j.gca.2016.11.028
dc.identifier.citedreferenceBrand, W. a., Assonov, S. S., & Coplen, T. B. ( 2010 ). Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report). Pure and Applied Chemistry, 82 ( 8 ), 1719 - 1733. https://doi.org/10.1351/pac-rep-09-01-05
dc.identifier.citedreferenceCame, R. E., Brand, U., & Affek, H. P. ( 2014 ). Clumped isotope signatures in modern brachiopod carbonate. Chemical Geology, 377, 20 - 30. https://doi.org/10.1016/j.chemgeo.2014.04.004
dc.identifier.citedreferenceCarter, J. F., & Fry, B. ( 2013 ). Ensuring the reliability of stable isotope ratio data- beyond the principle of identical treatment. Analytical and Bioanalytical Chemistry, 405 ( 9 ), 2799 - 2814. https://doi.org/10.1007/s00216-012-6551-0
dc.identifier.citedreferenceCoplen, T. B. ( 2011 ). Guidelines and recommended terms for expression of stable- isotope- ratio and gas- ratio measurement results. Rapid Communications in Mass Spectrometry, 25 ( 17 ), 2538 - 2560. https://doi.org/10.1002/rcm.5129
dc.identifier.citedreferenceCoplen, T. B., Brand, W. A., Gehre, M., Gröning, M., Meijer, H. A. J., Toman, B., & Verkouteren, R. M. ( 2006 ). After two decades a second anchor for the VPDBδ13C scale. Rapid Communications in Mass Spectrometry, 20 ( 21 ), 3165 - 3166. https://doi.org/10.1002/rcm.2727
dc.identifier.citedreferenceDaëron, M. ( 2021 ). Full propagation of analytical uncertainties in Π47 measurements. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2020GC009592
dc.identifier.citedreferenceDaëron, M., Blamart, D., Peral, M., & Affek, H. P. ( 2016 ). Absolute isotopic abundance ratios and the accuracy of Π47 measurements. Chemical Geology, 442, 83 - 96. https://doi.org/10.1016/j.chemgeo.2016.08.014
dc.identifier.citedreferenceDale, A., John, C. M., Mozley, P. S., Smalley, P. C., & Muggeridge, A. H. ( 2014 ). Time- capsule concretions: Unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes. Earth and Planetary Science Letters, 394, 30 - 37. https://doi.org/10.1016/j.epsl.2014.03.004
dc.identifier.citedreferenceDefliese, W. F., Hren, M. T., & Lohmann, K. C. ( 2015 ). Compositional and temperature effects of phosphoric acid fractionation on Î 47 analysis and implications for discrepant calibrations. Chemical Geology, 396, 51 - 60. https://doi.org/10.1016/j.chemgeo.2014.12.018
dc.identifier.citedreferenceDefliese, W. F., & Lohmann, K. C. ( 2015 ). Non- linear mixing effects on mass- 47 CO2 clumped isotope thermometry: Patterns and implications. Rapid Communications in Mass Spectrometry, 29 ( 9 ), 901 - 909. https://doi.org/10.1002/rcm.7175
dc.identifier.citedreferenceDennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., & Eiler, J. M. ( 2011 ). Defining an absolute reference frame for - clumped- isotope studies of CO2. Geochimica et Cosmochimica Acta, 75 ( 22 ), 7117 - 7131. https://doi.org/10.1016/j.gca.2011.09.025
dc.identifier.citedreferenceEagle, R. A., Schauble, E. A., Tripati, A. K., Tütken, T., Hulbert, R. C., & Eiler, J. M. ( 2010 ). Body temperatures of modern and extinct vertebrates from 13C- 18O bond abundances in bioapatite. Proceedings of the National Academy of Sciences of the United States of America, 107 ( 23 ), 10377 - 10382. https://doi.org/10.1073/pnas.0911115107
dc.identifier.citedreferenceFernandez, A., Müller, I. A., Rodríguez- Sanz, L., van Dijk, J., Looser, N., & Bernasconi, S. M. ( 2017 ). A reassessment of the precision of carbonate clumped isotope measurements: Implications for calibrations and paleoclimate reconstructions. Geochemistry, Geophysics, Geosystems, 18 ( 12 ). https://doi.org/10.1002/2017gc007106
dc.identifier.citedreferenceFernandez, A., Tang, J., & Rosenheim, B. E. ( 2014 ). Siderite - clumped- isotope thermometry: A new paleoclimate proxy for humid continental environments. Geochimica et Cosmochimica Acta, 126, 411 - 421. https://doi.org/10.1016/j.gca.2013.11.006
dc.identifier.citedreferenceFerry, J. M., Passey, B. H., Vasconcelos, C., & Eiler, J. M. ( 2011 ). Formation of dolomite at 40- 80°C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology, 39 ( 6 ), 571 - 574. https://doi.org/10.1130/g31845.1
dc.identifier.citedreferenceFiebig, J., Bajnai, D., Löffler, N., Methner, K., Krsnik, E., Mulch, A., & Hofmann, S. ( 2019 ). Combined high- precision - 48 and - 47 analysis of carbonates. Chemical Geology, 522, 186 - 191. https://doi.org/10.1016/j.chemgeo.2019.05.019
dc.identifier.citedreferenceFiebig, J., Hofmann, S., Löffler, N., Lüdecke, T., Methner, K., & Wacker, U. ( 2016 ). Slight pressure imbalances can affect accuracy and precision of dual inlet- based clumped isotope analysis. Isotopes in Environmental and Health Studies, 52, 12 - 28. https://doi.org/10.1080/10256016.2015.1010531
dc.identifier.citedreferenceWerner, R. A., & Brand, W. A. ( 2001 ). Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry, 15 ( 7 ), 501 - 519. https://doi.org/10.1002/rcm.258
dc.identifier.citedreferenceWang, Z., Schauble, E. A., & Eiler, J. M. ( 2004 ). Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochimica et Cosmochimica Acta, 68 ( 23 ), 4779 - 4797. https://doi.org/10.1016/j.gca.2004.05.039
dc.identifier.citedreferenceWacker, U., Fiebig, J., Tödter, J., Schöne, B. R., Bahr, A., Friedrich, O., et al. ( 2014 ). Empirical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochimica et Cosmochimica Acta, 141, 127 - 144. https://doi.org/10.1016/j.gca.2014.06.004
dc.identifier.citedreferenceWacker, U., Fiebig, J., & Schoene, B. R. ( 2013 ). Clumped isotope analysis of carbonates: Comparison of two different acid digestion techniques. Rapid Communications in Mass Spectrometry, 27 ( 14 ), 1631 - 1642. https://doi.org/10.1002/rcm.6609
dc.identifier.citedreferenceVeillard, C. M. A., John, C. M., Krevor, S., & Najorka, J. ( 2019 ). Rock- buffered recrystallization of Marion Plateau dolomites at low temperature evidenced by clumped isotope thermometry and X- ray diffraction analysis. Geochimica et Cosmochimica Acta, 252, 190 - 212. https://doi.org/10.1016/j.gca.2019.02.012
dc.identifier.citedreferencevan Dijk, J., Fernandez, A., Storck, J. C., White, T. S., Lever, M., Müller, I. A., et al. ( 2019 ). Experimental calibration of clumped isotopes in siderite between 8.5 and 62°C and its application as paleo- thermometer in paleosols. Geochimica et Cosmochimica Acta, 254, 1 - 20. https://doi.org/10.1016/j.gca.2019.03.018
dc.identifier.citedreferenceThaler, C., Katz, A., Bonifacie, M., Ménez, B., & Ader, M. ( 2020 ). Oxygen isotope composition of waters recorded in carbonates in strong clumped and oxygen isotopic disequilibrium (2020). Biogeosciences, 17, 1 - 14. https://doi.org/10.5194/bg-17-1-202010.5194/bg-17-1731-2020
dc.identifier.citedreferenceSwart, P. K., Murray, S. T., Staudigel, P. T., & Hodell, D. A. ( 2019 ). Oxygen isotopic exchange between CO 2 and phosphoric acid: Implications for the measurement of clumped isotopes in carbonates. Geochemistry, Geophysics, Geosystems, 20, 3730 - 3750. https://doi.org/10.1029/2019GC008209
dc.identifier.citedreferenceSpooner, P. T., Guo, W., Robinson, L. F., Thiagarajan, N., Hendry, K. R., Rosenheim, B. E., & Leng, M. J. ( 2016 ). Clumped isotope composition of cold- water corals: A role for vital effects? Geochimica et Cosmochimica Acta, 179, 123 - 141. https://doi.org/10.1016/j.gca.2016.01.023
dc.identifier.citedreferenceSchmid, T. W., & Bernasconi, S. M. ( 2010 ). An automated method for - clumped- isotope- measurements on small carbonate samples. Rapid Communications in Mass Spectrometry, 24 ( 14 ), 1955 - 1963. https://doi.org/10.1002/rcm.4598
dc.identifier.citedreferenceSchauer, A. J., Kelson, J., Saenger, C., & Huntington, K. W. ( 2016 ). Choice of17O correction affects clumped isotope (Î 47) values of CO2measured with mass spectrometry. Rapid Communications in Mass Spectrometry, 30 ( 24 ), 2607 - 2616. https://doi.org/10.1002/rcm.7743
dc.identifier.citedreferenceQi, H., Moossen, H., Meijer, H. A. J., Coplen, T. B., Aerts- Bijma, A. T., Reid, L., et al. ( 2021 ). USGS44, a new high- purity calcium carbonate reference material for δ 13 C measurements. Rapid Communications in Mass Spectrometry, 35 ( 4 ). https://doi.org/10.1002/rcm.9006
dc.identifier.citedreferencePiasecki, A., Bernasconi, S. M., Grauel, A., Hannisdal, B., Ho, S. L., Leutert, T. J., et al. ( 2019 ). Application of clumped isotope thermometry to benthic foraminifera. Geochemistry, Geophysics, Geosystems, 2018GC007961. https://doi.org/10.1029/2018GC007961
dc.identifier.citedreferencePetersen, S. V., Winkelstern, I. Z., Lohmann, K. C., & Meyer, K. W. ( 2016 ). The effects of Porapak trap temperature on δ18 O, δ13 C, and Π47 values in preparing samples for clumped isotope analysis. Rapid Communications in Mass Spectrometry, 30 ( 1 ), 199 - 208. https://doi.org/10.1002/rcm.7438
dc.identifier.citedreferencePetersen, S. V., Defliese, W. F., Saenger, C., Daëron, M., Huntington, K. W., John, C. M., et al. ( 2019 ). Effects of improved 17 O correction on interlaboratory agreement in clumped isotope calibrations, estimates of mineral- specific offsets, and temperature dependence of acid digestion fractionation. Geochemistry, Geophysics, Geosystems, 20, 3495 - 3519. https://doi.org/10.1029/2018gc008127
dc.identifier.citedreferencePeral, M., Daëron, M., Blamart, D., Bassinot, F., Dewilde, F., Smialkowski, N., et al. ( 2018 ). Updated calibration of the clumped isotope thermometer in planktonic and benthic foraminifera. Geochimica et Cosmochimica Acta, 239, 1 - 16. https://doi.org/10.1016/j.gca.2018.07.016
dc.identifier.citedreferencePassey, B. H., Levin, N. E., Cerling, T. E., BROWN, F. H., Eiler, J. M., & Turekian, K. K. ( 2010 ). High- temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proceedings of the National Academy of Sciences of the United States of America, 107 ( 25 ), 11245 - 11249. https://doi.org/10.1073/pnas.1001824107
dc.identifier.citedreferencePassey, B. H., & Henkes, G. A. ( 2012 ). Carbonate clumped isotope bond reordering and geospeedometry. Earth and Planetary Science Letters, 351- 352, 223 - 236. https://doi.org/10.1016/j.epsl.2012.07.021
dc.identifier.citedreferenceNishida, K., & Ishimura, T. ( 2017 ). Grain- scale stable carbon and oxygen isotopic variations of the international reference calcite, IAEA- 603. Rapid Communications in Mass Spectrometry, 31 ( 22 ), 1875 - 1880. https://doi.org/10.1002/rcm.7966
dc.identifier.citedreferenceMurray, S. T., Arienzo, M. M., & Swart, P. K. ( 2016 ). Determining the Î 47 acid fractionation in dolomites. Geochimica et Cosmochimica Acta, 174, 42 - 53. https://doi.org/10.1016/j.gca.2015.10.029
dc.identifier.citedreferenceMeinicke, N., Ho, S. L., Hannisdal, B., Nürnberg, D., Tripati, A., Schiebel, R., & Meckler, A. N. ( 2020 ). A robust calibration of the clumped isotopes to temperature relationship for foraminifers. Geochimica et Cosmochimica Acta, 270, 160 - 183. https://doi.org/10.1016/j.gca.2019.11.022
dc.identifier.citedreferenceMeier- Augenstein, W., & Schimmelmann, A. ( 2019 ). A guide for proper utilisation of stable isotope reference materials. Isotopes in Environmental and Health Studies, 55 ( 2 ), 113 - 128. https://doi.org/10.1080/10256016.2018.1538137
dc.identifier.citedreferenceMeckler, A. N., Ziegler, M., Millán, M. I., Breitenbach, S. F. M., Bernasconi, S. M., Millán, M. I., et al. ( 2014 ). Long- term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements. Rapid Communications in Mass Spectrometry, 28 ( 15 ), 1705 - 1715. https://doi.org/10.1002/rcm.6949
dc.identifier.citedreferenceMassey, F. J. ( 1951 ). The Kolmogorov- Smirnov test for goodness of fit. Journal of the American Statistical Association, 46 ( 253 ), 68 - 78. https://doi.org/10.1080/01621459.1951.10500769
dc.identifier.citedreferenceMangenot, X., Gasparrini, M., Gerdes, A., Bonifacie, M., & Rouchon, V. ( 2018 ). An emerging thermochronometer for carbonate- bearing rocks: - 47/(U- Pb). Geology, 46 ( 12 ), 1067 - 1070. https://doi.org/10.1130/g45196.1
dc.identifier.citedreferenceMüller, I. A., Violay, M. E. S., Storck, J.- C., Fernandez, A., van Dijk, J., Madonna, C., & Bernasconi, S. M. ( 2017 ). Clumped isotope fractionation during phosphoric acid digestion of carbonates at 70°C. Chemical Geology, 449, 1 - 14. https://doi.org/10.1016/j.chemgeo.2016.11.030
dc.identifier.citedreferenceMüller, I. A., Rodriguez- Blanco, J. D., Storck, J.- C., do Nascimento, G. S., Bontognali, T. R. R., Vasconcelos, C., et al. ( 2019 ). Calibration of the oxygen and clumped isotope thermometers for (proto- )dolomite based on synthetic and natural carbonates. Chemical Geology, 525, 1 - 17. https://doi.org/10.1016/j.chemgeo.2019.07.014
dc.identifier.citedreferenceMüller, I. A., Fernandez, A., Radke, J., van Dijk, J., Bowen, D., Schwieters, J., & Bernasconi, S. M. ( 2017 ). Carbonate clumped isotope analyses with the long- integration dual- inlet (LIDI) workflow: Scratching at the lower sample weight boundaries. Rapid Communications in Mass Spectrometry, 31 ( 12 ), 1057 - 1066. https://doi.org/10.1002/rcm.7878
dc.identifier.citedreferenceKocken, I. J., Müller, I. A., & Ziegler, M. ( 2019 ). Optimizing the use of carbonate standards to minimize uncertainties in clumped isotope data. Geochemistry, Geophysics, Geosystems, 20 ( 11 ), 5565 - 5577. https://doi.org/10.1029/2019gc008545
dc.identifier.citedreferenceKluge, T., John, C. M., Jourdan, A.- L., Davis, S., & Crawshaw, J. ( 2015 ). Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25- 250°C temperature range. Geochimica et Cosmochimica Acta, 157, 213 - 227. https://doi.org/10.1016/j.gca.2015.02.028
dc.identifier.citedreferenceKim, S.- T., Coplen, T. B., & Horita, J. ( 2015 ). Normalization of stable isotope data for carbonate minerals: Implementation of IUPAC guidelines. Geochimica et Cosmochimica Acta, 158, 276 - 289. https://doi.org/10.1016/j.gca.2015.02.011
dc.identifier.citedreferenceKelson, J. R., Huntington, K. W., Schauer, A. J., Saenger, C., & Lechler, A. R. ( 2017 ). Toward a universal carbonate clumped isotope calibration: Diverse synthesis and preparatory methods suggest a single temperature relationship. Geochimica et Cosmochimica Acta, 197, 104 - 131. https://doi.org/10.1016/j.gca.2016.10.010
dc.identifier.citedreferenceKele, S., Breitenbach, S. F. M., Capezzuoli, E., Meckler, A. N., Ziegler, M., Millan, I. M., et al. ( 2015 ). Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: A study of travertines and tufas in the 6- 95°C temperature range. Geochimica et Cosmochimica Acta, 168, 172 - 192. https://doi.org/10.1016/j.gca.2015.06.032
dc.identifier.citedreferenceKatz, A., Bonifacie, M., Hermoso, M., Cartigny, P., & Calmels, D. ( 2017 ). Laboratory- grown coccoliths exhibit no vital effect in clumped isotope (Î 47) composition on a range of geologically relevant temperatures. Geochimica et Cosmochimica Acta, 208, 335 - 353. https://doi.org/10.1016/j.gca.2017.02.025
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.