Show simple item record

Ultraprecision Imaging and Manipulation of Plasmonic Nanostructures by Integrated Nanoscopic Correction

dc.contributor.authorLiu, Yunbo
dc.contributor.authorZhang, Zhijia
dc.contributor.authorPark, Younggeun
dc.contributor.authorLee, Somin Eunice
dc.date.accessioned2021-06-02T21:08:39Z
dc.date.available2022-06-02 17:08:38en
dc.date.available2021-06-02T21:08:39Z
dc.date.issued2021-05
dc.identifier.citationLiu, Yunbo; Zhang, Zhijia; Park, Younggeun; Lee, Somin Eunice (2021). "Ultraprecision Imaging and Manipulation of Plasmonic Nanostructures by Integrated Nanoscopic Correction." Small 17(21): n/a-n/a.
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttps://hdl.handle.net/2027.42/167821
dc.description.abstractOptical manipulation and imaging of nano‐objects with nanometer precision is highly desirable for nanomaterial and biological studies due to inherent noninvasiveness. However, time constraints and current segregated experimental systems for nanoimaging and nanomanipulation limits real‐time super‐resolution imaging with spatially enhanced manipulation. Here, an integrated nanoscopic correction (iNC) method to enable multimodal nanomanipulation‐nanoimaging is reported. The iNC consists of a multimodal voltage‐tunable power modulator, polarization rotator, and polarizer. Using the iNC, plasmonic nano‐objects which are below the diffraction limit and which can be distinguished by direct observation without post processing are demonstrated. Furthermore, such direct observations with enhanced nanometer spatial stability and millisecond high speed are shown. Precise trapping and rapid rotation of gold nanorods with the iNC are demonstrated successfully. With non‐invasive post‐processing free nanoimaging and nanomanipulation, it is anticipated that the iNC will make contributions in the nanomaterial and biological sciences requiring precision optics.Optical manipulation and imaging of nano‐objects with nanometer precision is highly desirable for nanomaterial and biological studies due to inherent noninvasiveness. However, time constraints and current segregated experimental systems for nanoimaging and nanomanipulation limits real‐time super‐resolution imaging with spatially enhanced manipulation. Here, an integrated nanoscopic correction method to enable multimodal nanomanipulation‐nanoimaging is reported.
dc.publisherWiley
dc.subject.othermultimodal optical trapping
dc.subject.othermultimodal super‐resolution imaging
dc.subject.otherplasmonics
dc.titleUltraprecision Imaging and Manipulation of Plasmonic Nanostructures by Integrated Nanoscopic Correction
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167821/1/smll202007610-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167821/2/smll202007610_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167821/3/smll202007610.pdf
dc.identifier.doi10.1002/smll.202007610
dc.identifier.sourceSmall
dc.identifier.citedreferenceQ. Liu, Y. Cui, D. Gardner, X. Li, S. He, I. I. Smalyukh, Nano Lett. 2010, 10, 1347.
dc.identifier.citedreferenceE. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott‐Schwartz, H. F. Hess, Science 2006, 313, 1642.
dc.identifier.citedreferenceM. J. Rust, M. Bates, X. Zhuang, Nat. Methods 2006, 3, 793.
dc.identifier.citedreferenceT. Dertinger, R. Colyer, G. Iyer, S. Weiss, J. Enderlein, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 22287.
dc.identifier.citedreferenceC. Sönnichsen, A. P. Alivisatos, Nano Lett. 2005, 5, 301.
dc.identifier.citedreferenceP. Zijlstra, J. W. M. Chon, M. Gu, Nature 2009, 459, 410.
dc.identifier.citedreferenceW. K. Lin, G. Cui, Z. Burns, X. Zhao, Y. Liu, Z. Zhang, Y. Wang, X. Ye, Y. Park, S. E. Lee, Adv. Mater. Interfaces 2021, 8, 2001370.
dc.identifier.citedreferenceE. Murphy, Y. Liu, D. Krueger, M. Prasad, S. E. Lee, Y. Park, Small 2021, 17, 2006044.
dc.identifier.citedreferenceM. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, N. J. Halas, Nano Lett. 2012, 12, 6000.
dc.identifier.citedreferenceJ. Perez‐Juste, B. Rodriguez‐Gonzalez, P. Mulvaney, L. M. Liz‐Marzan, Adv. Funct. Mater. 2005, 15, 1065.
dc.identifier.citedreferenceX. Huang, I. H. El‐Sayed, W. Qian, M. A. El‐Sayed, Nano Lett. 2007, 7, 1591.
dc.identifier.citedreferenceG. Wang, W. Sun, Y. Luo, N. Fang, J. Am. Chem. Soc. 2010, 132, 16417.
dc.identifier.citedreferenceW.‐S. Chang, J. W. Ha, L. S. Slaughter, S. Link, Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 2781.
dc.identifier.citedreferenceG. L. Liu, Y. T. Long, Y. Choi, T. Kang, L. P. Lee, Nat. Methods 2007, 4, 1015.
dc.identifier.citedreferenceS. E. Lee, G. L. Liu, F. Kim, L. P. Lee, Nano Lett. 2009, 9, 562.
dc.identifier.citedreferenceS. E. Lee, D. Y. Sasaki, T. D. Perroud, D. Yoo, K. D. Patel, L. P. Lee, J. Am. Chem. Soc. 2009, 131, 14066.
dc.identifier.citedreferenceS. E. Lee, D. Y. Sasaki, Y. Park, R. Xu, J. S. Brennan, M. J. Bissell, L. P. Lee, ACS Nano 2012, 6, 7770.
dc.identifier.citedreferenceS. E. Lee, Q. Chen, R. Bhat, S. Petkiewicz, J. M. Smith, V. E. Ferry, A. L. Correia, A. P. Alivisatos, M. J. Bissell, Nano Lett. 2015, 15, 4564
dc.identifier.citedreferenceY. Liu, Y. Park, S. E. Lee, Appl. Phys. Lett. 2016, 109, 013109.
dc.identifier.citedreferenceS. E. Lee, L. P. Lee, Curr. Opin. Biotech. 2010, 24, 489.
dc.identifier.citedreferenceS. E. Lee, L. P. Lee, Curr. Opin. Chem. Biol. 2010, 14, 623.
dc.identifier.citedreferenceC. L. Nehl, H. Liao, J. H. Hafner, Nano Lett. 2006, 6, 683.
dc.identifier.citedreferenceO. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, C. Sönnichsen, Nano Lett. 2008, 8, 2345.
dc.identifier.citedreferenceA. S. Stender, G. Wang, W. Sun, N. Fang, ACS Nano 2010, 4, 7667.
dc.identifier.citedreferenceX. Cheng, D. Dai, D. Xu, Y. He, E. S. Yeung, Anal. Chem. 2014, 86, 2303.
dc.identifier.citedreferenceK. H. Møller, I. Trabjerg, Infrared Phys. Technol. 2005, 46, 351.
dc.identifier.citedreferenceD. Clarke, Stellar Polarimetry, Wiley, Weinheim, Germany 2010, pp. 139 – 173.
dc.identifier.citedreferenceS. E. S. Spesyvtseva, K. Dholakia, ACS Photonics 2016, 3, 719.
dc.identifier.citedreferenceJ. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, R. Quidant, Nat. Nanotechnol. 2014, 9, 295.
dc.identifier.citedreferenceL. Shao, Z. J. Yang, D. Andrén, P. Johansson, M. Käll, ACS Nano 2015, 9, 12542.
dc.identifier.citedreferenceK. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot‐Sionnest, N. F. Scherer, Opt. Express 2007, 15, 12017.
dc.identifier.citedreferenceY. Y. Tanaka, P. Albella, M. Rahmani, V. Giannini, S. A. Maier, T. Shimura, Sci. Adv. 2020, 6, eabc3726.
dc.identifier.citedreferenceL. Zhang, L. T. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S.‐I. Choi, J. Park, J. A. Herron, Z. Xie, M. Mavrikakis, Y. Xia, Science 2015, 6246, 412.
dc.identifier.citedreferenceR. Jin, Y. C. Cao, E. Hao, G. S. Metraux, G. C. Schatz, C. A. Mirkin, Nature 2003, 425, 487.
dc.identifier.citedreferenceH.‐E. Lee, H.‐Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, K. T. Nam, Nature 2018, 556, 360.
dc.identifier.citedreferenceK. Chandra, K. S. B. Culver, S. E. Werner, R. C. Lee, T. W. Odom, Chem. Mater. 2016, 28, 6763.
dc.identifier.citedreferenceS. E. Lohse, N. D. Burrows, L. Scarabelli, L. M. Liz‐Marzán, C. J. Murphy, Chem. Mater. 2014, 26, 34.
dc.identifier.citedreferenceJ. Schindelin, C. T. Rueden, M. C. Hiner, K. W. Eliceiri, Mol. Reprod. Dev. 2015, 82, 518.
dc.identifier.citedreferenceJ.‐Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, K. W. Eliceiri, Methods 2017, 115, 80.
dc.identifier.citedreferenceJ. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, N. J. Halas, Nano Lett. 2008, 8, 1212.
dc.identifier.citedreferenceM. Atakhorrami, K. M. Addas, C. F. Schmidt, Rev. Sci. Instrum. 2008, 79, 043103.
dc.identifier.citedreferenceS. Tong, B. Moyo, C. M. Lee, K. Leong, G. Bao, Nat. Rev. Mater. 2019, 4, 726.
dc.identifier.citedreferenceO. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, Nat. Nanotechnol. 2013, 8, 807.
dc.identifier.citedreferenceT. A. Klar, S. W. Hell, Opt. Lett. 1999, 24, 954.
dc.identifier.citedreferenceS. W. Hell, M. Kroug, Appl. Phys. B: Lasers Opt. 1995, 60, 495.
dc.identifier.citedreferenceM. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 17565.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.