Show simple item record

FTA: A Feature Tracking Empirical Model of Auroral Precipitation

dc.contributor.authorWu, Chen
dc.contributor.authorRidley, Aaron J.
dc.contributor.authorDeJong, Anna D.
dc.contributor.authorPaxton, Larry J.
dc.date.accessioned2021-06-02T21:08:58Z
dc.date.available2022-06-02 17:08:55en
dc.date.available2021-06-02T21:08:58Z
dc.date.issued2021-05
dc.identifier.citationWu, Chen; Ridley, Aaron J.; DeJong, Anna D.; Paxton, Larry J. (2021). "FTA: A Feature Tracking Empirical Model of Auroral Precipitation." Space Weather 19(5): n/a-n/a.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/167826
dc.description.abstractThe Feature Tracking of Aurora (FTA) model was constructed using 1.5 years of Polar Ultraviolet Imager data and is based on tracking a cumulative energy grid in 96 magnetic local time (MLT) sectors. The equatorward boundary, poleward boundary, and 19 cumulative energy bins are tracked with the energy flux and the latitudinal position. With AE increasing, the equatorward boundary moves to lower latitudes everywhere, while the poleward boundary moves poleward in the 2300–0300 MLT region and equatorward in other MLT sectors. This results in the aurora getting wider on the nightside and becoming narrower on the dayside. The peak intensity of the aurora in each MLT sector is almost linearly related to AE, with the global peak moving from pre‐midnight to post‐midnight as geomagnetic activity increases. Ratios between the Lyman‐Birge‐Hopfield‐long and ‐short models allow the average energy to be calculated. Predictions from the FTA and two other auroral models were compared to the measurements by the Defense Meteorological Satellite Program Special Sensor Ultraviolet Spectrographic Imagers (SSUSI) on March 17, 2013. Among the three models, the FTA model specified the most confined patterns with the highest energy flux, agreeing with the spatial and temporal evolution of SSUSI measurements better and predicted auroral power (AP) better during higher activity levels (SSUSI AP > 20 GW). The Fuller‐Rowell and Evans (1987) and FTA models specified very similar average energy compared with SSUSI measurements, doing slightly better by ∼1 keV than the OVATION Prime model.Key PointsThe AE‐based Feature Tracking of Aurora (FTA) model provides the energy flux and the average energy using 1.5 years of Polar Ultraviolet Imager dataThe FTA model’s grid is tied to auroral boundaries and spatial distribution: tracking a cumulative energy grid in each magnetic local time sectorFor the March 17, 2013 event, the FTA model had the most confined patterns and agreed best with Special Sensor Ultraviolet Spectrographic Imagers observations of auroral power
dc.publisherAmerican Geophysical Union (AGU)
dc.publisherWiley Periodicals, Inc.
dc.subject.otherM‐I coupling
dc.subject.otherdata‐model comparisons
dc.subject.othercumulative energy bins
dc.subject.otherauroral precipitation model
dc.subject.otherstatistical analyses
dc.titleFTA: A Feature Tracking Empirical Model of Auroral Precipitation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167826/1/swe21144.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167826/2/swe21144_am.pdf
dc.identifier.doi10.1029/2020SW002629
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., & Wing, S. ( 2010 ). Seasonal variations in diffuse, monoenergetic, and broadband aurora. Journal of Geophysical Research, 115 ( A3 ), A03216. https://doi.org/10.1029/2009JA014805
dc.identifier.citedreferenceNewell, P. T., Liou, K., Zhang, Y., Sotirelis, T., Paxton, L. J., & Mitchell, E. J. ( 2014 ). OVATION Prime‐2013: Extension of auroral precipitation model to higher disturbance levels. Space Weather, 12 ( 6 ), 368 – 379. https://doi.org/10.1002/2014SW001056
dc.identifier.citedreferenceNewell, P. T., Liou, K., Zhang, Y., Sotirelis, T. S., Paxton, L. J., & Mitchell, E. J. ( 2015 ). Auroral precipitation models and space weather. In Auroral Dynamics and Space Weather. American Geophysical Union (AGU), 275 – 290. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/9781118978719.ch18
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., Liou, K., Lee, A. R., Wing, S., Green, J., & Redmon, R. ( 2010 ). Predictive ability of four auroral precipitation models as evaluated using polar UVI global images. Space Weather, 8 ( 12 ). https://doi.org/10.1029/2010sw000604
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., Liou, K., Meng, C.‐I., & Rich, F. J. ( 2007 ). A nearly universal solar wind‐magnetosphere coupling function inferred from 10 magnetospheric state variables. Journal of Geophysical Research, 112 ( A1 ), A01206. https://doi.org/10.1029/2006JA012015
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., & Wing, S. ( 2009 ). Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. Journal of Geophysical Research, 114 ( A9 ), A09207. https://doi.org/10.1029/2009JA014326
dc.identifier.citedreferenceNishimura, Y., Lessard, M. R., Katoh, Y., Miyoshi, Y., Grono, E., Partamies, N., et al. ( 2020 ). Diffuse and pulsating aurora. Space Science Reviews, 216 ( 1 ), 4. https://doi.org/10.1007/s11214-019-0629-3
dc.identifier.citedreferencePaschmann, G., Haaland, S., & Treumann, R. ( 2012 ). Auroral Plasma Physics (Vol. 15, pp. 21 – 39 ). Springer Science & Business Media.
dc.identifier.citedreferencePaxton, L. J., & Meng, C.‐I. ( 1999 ). Auroral imaging and space‐based optical remote sensing. Johns Hopkins APL Technical Digest, 20 ( 4 ), 556 – 569.
dc.identifier.citedreferencePaxton, L. J., Meng, C.‐I., Fountain, G. H., Ogorzalek, B. S., Darlington, E. H., Gary, S. A., et al. ( 1992 ). Special sensor ultraviolet spectrographic imager: An instrument description. In S. Chakrabarti, & A. B. Christensen, (Eds.), Instrumentation for planetary and terrestrial atmospheric remote sensing (Vol. 1745, pp. 2 – 15 ). https://doi.org/10.1117/12.60595
dc.identifier.citedreferencePaxton, L. J., Meng, C.‐I., Fountain, G. H., Ogorzalek, B. S., Darlington, E. H., Gary, S. A., et al. ( 1993 ). SSUSI: Horizon‐to‐horizon and limb‐viewing spectrographic imager for remote sensing of environmental parameters. In R. E. Huffman, (Ed.), Ultraviolet technology iv (Vol. 1764, pp. 161 – 176 ). SPIE. https://doi.org/10.1117/12.140846
dc.identifier.citedreferencePaxton, L. J., Schaefer, R. K., Zhang, Y., & Kil, H. ( 2017 ). Far ultraviolet instrument technology. Journal of Geophysical Research, 122 ( 2 ), 2706 – 2733. https://doi.org/10.1002/2016JA023578
dc.identifier.citedreferencePytte, T., McPherron, R. L., Hones, Jr. E. W., West, Jr. H. I. ( 1978 ). Multiple‐satellite studies of magnetospheric substorms: Distinction between polar magnetic substorms and convection‐driven negative bays. Journal of Geophysical Research, 83 ( A2 ), 663 – 679. https://doi.org/10.1029/JA083iA02p00663
dc.identifier.citedreferenceRedmon, R. J., Peterson, W. K., Andersson, L., Kihn, E. A., Denig, W. F., Hairston, M., & Coley, R. ( 2010 ). Vertical thermal o+ flows at 850 km in dynamic auroral boundary coordinates. Journal of Geophysical Research, 115 ( A11). https://doi.org/10.1029/2010JA015589
dc.identifier.citedreferenceRich, F., & Hairston, M. ( 1994 ). Large‐scale convection patterns observed by DMSP. Journal of Geophysical Research, 99, 3827 – 3844. https://doi.org/10.1029/93ja03296
dc.identifier.citedreferenceRostoker, G. ( 1991 ). A quantitative relationship between AE and Kp. Journal of Geophysical Research, 96 ( A4 ), 5853 – 5857. https://doi.org/10.1029/90JA02752
dc.identifier.citedreferenceSandahl, I., Sergienko, T., & Brändström, U. ( 2008 ). Fine structure of optical aurora. Journal of Atmospheric and Solar‐Terrestrial Physics, 70 ( 18 ), 2275 – 2292. https://doi.org/10.1016/j.jastp.2008.08.016
dc.identifier.citedreferenceSotirelis, T., & Newell, P. T. ( 2000 ). Boundary‐oriented electron precipitation model. Journal of Geophysical Research, 105 ( A8 ), 18655 – 18673. https://doi.org/10.1029/1999ja000269
dc.identifier.citedreferenceStrickland, D. J., Jasperse, J. R., & Whallen, J. A. ( 1983 ). Dependence of auroral FUV emissions on the incident electron spectrum and neutral atmosphere. Journal of Geophysical Research, 88 ( A10 ), 8051 – 8062. https://doi.org/10.1029/JA088iA10p08051
dc.identifier.citedreferenceTorr, M. R., Torr, D. G., Zukic, M., Johnson, R. B., Ajello, J., Banks, P., & Spann, J. ( 1995 ). A far ultraviolet imager for the international solar‐terrestrial physics mission. Space Science Reviews, 71 ( 1–4 ), 329 – 383. https://doi.org/10.1007/BF00751335
dc.identifier.citedreferenceWalach, M. T., Milan, S. E., Murphy, K. R., Carter, J. A., Hubert, B. A., & Grocott, A. ( 2017 ). Comparative study of large‐scale auroral signatures of substorms, steady magnetospheric convection events, and sawtooth events. Journal of Geophysical Research, 122 ( 6 ), 6357 – 6373. https://doi.org/10.1002/2017JA023991
dc.identifier.citedreferenceWang, Q., Meng, Q., Hu, Z., Xing, Z., Liang, J., & Hu, H. ( 2011 ). Extraction of auroral oval boundaries from uvi images: A new flicm clustering‐based method and its evaluation. Advances in Polar Science, 22 ( 3‐English ), 184 – 191.
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ). Improved ionospheric electrodynamic models and application to calculating joule heating rates. Journal of Geophysical Research, 110, 05306. https://doi.org/10.1029/2004JA010884
dc.identifier.citedreferenceZhang, Y., & Paxton, L. ( 2008 ). An empirical kp‐dependent global auroral model based on timed/guvi fuv data. Journal of Atmospheric and Solar‐Terrestrial Physics, 70 ( 8 ), 1231 – 1242. https://doi.org/10.1016/j.jastp.2008.03.008
dc.identifier.citedreferenceZhu, Q., Deng, Y., Richmond, A., Maute, A., Chen, Y.‐J., Hairston, M., & Mitchell, E. ( 2020 ). Impacts of binning methods on high‐latitude electrodynamic forcing: Static versus boundary‐oriented binning methods. Journal of Geophysical Research, 125 ( 1 ), e27270. https://doi.org/10.1029/2019JA027270
dc.identifier.citedreferenceAkasofu, S.‐I. ( 1966 ). The auroral oval, the auroral substorm, and their relations with the internal structure of the magnetosphere. Planetary and Space Science, 14 ( 7 ), 587 – 595. https://doi.org/10.1016/0032-0633(66)90043-2
dc.identifier.citedreferenceBaker, J. B., Clauer, C. R., Ridley, A. J., Papitashvili, V. O., Brittnacher, M. J., & Newell, P. T. ( 2000 ). The nightside poleward boundary of the auroral oval as seen by DMSP and the ultraviolet imager. Journal of Geophysical Research, 105 ( A9 ), 21267 – 21280. https://doi.org/10.1029/1999ja000363
dc.identifier.citedreferenceBorovsky, J. E., Suszcynsky, D. M., Buchwald, M. I., & DeHaven, H. V. ( 1991 ). Measuring the thicknesses of auroral curtains. Arctic, 231 – 238.
dc.identifier.citedreferenceBrautigam, D. H., Gussenhoven, M. S., & Hardy, D. A. ( 1991 ). A statistical study on the effects of IMFBzand solar wind speed on auroral ion and electron precipitation. Journal of Geophysical Research, 96 ( A4 ), 5525 – 5538. https://doi.org/10.1029/91ja00157
dc.identifier.citedreferenceBrittnacher, M., Elsen, R., Parks, G., Chen, L., Germany, G., & Spann, J. ( 1997 ). A dayside auroral energy deposition case study using the Polar Ultraviolet Imager. Geophysical Research Letters, 24 ( 8 ), 991 – 994. https://doi.org/10.1029/97GL00257
dc.identifier.citedreferenceBrittnacher, M., Fillingim, M., Parks, G., Germany, G., & Spann, J. ( 1999 ). Polar cap area and boundary motion during substorms. Journal of Geophysical Research, 104 ( A6 ), 12251 – 12262. https://doi.org/10.1029/1998JA900097
dc.identifier.citedreferenceCai, X., & Clauer, C. R. ( 2013 ). Magnetospheric sawtooth events during the solar cycle 23. Journal of Geophysical Research: Space Physics, 118 ( 10 ), 6378 – 6388. https://doi.org/10.1002/2013JA018819
dc.identifier.citedreferenceCarbary, J. F. ( 2005 ). AKp‐based model of auroral boundaries. Space Weather, 3 ( 10 ). https://doi.org/10.1029/2005SW000162
dc.identifier.citedreferenceCarbary, J. F., Sotirelis, T., Newell, P. T., & Meng, C. I. ( 2003 ). Auroral boundary correlations between UVI and DMSP. Journal of Geophysical Research, 108 ( A1 ), 1018. https://doi.org/10.1029/2002JA009378
dc.identifier.citedreferenceCarter, J. A., Milan, S. E., Coxon, J. C., Walach, M. T., & Anderson, B. J. ( 2016 ). Average field‐aligned current configuration parameterized by solar wind conditions. Journal of Geophysical Research: Space Physics, 121 ( 2 ), 1294 – 1307. https://doi.org/10.1002/2015ja021567
dc.identifier.citedreferenceChisham, G. ( 2017 ). A new methodology for the development of high‐latitude ionospheric climatologies and empirical models. Journal of Geophysical Research: Space Physics, 122 ( 1 ), 932 – 947. https://doi.org/10.1002/2016JA023235
dc.identifier.citedreferenceDeJong, A. D., Bell, J. M., & Ridley, A. ( 2018 ). Comparison of the ionosphere during an SMC initiating substorm and an isolated substorm. Journal of Geophysical Research: Space Physics, 123 ( 6 ), 4939 – 4951. https://doi.org/10.1029/2017ja025055
dc.identifier.citedreferenceDeJong, A. D., Ridley, A. J., Cai, X., & Clauer, C. R. ( 2009 ). A statistical study of BRIs (SMCs), isolated substorms, and individual sawtooth injections. Journal of Geophysical Research, 114 ( A8 ). https://doi.org/10.1029/2008JA013870, A08215
dc.identifier.citedreferenceDing, G. X., He, F., Zhang, X. X., & Chen, B. ( 2017 ). A new auroral boundary determination algorithm based on observations from TIMED/GUVI and DMSP/SSUSI. Journal of Geophysical Research: Space Physics, 122 ( 2 ), 2162 – 2173. https://doi.org/10.1002/2016JA023295
dc.identifier.citedreferenceElphic, R. C., Bonnell, J. W., Strangeway, R. J., Kepko, L., Ergun, R. E., McFadden, J. P., et al. ( 1998 ). The auroral current circuit and field‐aligned currents observed by FAST. Geophysical Research Letters, 25 ( 12 ), 2033 – 2036. https://doi.org/10.1029/98GL01158
dc.identifier.citedreferenceEmery, B. A., Evans, D. S., Greer, M. S., Holeman, E., Kadinsky‐Cade, K., Rich, F. J., & Xu, W. ( 2006 ). The low energy auroral electron and ion hemispheric power after NOAA and DMSP intersatellite adjustments. Tech. Note NCAR/TN‐470+ STR.
dc.identifier.citedreferenceFeldstein, Y. I. ( 1973 ). Auroral oval. Journal of Geophysical Research, 78 ( 7 ), 1210 – 1213. https://doi.org/10.1029/JA078i007p01210
dc.identifier.citedreferenceForsyth, C., Sergeev, V. A., Henderson, M. G., Nishimura, Y., & Gallardo‐Lacourt, B. ( 2020 ). Physical processes of meso‐scale, dynamic auroral forms. Space Science Reviews, 216 ( 4 ), 46. https://doi.org/10.1007/s11214-020-00665-y
dc.identifier.citedreferenceFrank, L. A., & Craven, J. D. ( 1988 ). Imaging results from dynamics explorer 1. Reviews of Geophysics, 26 ( 2 ), 249 – 283. https://doi.org/10.1029/RG026i002p00249
dc.identifier.citedreferenceFrey, H. U. ( 2007 ). Localized aurora beyond the auroral oval. Reviews of Geophysics, 45 ( 1 ). https://doi.org/10.1029/2005rg000174
dc.identifier.citedreferenceFrey, H. U., Mende, S. B., Angelopoulos, V., & Donovan, E. F. ( 2004 ). Substorm onset observations by IMAGE‐FUV. Journal of Geophysical Research, 109 ( A10 ), A10304. https://doi.org/10.1029/2004JA010607
dc.identifier.citedreferenceFuller‐Rowell, T. J., & Evans, D. S. ( 1987 ). Height‐integrated Pedersen and Hall conductivity patterns inferred from the TIROS‐NOAA satellite data. Journal of Geophysical Research, 92 ( A7 ), 7606 – 7618. https://doi.org/10.1029/JA092iA07p07606
dc.identifier.citedreferenceGermany, G. A., Parks, G. K., Ranganath, H., Elsen, R., Richards, P. G., Swift, W., et al. ( 1998 ). Analysis of auroral morphology: Substorm precursor and onset on January 10, 1997. Geophysical Research Letters, 25 ( 15 ), 3043 – 3046. https://doi.org/10.1029/98gl01220
dc.identifier.citedreferenceGermany, G. A., Torr, D. G., Richards, P. G., Torr, M. R., & John, S. ( 1994 ). Determination of ionospheric conductivities from FUV auroral emissions. Journal of Geophysical Research, 99 ( A12 ), 23297 – 23306. https://doi.org/10.1029/94JA02038
dc.identifier.citedreferenceHardy, D. A., Gussenhoven, M. S., & Holeman, E. ( 1985 ). A statistical model of auroral electron precipitation. Journal of Geophysical Research, 90 ( A5 ), 4229 – 4248. https://doi.org/10.1029/JA090iA05p04229
dc.identifier.citedreferenceHartigan, J. A., & Wong, M. A. ( 1979 ). Algorithm as 136: A k‐means clustering algorithm. Applied Statistics, 28 ( 1 ), 100 – 108. https://doi.org/10.2307/2346830
dc.identifier.citedreferenceHenderson, M. G. ( 2004 ). The May 2‐3, 1986 CDAW‐9C interval: A sawtooth event. Geophysical Research Letters, 31 ( 11 ), L11804. https://doi.org/10.1029/2004GL019941
dc.identifier.citedreferenceHeppner, J. P., & Maynard, N. C. ( 1987 ). Empirical high‐latitude electric field models. Journal of Geophysical Research, 92, 4467. https://doi.org/10.1029/ja092ia05p04467
dc.identifier.citedreferenceKauristie, K., Weygand, J., Pulkkinen, T. I., Murphree, J. S., & Newell, P. T. ( February 1999 ). Size of the auroral oval: UV ovals and precipitation boundaries compared. Journal of Geophysical Research, 104 ( A2 ), 2321 – 2331. https://doi.org/10.1029/1998JA900046
dc.identifier.citedreferenceKilcommons, L. M., Redmon, R. J., & Knipp, D. J. ( 2017 ). A new DMSP magnetometer and auroral boundary data set and estimates of field‐aligned currents in dynamic auroral boundary coordinates. Journal of Geophysical Research: Space Physics, 122 ( 8 ), 9068 – 9079. https://doi.org/10.1002/2016JA023342
dc.identifier.citedreferenceKorth, H., Anderson, B. J., Frey, H. U., Immel, T. J., & Mende, S. B. ( 2004 ). Conditions governing localized high‐latitude dayside aurora. Geophysical Research Letters, 31 ( 4 ). https://doi.org/10.1029/2003gl018911
dc.identifier.citedreferenceKorth, H., Zhang, Y., Anderson, B. J., Sotirelis, T., & Waters, C. L. ( 2014 ). Statistical relationship between large‐scale upward field‐aligned currents and electron precipitation. Journal of Geophysical Research: Space Physics, 119 ( 8 ), 6715 – 6731. https://doi.org/10.1002/2014JA019961
dc.identifier.citedreferenceLandry, R. G., & Anderson, P. C. ( 2018 ). An auroral boundary‐oriented model of subauroral polarization streams (SAPS). Journal of Geophysical Research: Space Physics, 123 ( 4 ), 3154 – 3169. https://doi.org/10.1002/2017JA024921
dc.identifier.citedreferenceLiou, K., Newell, P. T., Meng, C.‐I., Brittnacher, M., & Parks, G. ( 1997 ). Synoptic auroral distribution: A survey using Polar ultraviolet imagery. Journal of Geophysical Research, 102 ( A12 ), 27197 – 27205. https://doi.org/10.1029/97JA02638
dc.identifier.citedreferenceLiou, K., Newell, P. T., Sibeck, D. G., Meng, C.‐I., Brittnacher, M., & Parks, G. ( 2001 ). Observation of IMF and seasonal effects in the location of auroral substorm onset. Journal of Geophysical Research, 106 ( A4 ), 5799 – 5810. https://doi.org/10.1029/2000JA003001
dc.identifier.citedreferenceLuan, X., Zhou, S., & Dou, X. ( 2018 ). Auroral energy flux distribution over the nightside auroral oval observed by the DMSP F16/SSUSI: Seasonal, geomagnetic, and solar activity dependences. Journal of Geophysical Research: Space Physics, 123 ( 5 ), 4457 – 4466. https://doi.org/10.1029/2017JA023970
dc.identifier.citedreferenceLui, A. T. Y., Venkatesan, D., & Murphree, J. S. ( 1989 ). Auroral bright spots on the dayside oval. Journal of Geophysical Research, 94 ( A5 ), 5515 – 5522. https://doi.org/10.1029/JA094iA05p05515
dc.identifier.citedreferenceMaggs, J. E., & Davis, T. N. ( 1968 ). Measurements of the thicknesses of auroral structures. Planetary and Space Science, 16 ( 2 ). 205,IN1,207‐206,IN2,209. https://doi.org/10.1016/0032-0633(68)90069-X
dc.identifier.citedreferenceMende, S. B. ( 2016 ). Observing the magnetosphere through global auroral imaging: 2. Observing techniques. Journal of Geophysical Research: Space Physics, 121 ( 10 ), 10638 – 10660. https://doi.org/10.1002/2016JA022607
dc.identifier.citedreferenceMilan, S. E. ( 2009 ). Both solar wind‐magnetosphere coupling and ring current intensity control of the size of the auroral oval. Geophysical Research Letters, 36 ( 18 ). https://doi.org/10.1029/2009gl039997
dc.identifier.citedreferenceMilan, S. E., Hutchinson, J., Boakes, P. D., & Hubert, B. ( 2009 ). Influences on the radius of the auroral oval. Annales Geophysicae, 27 ( 7 ), 2913 – 2924. https://doi.org/10.5194/angeo-27-2913-2009
dc.identifier.citedreferenceMitchell, E. J., Newell, P. T., Gjerloev, J. W., & Liou, K. ( 2013 ). Ovation‐sm: A model of auroral precipitation based on supermag generalized auroral electrojet and substorm onset times. Journal of Geophysical Research: Space Physics, 118 ( 6 ), 3747 – 3759. https://doi.org/10.1002/jgra.50343
dc.identifier.citedreferenceMooney, M. K., Forsyth, C., Rae, I. J., Chisham, G., Coxon, J. C., Marsh, M. S., et al. ( 2020 ). Examining local time variations in the gains and losses of open magnetic flux during substorms. Journal of Geophysical Research: Space Physics, 125 ( 4 ), e27369. https://doi.org/10.1029/2019JA027369
dc.identifier.citedreferenceMurphy, K. R., Mann, I. R., Rae, I. J., Waters, C. L., Frey, H. U., Kale, A., et al. ( 2013 ). The detailed spatial structure of field‐aligned currents comprising the substorm current wedge. Journal of Geophysical Research: Space Physics, 118 ( 12 ), 7714 – 7727. https://doi.org/10.1002/2013ja018979
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.