Show simple item record

Physics‐Based Analytical Model of the Planetary Bow Shock Position and Shape

dc.contributor.authorKotova, G.
dc.contributor.authorVerigin, M.
dc.contributor.authorGombosi, T.
dc.contributor.authorKabin, K.
dc.contributor.authorSlavin, J.
dc.contributor.authorBezrukikh, V.
dc.date.accessioned2021-06-02T21:09:30Z
dc.date.available2022-07-02 17:09:28en
dc.date.available2021-06-02T21:09:30Z
dc.date.issued2021-06
dc.identifier.citationKotova, G.; Verigin, M.; Gombosi, T.; Kabin, K.; Slavin, J.; Bezrukikh, V. (2021). "Physics‐Based Analytical Model of the Planetary Bow Shock Position and Shape." Journal of Geophysical Research: Space Physics 126(6): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/167836
dc.description.abstractIn studies of physical processes near planetary bow shocks, empirical models of the latter are usually used. While computational magneto‐hydrodynamics (MHD) or kinetic models of bow shocks are often more accurate, their computationally extensive nature limits their applicability to routine analysis of large volumes of data. We suggest an analytical model of the bow shock position based on MHD calculations and accurate analytical solutions. The analytical expressions for the bow shock position and shape include the following parameters: The distance of the bow shock nose point from the planet, radii of curvature and bluntnesses of the shock surface at this point and a parameter describing the transition to the asymptotic downstream slope of the shock. It is shown that for an analytical description of the surface of the shock, it is sufficient to approximate its radius of curvature and bluntness in two perpendicular planes. Another parameter used in this model is the bow shock skewing angle, appearing when the interplanetary magnetic field directed at an angle with respect to the solar wind velocity. This parameter naturally vanishes when the magnetic field of the solar wind is directed either parallel or perpendicular to the velocity vector. The exact analytical solution for the asymptotic downstream slope of the MHD Mach cone is modified to take into account the skewing angle of the bow shock.Plain Language SummaryThe solar wind is a stream of charged particles emitted by the Sun. The interplanetary magnetic field embedded in the solar wind is the solar magnetic field dragged out from the solar corona. Bulk velocity of the solar wind is higher than sonic velocity and higher than the velocity of Alfven waves. Planets with their magnetospheres and ionospheres create obstacles to the solar wind flow, and in front of planetary magnetosphere, bow shock forms, similar to the shock wave formation ahead of a supersonic aircraft. To study many physical processes in the vicinity of planets, it is necessary to have a useful physical model of the position and shape of the bow shock. Magneto‐hydrodynamics (MHD) and kinetic simulations provide accurate models but they are too computationally extensive. To analyze experimental data empirical models are mainly used, but they are not equally accurate in all space. We suggest an analytical model of the bow shock position and shape based on MHD calculations and accurate analytical solutions. This model is easy to use and describes the bow shock well near the planet and far downstream.Key PointsFor an arbitrary direction of the interplanetary magnetic field, the bow shock nose is skewed from the direction of the solar wind flowAsymptotic bow shock slope downstream from the planet in magneto‐hydrodynamics approximation is calculated analytically in the skewed reference frameAnalytical expressions are obtained for the bow shock parameters as functions of the solar wind parameters
dc.publisherPergamon Press
dc.publisherWiley Periodicals, Inc.
dc.titlePhysics‐Based Analytical Model of the Planetary Bow Shock Position and Shape
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167836/1/jgra56468.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167836/2/jgra56468_am.pdf
dc.identifier.doi10.1029/2021JA029104
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceVerigin, M., Kotova, G., Szabo, A., Slavin, J., Gombosi, T., Kabin, K., et al. ( 2001 ). Wind observations of the terrestrial bow shock 3‐D shape and motion. Earth Planets and Space, 53 ( 10 ), 1001 – 1009. https://doi.org/10.1186/bf03351697
dc.identifier.citedreferenceNĕmeček, Z., & Šafránková, J. ( 1991 ). The Earth’s bow shock and magnetopause position as a result of solar wind‐magnetosphere interaction. Journal of Atmospheric and Terrestrial Physics, 53, 1049 – 1054
dc.identifier.citedreferencePeredo, M., Slavin, J. A., Mazur, E., & Curtis, S. A. ( 1995 ). Three‐dimensional position and shape of the bow shock and their variation with Alfvénic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation. Journal of Geophysical Research: Space Physics, 100 ( A5 ), 7907 – 7916. https://doi.org/10.1029/94ja02545
dc.identifier.citedreferencePetrinec, S. M., & Russell, C. T. ( 1997 ). Hydrodynamic and MHD equations across the bow shock and along the surfaces of planetary obstacles. Space Science Reviews, 79, 757 – 791. https://doi.org/10.1023/a:1004938724300
dc.identifier.citedreferencePokhotelov, D., von Alfthan, S., Kempf, Y., Vainio, R., Koskinen, H. E. J., & Palmroth, M. ( 2013 ). Ion distributions upstream and downstream of the Earth’s bow shock: first results from Vlasiator. Annales Geophysicae, 31, 2207 – 2212. https://doi.org/10.5194/angeo-31-2207-2013
dc.identifier.citedreferenceSlavin, J. A., & Holzer, R. E. ( 1981 ). Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape. Journal of Geophysical Research: Space Physics, 86 ( A13 ), 11401 – 11418. https://doi.org/10.1029/ja086ia13p11401
dc.identifier.citedreferenceSlavin, J. A., Holzer, R. E., Spreiter, J. R., & Stahara, S. S. ( 1984 ). Planetary Mach cones: Theory and observation. Journal of Geophysical Research: Space Physics, 89, 2708. https://doi.org/10.1029/ja089ia05p02708
dc.identifier.citedreferenceStahara, S. S. ( 2002 ). Adventures in the magnetosheath: Two decades of modeling and planetary applications of the Spreiter magnetosheath model. Planetary and Space Science, 50, 421 – 442. https://doi.org/10.1016/S0032-0633(02)00023-5
dc.identifier.citedreferenceVerigin, M., Kotova, G., Shutte, N., Remizov, A., Szegö, K., Tátrallyay, M., et al. ( 1997 ). Quantitative model of the Martian magnetopause shape and its variation with the solar wind ram pressure based on Phobos 2 observations. Journal of Geophysical Research: Space Physics, 102 ( A2 ), 2147 – 2155. https://doi.org/10.1029/96ja01460
dc.identifier.citedreferenceVerigin, M., Slavin, J., Szabo, A., Gombosi, T., Kotova, G., Plochova, O., et al. ( 2003 ). Planetary bow shocks: Gasdynamic analytic approach. Journal of Geophysical Research: Space Physics, 108 ( A8 ), 1323. https://doi.org/10.1029/2002JA009711
dc.identifier.citedreferenceVerigin, M., Slavin, J., Szabo, A., Kotova, G., & Gombosi, T. ( 2003 ). Planetary bow shocks: Asymptotic MHD Mach cones. Earth Planets and Space, 55, 33 – 38. https://doi.org/10.1186/bf03352460
dc.identifier.citedreferenceVerigin, M., Vignes, D., Crider, D., Slavin, J., Acuña, M., Kotova, G., & Remizov, A. ( 2004 ). Martian obstacle and bow shock: origins of boundaries anisotropy. Advances in Space Research, 33 ( 12 ), 2222 – 2227. https://doi.org/10.1016/s0273-1177(03)00522-2
dc.identifier.citedreferenceVerigin, M. I. ( 2004 ). Position and shape of near planetary bow shocks: Gasdynamic and MHD aspects. In B. M. Shevtsov (Ed.), Solar‐terrestrial connections and electromagnetic precursors of earthquakes: Proceedings of III Intern. conf. (pp. 49 – 69 ). Kamchatka region, 16–21 August 2004/. – Petropavlovsk‐Kamchatsky: IKIR FEB RAS, (in Russian).
dc.identifier.citedreferenceVerigin, M. I., Kotova, G. A., & Bezrukikh, V. V. ( 2018 ). Geomagnetopause position and shape dependence on solar wind plasma and IMF parameters Analytic model comparison with observations and 3‐D MHD runs. In C. Foullon, & O. E. Malandraki (Eds.), Proceedings IAU Symposium No (Vol. 13, pp. 121 – 124 ). 2017. https://doi.org/10.1017/S1743921317010420
dc.identifier.citedreferenceVerigin, M. I., Kotova, G. A., Bezrukikh, V. V., Zastenker, G. N., & Nikolaeva, N. ( 2009 ). Analytical model of the near‐Earth magnetopause according to the data of the Prognoz and Interball satellite data. Geomagnetism and Aeronomy, 49 ( 8 ), 1176 – 1181. https://doi.org/10.1134/S0016793209080283
dc.identifier.citedreferenceVerigin, M. I., Kotova, G. A., Remizov, A. P., Shutte, N. M., Schwingenschuh, K., Riedler, W., et al. ( 1997 ). Studies of the Martian bow shock response to the variation of the magnetosphere dimensions according to TAUS and MAGMA measurements aboard the PHOBOS 2 orbiter. Advances in Space Research, 20 ( 2 ), 155 – 158. https://doi.org/10.1016/s0273-1177(97)00526-7
dc.identifier.citedreferenceVerigin, M. I., Kotova, G. A., Remizov, A. P., Styashkin, V. A., Shutte, N. M., Zhang, T.‐L., et al. ( 1999 ). Shape and location of planetary bow shocks. Cosmic Research, 37 ( 1 ), 34 – 39.
dc.identifier.citedreferenceVerigin, M. I., Kotova, G. A., Slavin, J., Szabo, A., Kessel, M., Safrankova, J., et al. ( 2001 ). Analysis of the 3‐D shape of the terrestrial bow shock by Interball/Magion 4 observations. Advances in Space Research, 28 ( 6 ), 857 – 862. https://doi.org/10.1016/s0273-1177(01)00502-6
dc.identifier.citedreferenceVerigin, M. I., Slavin, J., Szabo, A., Kotova, G. A., Remizov, A. P., Rosenbauer, H., et al. ( 2004 ). Unusually distant bow shock encounters at Mars: Analysis of March 24, 1989 event. Space Science Reviews, 111, 233 – 243. https://doi.org/10.1023/b:spac.0000032713.86796.d1
dc.identifier.citedreferenceWallis, M. K. ( 1973 ). Weakly‐shocked flows of the solar wind plasma through atmospheres of comets and planets. Planetary and Space Science, 21, 1647 – 1660. https://doi.org/10.1016/0032-0633(73)90156-6
dc.identifier.citedreferenceWang, M., Lu, J. Y., Kabin, K., Yuan, H. Z., Zhou, Y., & Guan, H. Y. ( 2020 ). Influence of the interplanetary magnetic field cone angle on the geometry of bow shocks. Astronomical Journal, 159 ( 5 ), 227. https://doi.org/10.3847/1538-3881/ab86a7
dc.identifier.citedreferenceWinterhalter, D., Kivelson, M. G., Walker, R. J., & Russell, C. T. ( 1984 ). The MHD Rankine‐Hugoniot jump conditions and the terrestrial bow shock: A statistical comparison. Advances in Space Research, 4 ( 2–3 ), 287 – 292. https://doi.org/10.1016/0273-1177(84)90323-5
dc.identifier.citedreferenceBieber, J. W., & Stone, E. C. ( 1979 ). Energetic electron bursts in the magnetopause electron layer and in interplanetary space. In Magnetospheric boundary layers – A Sydney chapman conference (p. 131 ). ESA SP‐148.
dc.identifier.citedreferenceBiermann, L., Brosowski, B., & Schmidt, H. U. ( 1967 ). The interaction of the solar wind with a comet. Solar Physics, 1, 254 – 284. https://doi.org/10.1007/bf00150860
dc.identifier.citedreferenceBrecht, S. H. ( 1997 ). Hybrid simulations of the magnetic topology of Mars. Journal of Geophysical Research: Space Physics, 102, 4743 – 4750. https://doi.org/10.1029/96ja03205
dc.identifier.citedreferenceCairns, I. H., & Lyon, J. G. ( 1995 ). MHD simulations of Earth’s bow shock at low Mach numbers: Standoff distances. Journal of Geophysical Research: Space Physics, 100 ( A9 ), 17173 – 17180. https://doi.org/10.1029/95ja00993
dc.identifier.citedreferenceChao, J. K., Wu, D. J., Lin, C.‐H., Yang, Y.‐H., Wang, X. Y., Kessel, M., et al. ( 2002 ). Models for the size and shape of the Earth’s magnetopause and bow shock. In L.‐H. Lyu (Ed.), Space weather study using multipoint techniques (pp. 360 – 368 ). Pergamon Press.
dc.identifier.citedreferenceChapman, J. F., & Cairns, I. H. ( 2003 ). Three‐dimensional modeling of Earth’s bow shock: Shock shape as a function of Alfvén Mach number. Journal of Geophysical Research: Space Physics, 108 ( A5 ), 1174. https://doi.org/10.1029/2002JA009569
dc.identifier.citedreferenceChapman, J. F., Cairns, I. H., Lyon, J. G., & Boshuizen, C. R. ( 2004 ). MHD simulations of Earth’s bow shock: Interplanetary magnetic field orientation effects on shape and position. Journal of Geophysical Research: Space Physics, 109, A04215. https://doi.org/10.1029/2003JA010235
dc.identifier.citedreferenceDmitriev, A. V., Chao, J. K., & Wu, D.‐J. ( 2003 ). Comparative study of bow shock models using Wind and Geotail observations. Journal of Geophysical Research: Space Physics, 108 ( A12 ), 1464. https://doi.org/10.1029/2003JA010027
dc.identifier.citedreferenceFairfield, D. H. ( 1971 ). Average and unusual locations of the Earth’s magnetopause and bow shock. Journal of Geophysical Research: Space Physics, 76 ( 28 ), 6700 – 6716. https://doi.org/10.1029/ja076i028p06700
dc.identifier.citedreferenceFairfield, D. H., Iver, H. C., Desch, M. D., Szabo, A., Lazarus, A. J., & Aellig, M. R. ( 2001 ). The location of low Mach number bow shocks at Earth. Journal of Geophysical Research: Space Physics, 106 ( A11 ), 25361 – 25376. https://doi.org/10.1029/2000ja000252
dc.identifier.citedreferenceFormisano, V. ( 1979 ). Orientation and shape of the Earth’s bow shock in three dimensions. Planetary and Space Science, 27, 1151 – 1161. https://doi.org/10.1016/0032-0633(79)90135-1
dc.identifier.citedreferenceGombosi, T. I. ( 1999 ). Physics of the space environment. Cambridge University Press.
dc.identifier.citedreferenceHall, B. E. S., Sánchez‐Cano, B., Wild, J. A., Lester, M., & Holmström, M. ( 2019 ). The Martian bow shock over solar cycle 23‐24 as observed by the Mars Express Mission. Journal of Geophysical Research: Space Physics, 124, 4761 – 4772. https://doi.org/10.1029/2018JA026404
dc.identifier.citedreferenceJelínek, K., Němeček, Z., & Šafránková, J. ( 2012 ). A new approach to magnetopause and bow shock modeling based on automated region identification. Journal of Geophysical Research: Space Physics, 117, A05208. https://doi.org/10.1029/2011JA017252
dc.identifier.citedreferenceKabin, K. ( 2001 ). A note on the compression ratio in MHD shocks. Journal of Plasma Physics, 66 ( 4 ), 259 – 274. https://doi.org/10.1017/s0022377801001295
dc.identifier.citedreferenceKabin, K., Gombosi, T. I., DeZeeuw, D. L., & Powell, K. G. ( 2000 ). Interaction of Mercury with the solar wind. Icarus, 143, 397 – 406. https://doi.org/10.1006/icar.1999.6252
dc.identifier.citedreferenceKotova, G., Verigin, M., Gomboshi, T., & Kabin, K. ( 2020 ). Analytical model of the planetary bow shock for various magnetic field directions based on MHD calculations. Solar‐Terrestrial Physics, 6 ( 4 ), 44 – 49. https://doi.org/10.12737/stp-64202007
dc.identifier.citedreferenceKotova, G., Verigin, M., Zastenker, G., Nikolaeva, N., Smolkin, B., Slavin, J., et al. ( 2005 ). Bow shock observations by Prognoz‐Prognoz 11 data: analysis and model comparison. Advances in Space Research, 36, 1958 – 1963. https://doi.org/10.1016/j.asr.2004.09.007
dc.identifier.citedreferenceKotova, G. A., Verigin, M. I., & Bezrukikh, V. V. ( 2015 ). Physics‐based reconstruction of the 3‐D density distribution in the entire quiet time plasmasphere from measurements along a single pass of an orbiter. Journal of Geophysical Research: Space Physics, 120, 7512 – 7521. https://doi.org/10.1002/2015JA021281
dc.identifier.citedreferenceKotova, G. A., Verigin, M. I., Gombosi, T., Kabin, K., & Bezrukikh, V. V. ( 2020 ). Analytical description of the near planetary bow shock based on gas‐dynamic and magneto‐gas‐dynamic modeling for the magnetic field parallel and perpendicular to the plasma flow. Geomagnetism and Aeronomy, 60 ( 2 ), 162 – 170. https://doi.org/10.1134/S0016793220020073
dc.identifier.citedreferenceLandau, L. D., & Lifshitz, E. M. ( 1984 ). Electrodynamics of continuous media. Pergamon Press.
dc.identifier.citedreferenceLedvina, S. A., Ma, Y.‐J., & Kallio, E. ( 2008 ). Modeling and simulating flowing plasmas and related phenomena. Space Science Reviews, 139, 143 – 189. https://doi.org/10.1007/s11214-008-9384-6
dc.identifier.citedreferenceLu, J. Y., Zhou, Y., Ma, X., Wang, M., Kabin, K., & Yuan, H. Z. ( 2019 ). Earth’s bow shock: A new three‐dimensional asymmetric model with dipole tilt effects. Journal of Geophysical Research: Space Physics, 124, 5396 – 5407. https://doi.org/10.1029/2018JA026144
dc.identifier.citedreferenceMejnertsen, L., Eastwood, J. P., Hietala, H., Schwartz, S. J., & Chittenden, J. P. ( 2018 ). Global MHD simulations of the Earth’s bow shock shape and motion under variable solar wind conditions. Journal of Geophysical Research: Space Physics, 123, 259 – 271. https://doi.org/10.1002/2017JA024690
dc.identifier.citedreferenceMerka, J., Szabo, A., Narock, T. W., King, J. H., Paularena, K. I., & Richardson, J. D. ( 2003 ). A comparison of IMP 8 observed bow shock positions with model predictions. Journal of Geophysical Research: Space Physics, 108 ( A2 ), 1077. https://doi.org/10.1029/2002JA009384
dc.identifier.citedreferenceMeziane, K., Alrefay, T. Y., & Hamza, A. M. ( 2014 ). On the shape and motion of the Earth’s bow shock. Planetary and Space Science, 93–94, 1 – 9. https://doi.org/10.1016/j.pss.2014.01.006
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.