Show simple item record

Mechanochemical Release of N‐Heterocyclic Carbenes from Flex‐Activated Mechanophores

dc.contributor.authorShen, Hang
dc.contributor.authorLarsen, Michael B.
dc.contributor.authorRoessler, Allison G.
dc.contributor.authorZimmerman, Paul M.
dc.contributor.authorBoydston, Andrew J.
dc.date.accessioned2021-06-02T21:09:34Z
dc.date.available2022-07-02 17:09:32en
dc.date.available2021-06-02T21:09:34Z
dc.date.issued2021-06-07
dc.identifier.citationShen, Hang; Larsen, Michael B.; Roessler, Allison G.; Zimmerman, Paul M.; Boydston, Andrew J. (2021). "Mechanochemical Release of N‐Heterocyclic Carbenes from Flex‐Activated Mechanophores." Angewandte Chemie 133(24): 13671-13675.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/167837
dc.description.abstractWe have discovered a new flex‐activated mechanophore that releases an N‐heterocyclic carbene (NHC) under mechanical load. The mechanophore design is based upon NHC‐carbodiimide (NHC‐CDI) adducts and demonstrates an important first step toward flex‐activated designs capable of further downstream reactivities. Since the flex‐activation is non‐destructive to the main polymer chains, the material can be subjected to multiple compression cycles to achieve iterative increases in the activation percentage of mechanophores. Two different NHC structures were demonstrated, signifying the potential modularity of the mechanophore design.A new kind of flex‐activated mechanophore, N‐heterocyclic carbene–carbodiimide adduct (NHC‐CDI), was developed as a platform to release different NHCs under mechanical load. The polymeric materials containing NHC‐CDI can be subjected to multiple compression cycles and successively release NHCs, which have potential to be utilized as self‐healing, self‐strengthening and self‐reporting materials.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherN-heterocyclic carbene–carbodiimide
dc.subject.othermechanochemistry
dc.subject.othermechanophores
dc.subject.othermechanoresponsive polymers
dc.subject.otherN-heterocyclic carbene
dc.titleMechanochemical Release of N‐Heterocyclic Carbenes from Flex‐Activated Mechanophores
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167837/1/ange202100576-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167837/2/ange202100576.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167837/3/ange202100576_am.pdf
dc.identifier.doi10.1002/ange.202100576
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceA. Márquez, E. Ávila, C. Urbaneja, E. Álvarez, P. Palma, J. Cámpora, Inorg. Chem. 2015, 54, 11007 – 11017.
dc.identifier.citedreferenceY. Chen, A. J. H. Spiering, S. Karthikeyan, G. W. M. Peters, E. W. Meijer, R. P. Sijbesma, Nat. Chem. 2012, 4, 559 – 562.
dc.identifier.citedreferenceY. Sagara, M. Karman, E. Verde-Sesto, K. Matsuo, Y. Kim, N. Tamaoki, C. Weder, J. Am. Chem. Soc. 2018, 140, 1584 – 1587.
dc.identifier.citedreferenceX. Hu, M. E. McFadden, R. W. Barber, M. J. Robb, J. Am. Chem. Soc. 2018, 140, 14073 – 14077.
dc.identifier.citedreferenceT. Kosuge, X. Zhu, V. M. Lau, D. Aoki, T. J. Martinez, J. S. Moore, H. Otsuka, J. Am. Chem. Soc. 2019, 141, 1898 – 1902.
dc.identifier.citedreferenceM. E. McFadden, M. J. Robb, J. Am. Chem. Soc. 2019, 141, 11388 – 11392.
dc.identifier.citedreferenceH. Zhang, D. Zeng, Y. Pan, Y. Chen, Y. Ruan, Y. Xu, R. Boulatov, C. Creton, W. Weng, Chem. Sci. 2019, 10, 8367 – 8373.
dc.identifier.citedreferenceC. E. Diesendruck, B. D. Steinberg, N. Sugai, M. N. Silberstein, N. R. Sottos, S. R. White, P. V. Braun, J. S. Moore, J. Am. Chem. Soc. 2012, 134, 12446 – 12449.
dc.identifier.citedreferenceL. M. Martínez-Prieto, I. Cano, A. Márquez, E. A. Baquero, S. Tricard, L. Cusinato, I. Del Rosal, R. Poteau, Y. Coppel, K. Philippot, B. Chaudret, J. Cámpora, P. W. N. M. Van Leeuwen, Chem. Sci. 2017, 8, 2931 – 2941.
dc.identifier.citedreferenceA. Baishya, L. Kumar, M. K. Barman, H. S. Biswal, S. Nembenna, Inorg. Chem. 2017, 56, 9535 – 9546.
dc.identifier.citedreferenceD. Sánchez-Roa, T. G. Santiago, M. Fernández-Millán, T. Cuenca, P. Palma, J. Cámpora, M. E. G. Mosquera, Chem. Commun. 2018, 54, 12586 – 12589.
dc.identifier.citedreferenceN. M. Gallagher, A. V. Zhukhovitskiy, H. V. T. Nguyen, J. A. Johnson, Macromolecules 2018, 51, 3006 – 3016.
dc.identifier.citedreferenceM. Fèvre, J. Pinaud, Y. Gnanou, J. Vignolle, D. Taton, Chem. Soc. Rev. 2013, 42, 2142 – 2172.
dc.identifier.citedreferenceD. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115, 9307 – 9387.
dc.identifier.citedreferenceS. Naumann, A. P. Dove, Polym. Chem. 2015, 6, 3185 – 3200.
dc.identifier.citedreferenceS. Karthikeyan, S. L. Potisek, A. Piermattei, R. P. Sijbesma, J. Am. Chem. Soc. 2008, 130, 14968 – 14969.
dc.identifier.citedreferenceA. Piermattei, S. Karthikeyan, R. P. Sijbesma, Nat. Chem. 2009, 1, 133 – 137.
dc.identifier.citedreferenceP. Michael, W. H. Binder, Angew. Chem. Int. Ed. 2015, 54, 13918 – 13922; Angew. Chem. 2015, 127, 14124 – 14128.
dc.identifier.citedreferenceJ. M. Clough, A. Balan, T. L. J. Van Daal, R. P. Sijbesma, Angew. Chem. Int. Ed. 2016, 55, 1445 – 1449; Angew. Chem. 2016, 128, 1467 – 1471.
dc.identifier.citedreferenceR. Nixon, G. De Bo, Nat. Chem. 2020, 12, 826 – 831.
dc.identifier.citedreferenceP. M. Zimmerman, J. Comput. Chem. 2015, 36, 601 – 611.
dc.identifier.citedreferenceZ. Li, R. J. Mayer, A. R. Ofial, H. Mayr, J. Am. Chem. Soc. 2020, 142, 8383 – 8402.
dc.identifier.citedreferenceP. Rungthanaphatsophon, A. J. Gremillion, Y. Wang, S. P. Kelley, G. H. Robinson, J. R. Walensky, Inorg. Chim. Acta 2021, 514, 120033.
dc.identifier.citedreferenceB. C. Norris, D. G. Sheppard, G. Henkelman, C. W. Bielawski, J. Org. Chem. 2011, 76, 301 – 304.
dc.identifier.citedreferenceR. Adhikari, D. E. Makarov, J. Phys. Chem. B 2017, 121, 2359 – 2365.
dc.identifier.citedreferenceM. N. Silberstein, L. D. Cremar, B. A. Beiermann, S. B. Kramer, T. J. Martinez, S. R. White, N. R. Sottos, J. Mech. Phys. Solids 2014, 63, 141 – 153.
dc.identifier.citedreferenceA. Levens, F. An, M. Breugst, H. Mayr, D. W. Lupton, Org. Lett. 2016, 18, 3566 – 3569.
dc.identifier.citedreferenceB. Maji, M. Breugst, H. Mayr, Angew. Chem. Int. Ed. 2011, 50, 6915 – 6919; Angew. Chem. 2011, 123, 7047 – 7052.
dc.identifier.citedreferenceM. B. Larsen, A. J. Boydston, J. Am. Chem. Soc. 2013, 135, 8189 – 8192.
dc.identifier.citedreferenceM. B. Larsen, A. J. Boydston, J. Am. Chem. Soc. 2014, 136, 1276 – 1279.
dc.identifier.citedreferenceG. R. Gossweiler, G. B. Hewage, G. Soriano, Q. Wang, G. W. Welshofer, X. Zhao, S. L. Craig, ACS Macro Lett. 2014, 3, 216 – 219.
dc.identifier.citedreferenceM. Di Giannantonio, M. A. Ayer, E. Verde-Sesto, M. Lattuada, C. Weder, K. M. Fromm, Angew. Chem. Int. Ed. 2018, 57, 11445 – 11450; Angew. Chem. 2018, 130, 11616 – 11621.
dc.identifier.citedreferenceX. Hu, T. Zeng, C. C. Husic, M. J. Robb, J. Am. Chem. Soc. 2019, 141, 15018 – 15023.
dc.identifier.citedreferenceY. Lin, T. B. Kouznetsova, S. L. Craig, J. Am. Chem. Soc. 2020, 142, 99 – 103.
dc.identifier.citedreferenceA. G. Roessler, P. M. Zimmerman, J. Phys. Chem. C 2018, 122, 6996 – 7004.
dc.identifier.citedreferenceN. R. Sottos, Nat. Chem. 2014, 6, 381 – 383.
dc.identifier.citedreferenceY. Zhang, J. Yu, H. N. Bomba, Y. Zhu, Z. Gu, Chem. Rev. 2016, 116, 12536 – 12563.
dc.identifier.citedreferenceS. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan, Nature 2001, 409, 794.
dc.identifier.citedreferenceR. Groote, R. T. M. Jakobs, R. P. Sijbesma, Polym. Chem. 2013, 4, 4846 – 4859.
dc.identifier.citedreferenceJ. F. Patrick, M. J. Robb, N. R. Sottos, J. S. Moore, S. R. White, Nature 2016, 540, 363 – 370.
dc.identifier.citedreferenceA. V. Zhukhovitskiy, J. Geng, J. A. Johnson, Chem. Eur. J. 2015, 21, 5685 – 5688.
dc.identifier.citedreferenceA. Baishya, L. Kumar, M. K. Barman, T. Peddarao, S. Nembenna, ChemistrySelect 2016, 1, 498 – 503.
dc.identifier.citedreferenceL. M. Martínez-Prieto, C. Urbaneja, P. Palma, J. Cámpora, K. Philippot, B. Chaudret, Chem. Commun. 2015, 51, 4647 – 4650.
dc.identifier.citedreferenceM. M. Caruso, D. A. Davis, Q. Shen, S. A. Odom, N. R. Sottos, S. R. White, J. S. Moore, Chem. Rev. 2009, 109, 5755 – 5798.
dc.identifier.citedreferenceJ. Li, C. Nagamani, J. S. Moore, Acc. Chem. Res. 2015, 48, 2181 – 2190.
dc.identifier.citedreferenceM. B. Larsen, A. J. Boydston, Macromol. Chem. Phys. 2016, 217, 354 – 364.
dc.identifier.citedreferenceN. Willis-Fox, E. Rognin, T. A. Aljohani, R. Daly, Chem 2018, 4, 2499 – 2537.
dc.identifier.citedreferenceM. A. Ghanem, A. Basu, R. Behrou, N. Boechler, A. J. Boydston, S. L. Craig, Y. Lin, B. E. Lynde, A. Nelson, H. Shen, D. W. Storti, Nat. Rev. Mater. 2021, 6, 84 – 98.
dc.identifier.citedreferenceA. L. Black, J. M. Lenhardt, S. L. Craig, J. Mater. Chem. 2011, 21, 1655 – 1663.
dc.identifier.citedreferenceK. M. Wiggins, J. N. Brantley, C. W. Bielawski, ACS Macro Lett. 2012, 1, 623 – 626.
dc.identifier.citedreferenceK. L. Berkowski, S. L. Potisek, C. R. Hickenboth, J. S. Moore, Macromolecules 2005, 38, 8975 – 8978.
dc.identifier.citedreferenceC. R. Hickenboth, J. S. Moore, S. R. White, N. R. Sottos, J. Baudry, S. R. Wilson, Nature 2007, 446, 423 – 427.
dc.identifier.citedreferenceJ. M. Lenhardt, M. T. Ong, R. Choe, C. R. Evenhuis, T. J. Martinez, S. L. Craig, Science 2010, 329, 1057 – 1060.
dc.identifier.citedreferenceK. M. Wiggins, J. N. Brantley, C. W. Bielawski, Chem. Soc. Rev. 2013, 42, 7130 – 7147.
dc.identifier.citedreferenceD. Wu, J. M. Lenhardt, A. L. Black, B. B. Akhremitchev, S. L. Craig, J. Am. Chem. Soc. 2010, 132, 15936 – 15938.
dc.identifier.citedreferenceH. Zhang, X. Li, Y. Lin, F. Gao, Z. Tang, P. Su, W. Zhang, Y. Xu, W. Weng, R. Boulatov, Nat. Commun. 2017, 8, 1147.
dc.identifier.citedreferenceJ. Wang, I. Piskun, S. L. Craig, ACS Macro Lett. 2015, 4, 834 – 837.
dc.identifier.citedreferenceH. Zhang, F. Gao, X. Cao, Y. Li, Y. Xu, W. Weng, R. Boulatov, Angew. Chem. Int. Ed. 2016, 55, 3040 – 3044; Angew. Chem. 2016, 128, 3092 – 3096.
dc.identifier.citedreferenceF. Verstraeten, R. Göstl, R. P. Sijbesma, Chem. Commun. 2016, 52, 8608 – 8611.
dc.identifier.citedreferenceM. Biewend, P. Michael, W. H. Binder, Soft Matter 2020, 16, 1137 – 1141.
dc.identifier.citedreferenceA. L. Black Ramirez, J. W. Ogle, A. L. Schmitt, J. M. Lenhardt, M. P. Cashion, M. K. Mahanthappa, S. L. Craig, ACS Macro Lett. 2012, 1, 23 – 27.
dc.identifier.citedreferenceZ. Chen, J. A. M. Mercer, X. Zhu, J. A. H. Romaniuk, R. Pfattner, L. Cegelski, T. J. Martinez, N. Z. Burns, Y. Xia, Science 2017, 357, 475 – 479.
dc.identifier.citedreferenceD. A. Davis, A. Hamilton, J. Yang, L. D. Cremar, D. Van Gough, S. L. Potisek, M. T. Ong, P. V. Braun, T. J. Martínez, S. R. White, J. S. Moore, N. R. Sottos, Nature 2009, 459, 68 – 72.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.